Academic literature on the topic 'Cheese'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cheese.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cheese"
Burgos, Laura, Nora Pece, and Silvina Maldonado. "Spreadable processed cheese using natural goat cheese ripened." Nutrition & Food Science 50, no. 6 (December 21, 2019): 1001–12. http://dx.doi.org/10.1108/nfs-08-2019-0252.
Full textKalle, Athina, Ioannis Lambropoulos, Konstantinos Bourazas, and Ioannis G. Roussis. "Antioxidant Activity and Peptide Levels of Water-Soluble Extracts of Feta, Metsovone and Related Cheeses." Applied Sciences 14, no. 1 (December 28, 2023): 265. http://dx.doi.org/10.3390/app14010265.
Full textYOUSEF, AHMED E., and ELMER H. MARTH. "Quantitation of Growth of Mold on Cheese." Journal of Food Protection 50, no. 4 (April 1, 1987): 337–41. http://dx.doi.org/10.4315/0362-028x-50.4.337.
Full textHanaa Mohammed Abbas Salih and Harun Rasit Uysal. "Possibilities of using different combinations of lactic acid bacteria in the production of Sudanese white cheese (Gibna Bayda)." GSC Advanced Research and Reviews 16, no. 1 (July 30, 2023): 215–35. http://dx.doi.org/10.30574/gscarr.2023.16.1.0306.
Full textMacej, Ognjen, Snezana Jovanovic, and Miroljub Barac. "The influence of different kind of milk on quality of Sjenica cheese and Sjenica type cheeses made by autohthonous technology." Biotehnologija u stocarstvu 20, no. 1-2 (2004): 109–18. http://dx.doi.org/10.2298/bah0402109m.
Full textMOHEDANO, ANGEL F., JAVIER FERNÁNDEZ, PILAR GAYA, MARGARITA MEDINA, and MANUEL NUÑEZ. "Effect of the cysteine proteinase from Micrococcus sp. INIA 528 on the ripening process of Hispanico cheese." Journal of Dairy Research 65, no. 4 (November 1998): 621–30. http://dx.doi.org/10.1017/s002202999800315x.
Full textMukhiddinov, Q. A., A. M. Rakhimov, Dj E. Saparov, A. Aït-Kaddour, and Sh A. Sultanova. "Investigation of the process of molding, pressing and salting hard and soft cheeses." IOP Conference Series: Earth and Environmental Science 1076, no. 1 (August 1, 2022): 012060. http://dx.doi.org/10.1088/1755-1315/1076/1/012060.
Full textMiszczycha, Stéphane D., Frédérique Perrin, Sarah Ganet, Emmanuel Jamet, Fanny Tenenhaus-Aziza, Marie-Christine Montel, and Delphine Thevenot-Sergentet. "Behavior of Different Shiga Toxin-Producing Escherichia coli Serotypes in Various Experimentally Contaminated Raw-Milk Cheeses." Applied and Environmental Microbiology 79, no. 1 (October 19, 2012): 150–58. http://dx.doi.org/10.1128/aem.02192-12.
Full textShakeel-Ur-Rehman, Nana Y. Farkye, Ebenezer R. Vedamuthu, and Mary A. Drake. "A preliminary study on the effect of adding yeast extract to cheese curd on proteolysis and flavour development of reduced-fat Cheddar." Journal of Dairy Research 70, no. 1 (February 2003): 99–103. http://dx.doi.org/10.1017/s0022029902005861.
Full textPappa, Eleni C., Efthymia Kondyli, Loulouda Bosnea, Marios Mataragas, Agathi Giannouli, and Maria Tsiraki. "Semi-Industrial Production of Kashkaval of Pindos Cheese Using Sheep or a Mixture of Sheep–Goat Milk and Utilization of the Whey for Manufacturing Urda Cheese." Foods 9, no. 6 (June 3, 2020): 736. http://dx.doi.org/10.3390/foods9060736.
Full textDissertations / Theses on the topic "Cheese"
Bullard, DeeAnne. "Cheese show." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322761024.
Full textJones, Benjamin J. "Cheese process control." Thesis, University of Canterbury. Chemical and Process Engineering, 1999. http://hdl.handle.net/10092/6842.
Full textBanville, Vincent. "Understanding the impact of different cheese-making strategies on Mozzarella cheese properties." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26998.
Full textLe fromage Mozzarella entre dans la composition de plusieurs mets populaires d’Amérique du Nord. L’aptitude de ce fromage à être râpé et ses propriétés caractéristiques de cuisson en font un ingrédient idéal. Ces qualités sont attribuées principalement aux propriétés physiques particulières de ce fromage sous certaines conditions de cisaillement et de température. Le but de ce projet était d’évaluer l’impact de différentes stratégies couramment mises en oeuvre dans l’industrie fromagère sur la composition, la microstructure et les propriétés physiques du fromage. Diverses stratégies ont été étudiées : les conditions de filage du caillé lors du procédé de « pasta filata », l’addition de protéines sériques dénaturées, le contrôle de la minéralisation et le vieillissement du fromage. Les résultats ont démontré que le contrôle de l’intensité mécanique et thermique fournie lors du filage permettait respectivement de réduire les pertes de solides et d’améliorer la répartition de la phase aqueuse dans la matrice fromagère. L’aptitude au râpage du fromage peut être optimisée en combinant l’utilisation de plusieurs stratégies dont la réduction du calcium colloïdal, un temps de vieillissement adéquat et un râpage à basse température. Par ailleurs, des changements aux facteurs mentionnés précédemment sont apportés lors de l’ajout de protéines sériques dénaturées, ces dernières ayant un impact sur la composition et la structure du fromage. Des modèles prédictifs de l’aptitude au râpage ont été développés en sélectionnant uniquement les descripteurs de composition et de texture pertinents. La perception sensorielle du fromage cuit sur pizza et les propriétés physiques du fromage fondu ont été considérablement influencées par l'évolution physico-chimique du fromage au cours du vieillissement. L’utilisation d’une nouvelle approche pour la caractérisation des propriétés rhéologiques du fromage fondu sous fortes contraintes a permis d’établir de bonnes relations avec les descripteurs sensoriels de texture. Ce travail a permis de valider l’hypothèse que l’utilisation d’une ou plusieurs stratégies simples et accessibles pouvait être mise de l’avant afin d’optimiser les propriétés physiques du fromage Mozzarella. Cela contribue à une meilleure compréhension des facteurs pouvant être contrôlés afin de développer des fromages avec des attributs spécifiques, lorsqu’utilisés comme ingrédient.
Mozzarella cheese is expected to perform various key attributes when used as a food ingredient. The shreddability and the melting properties of cheese during and after baking are mainly governed by the physical properties of cheese when subjected to external factors such as shear and temperature. Therefore, the goal of this project was to evaluate the impact of cheese-making strategies commonly used in the dairy processing industry on the cheese composition, microstructure, and physical properties. Various strategies were studied: pasta filata process conditions, addition of denatured whey protein (WP-D) to milk, control of curd mineralization, and cheese aging. Results showed that controlling the mechanical and thermal intensity during the pasta filata process can lead to reduced cheese solid losses and a better distribution of water within cheese microstructure, respectively. The ability of cheese to be shredded can be increased using a combination of multiple factors such as lowering colloidal calcium phosphate associated with casein, proper aging, and by reducing cheese temperature before shredding. However, an optimisation of the previous factors should be done if WP-D is added because of its impact on cheese composition and structure. Predictive models to assess cheese shreddability were built using only few relevant compositional and textural descriptors. Sensory perception of baked cheese texture and physical properties of melted cheese were dramatically influenced by the physico-chemical evolution of cheese during aging. Melted cheese texture was satisfactorily related to different sensory attributes using a novel approach to determine the rheological properties under the large stress experienced during mastication. This work validated the hypothesis that simple cheese-making strategies, alone or combined, can be used to optimize the cheese physical properties. This contributes to a better understanding of the factors that can be controlled to improve or develop cheese ingredient with specific attributes.
Fife, Robert Lloyd. "The Influence of Fat and Water on the Melted Cheese Characteristics of Mozzarella Cheese." DigitalCommons@USU, 2003. https://digitalcommons.usu.edu/etd/5492.
Full textBetzold, Nancy. "Pink discoloration of mozzerella cheese." Menomonie, WI : University of Wisconsin--Stout, 2004. http://www.uwstout.edu/lib/thesis/2004/2004betzoldn.pdf.
Full textHaddadin, M. S. Y. "Production of white brined cheese." Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.373837.
Full textDias, Benjamin. "Methanethiol and Cheddar Cheese Flavor." DigitalCommons@USU, 1999. https://digitalcommons.usu.edu/etd/5465.
Full textFedrick, Ian Allan. "Accelerated ripening of cheddar cheese." Thesis, Queensland University of Technology, 1986. https://eprints.qut.edu.au/35957/1/35957_Fedrick_1986.pdf.
Full textChávez, Tasayco Jaime Orlando, Cortijo Miguel ángel Espinoza, and Fernández Mariano Ricardo Zegarra. "Lanzamiento de la marca de Snacks Cheese & Cheese en el Centro Comercial Jockey Plaza." Universidad Peruana de Ciencias Aplicadas - UPC. Escuela de Postgrado, 2009. http://hdl.handle.net/10757/273923.
Full textDADOUSIS, CHRISTOS. "From milk to cheese: genomic background, biological pathways and latent phenotypes of bovine cheese-related traits." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3424728.
Full textLo scopo di questa tesi di dottorato è stato lo studio del background genomico, biologico e fenotipico di caratteri legati al processo di caseificazione nella specie bovina. L’obiettivo primario è stato quello di determinare il background genomico di caratteri tecnologici del latte bovino legati al processo di caseificazione (CAPITOLI da 1 a 3). Per raggiungere questo obiettivo, l’abilità della bovina di produrre formaggio è stata ripartita in 26 fenotipi: 11 caratteri di attitudine casearia e proprietà di coagulazione, comprendenti le tradizionali proprietà di coagulazione del latte (MCP) e nuovi parametri modellizzati di consistenza della cagliata (CFt), e 7 fenotipi di resa in formaggio (CY) e recupero dei nutrienti del latte nella cagliata (REC). Tuttavia, l'elevato numero di variabili necessarie per descrivere la produzione di formaggio bovino pone delle restrizioni nella costruzione di indici di selezione, e quindi nel prendere decisioni di selezione. Per superare il problema della elevata dimensionalità, è stata utilizzata un’analisi fattoriale (FA) per studiare la struttura latente dei 26 caratteri coinvolti nel processo di caseificazione (CAPITOLI 4 e 5). I caratteri MCP includevano le 3 proprietà lattodinamografiche tradizionali basate su singola misurazione dello strumento (RCT: tempo di coagulazione, in min; k20: tempo di rassodamento, in min; a30: consistenza del coagulo (CF) 30 min dopo l'aggiunta del caglio, in mm). I fenotipi CFt comprendevano un set di 6 parametri modellizzati sulla base di 360 dati di CF misurati per ciascun campione di latte (CFp: CF potenziale, in mm; kCF: tasso di rassodamento del coagulo, in % × min-1; kSR: tasso di sineresi, in % × min-1; RCTeq: RCT stimato dal modello; CFmax: massima CF, in mm; tmax: tempo necessario per raggiungere CFmax, in min), delle proteine del latte (%) e del pH. I 3 caratteri CY includevano resa a fresco (% CYCURD), resa in solidi (% CYSOLIDS), e acqua ritenuta nella cagliata (% CYWATER), espresse come percentuale del latte trasformato. Le 4 misure di REC (RECFAT, RECPROTEIN, RECSOLIDS, e RECENERGY) sono state calcolate come rapporto espresso in percentuale tra il valore di nutrienti nella cagliata e il corrispettivo nel latte. L’analisi FA ha considerato tutti i 26 caratteri oggetti di studio, comprendenti produzione e qualità del latte (incluse le frazioni proteiche del latte), parametri CFt e caratteri CY-REC. La metodologia adottata comprendeva analisi di associazione genome-wide (GWAS), accompagnata da analisi di arricchimento genetico e di tipo pathway-based. Le analisi genomiche hanno considerato un totale, 1.152 bovine di razza Bruna Italiana allevate in 85 allevamenti, genotipizzate attraverso il v.2 Illumina SNP50 Beadchip. Le analisi GWAS sono state condotte mediante analisi di regressione a singolo marcatore, fittate utilizzando il pacchetto GenABEL del software R (GRAMMAR-GC). I database Gene Ontology (GO) e Kyoto Encyclopedia of Genes and Genomes (KEGG) sono stati interrogati per le analisi di arricchimento. Nell’analisi GWAS (CAPITOLI 1 e 2) sono stati individuati picchi nitidi sull’autosoma 6 di Bos taurus (BTA) tra 84-88 Mbp, con il picco più alto rilevato a 87,4 Mbp nella regione ospitante i geni della caseina e più precisamente della κ-CN (CSN3). Il marcatore Hapmap52348-rs29024684 (~ 87,4 Mbp), localizzato in prossimità dei geni della caseina su BTA6, ha mostrato una forte associazione con RECFAT (P = 1.91 × 10-15) e CFP (P = 1.62 × 10-17). Sullo stesso cromosoma, è stata trovata evidenza di loci per i caratteri quantitativi a 82,6 e 88,4 Mbp. Su BTA11, il marcatore ARS-BFGL-NGS-104.610 (~ 104,3 Mbp) è risultato fortemente associato con RECPROTEIN (P = 6,07 × 10-36). Oltre a BTA6 e 11, altri SNP situati in altri 15 cromosomi (1, 2, 9, 12, 13, 14, 15, 16, 18, 19, 20, 23, 26, 27 e 28) sono risultati significativamente associati con MCP, CFt e con i caratteri CY-REC. L'analisi di arricchimento e pathway-based (CAPITOLO 3) ha rivelato 21 categorie GO e 17 categorie KEGG significativamente associate (tasso di errore controllato al 5%) con 7 tra i caratteri fenotipici considerati (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS e RECENERGY) e alcune categorie sono risultate in comune tra i caratteri. Le categorie significativamente arricchite includevano vie di segnalazione del calcio, di secrezione salivare, vie metaboliche, di digestione e assorbimento dei carboidrati, di giunzioni occludenti e del fosfatidilinositolo, così come vie legate allo stato di salute della ghiandola mammaria bovina, per un totale di 150 geni situati in tutti i cromosomi tranne 9, 20 e 27. Nella FA (CAPITOLI 4 e 5) sono stati ottenuti dieci Fs mutualmente ortogonali utilizzando una rotazione varimax. I 10 Fs spiegavano il 74% della variabilità originale. Tali Fs erano biologicamente riconducibili a elementi base del processo di trasformazione “dal latte al formaggio". Più precisamente, i primi 4 Fs, ordinati sulla base della varianza spiegata, sono stati in grado di definire la struttura latente della CY percentuale (F1% CY), del processo di CF nel tempo (F2CFt), del rendimento di latte e solidi (F3Yield) e della presenza di azoto (N) nel formaggio (F4Cheese N). Inoltre, 4 Fs (F5αs1-β-CN, F7β-κ-CN, F8αs2-CN, F9αs1-CN-P) erano associati alle caseine del latte (as1-CN, as2-CN, β-CN, κ-CN, e la forma fosforilata as1-CN) e 1 fattore alla proteina del siero α-LA (F10α-LA). É stato inoltre ottenuto un fattore in grado di descrivere lo stato di salute della mammella bovina (F6Udder health), basato principalmente sulla produzione di lattosio e di altri composti azotati e sulle cellule somatiche. In generale, i risultati nell’analisi FA sono risultati coerenti con l’attribuzione del significato biologico dato al fattore. La maggior parte degli Fs è risultata significativamente influenzata dallo stadio di lattazione, seguito dall’ordine di parto. Sono state inoltre riscontrate correlazioni genetiche rilevanti tra i fattori (CAPITOLO 4). Nell’analisi GWAS tutti gli Fs hanno mostrato associazioni significative (P <5 × 10-5), ad eccezione di F5Yield. I picchi elevati su BTA6 (~ 87Mbp) e sulla coda di BTA11 (~ 104Mbp) erano principalmente associati a F6β-κ-CN e F1Cheese N, rispettivamente. Inoltre, 33 termini GO e 6 categorie KEGG sono risultati arricchiti e associati con F1% CY, F4Cheese N, F8αs2-CN e F10α-LA. Le vie di segnalazione biologica descritte dai fattori erano principalmente correlate alle categorie più generali di attività ionica, neuroni e giunzioni occludenti. Poichè un numero considerevole di categorie arricchite GO e KEGG è risultato associato al fattore F8αs2-CN, maggiore attenzione dovrebbe essere posta sulla frazioneαs2-CN (CAPITOLO 5).
Books on the topic "Cheese"
Dah, Brie. Cheese: The Muensters : supernaturally cheesy sitcom. Portland, Ore: The author, 1995.
Find full textWerlin, Laura. Grilled cheese, please!: 50 scrumptiously cheesy recipes. Kansas City, Mo: Andrews McMeel Pub., 2011.
Find full textIllsley, Linda. Cheese. Minneapolis: Carolrhoda Books, 1991.
Find full textMcNair, James K. Cheese. San Francisco: Chronicle Books, 1986.
Find full textPaul, Vincent, ed. Cheese. London: Granta Books, 2002.
Find full text1939-, Yates John, ed. Cheese. Hove: Wayland, 1990.
Find full textMaren, Caruso, ed. Mac & cheese, please!: 50 super cheesy recipes. Kansas City: Andrews McMeel Publishing, 2012.
Find full text(Firm), CQ Products, ed. Cheese cookbook: 101 recipes with cheese. Waverly, IA: CQ Products, 2007.
Find full textRicki, Carroll, ed. Home cheese making: Recipes for 75 homemade cheeses. 3rd ed. North Adams, MA: Storey Books, 2002.
Find full textSpieler, Marlena. Macaroni & cheese. San Francisco: Chronicle Books, 2006.
Find full textBook chapters on the topic "Cheese"
Varnam, Alan H., and Jane P. Sutherland. "Cheese." In Milk and Milk Products, 275–345. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1813-6_7.
Full textMcMahon, Donald J., and Maria Brym. "Cheese." In Dairy Processing and Quality Assurance, 287–309. Chichester, UK: John Wiley & Sons, Ltd,, 2015. http://dx.doi.org/10.1002/9781118810279.ch12.
Full textGooch, Jan W. "Cheese." In Encyclopedic Dictionary of Polymers, 136. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2235.
Full textCatsberg, C. M. E., and G. J. M. Kempen-Van Dommelen. "Cheese." In Food Handbook, 151–67. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0445-3_11.
Full textSingh, Tanoj K., and Keith R. Cadwallader. "Cheese." In Dairy Processing & Quality Assurance, 273–307. Oxford, UK: Wiley-Blackwell, 2009. http://dx.doi.org/10.1002/9780813804033.ch12.
Full textMistry, V. V. "Cheese." In Membrane Processing, 176–92. Oxford, UK: Blackwell Publishing Ltd., 2012. http://dx.doi.org/10.1002/9781118457009.ch8.
Full textVarnam, Alan H., and Jane P. Sutherland. "Cheese." In Milk and Milk Products, 275–345. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-2798-5_7.
Full textOlson, Norman F. "Cheese." In Biotechnology, 353–84. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2008. http://dx.doi.org/10.1002/9783527620920.ch9.
Full textRobinson, R. K., and R. A. Wilbey. "Cheese faults and cheese grading." In Cheesemaking Practice, 288–308. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5819-4_16.
Full textFerragut, Victoria, and Toni Trujillo. "Semi-Hard Cheese – Cheese Making Technology." In Experiments in Unit Operations and Processing of Foods, 155–60. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68642-4_20.
Full textConference papers on the topic "Cheese"
Savić, Željko, Aleksandar Čukić, Ljiljana Anđušić, and Božidar Milošević. "Changes of total proteins during maturation period of Sjenica cheese." In Zbornik radova 26. medunarodni kongres Mediteranske federacije za zdravlje i produkciju preživara - FeMeSPRum. Poljoprivredni fakultet Novi Sad, 2024. http://dx.doi.org/10.5937/femesprumns24028s.
Full textKalugina, O. I., K. A. Shlyapina, E. R. Baranova, and S. A. Simon. "CHEESE AS PREVENTION OF PROTEIN-ENERGY INSUFFICIENCY." In I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-48.
Full textHeghedus Mindru, Gabriel, Daniel Bogdan Platon, Teodor Ioan Trasca, Ducu Sandu Stef, and Ramona Cristina Heghedus Mindru. "MANUFACTURE, PHYSICOCHEMICAL AND SENSORY EVALUATION OF ARTISANAL RIPENED CHEESES FROM COW'S MILK." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/6.1/s25.24.
Full textShrayner, V. A., and Ch G. Kuular. "INNOVATIVE TECHNOLOGIES IN THE PRODUCTION OF GOUDA-TYPE CHEESES." In I International Congress “The Latest Achievements of Medicine, Healthcare, and Health-Saving Technologies”. Kemerovo State University, 2023. http://dx.doi.org/10.21603/-i-ic-154.
Full textMueller, Florian, and Andrea Lockerd. "Cheese." In CHI '01 extended abstracts. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/634067.634233.
Full textMueller, Florian, and Andrea Lockerd. "Cheese." In CHI '01 extended abstracts. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/634232.634233.
Full textYang, Baijian, Rajesh Kalyanam, Craig Willis, Mike Lambert, and Christine Kirkpatrick. "CHEESE." In SIGITE '19: The 20th Annual Conference on Information Technology Education. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3349266.3351393.
Full textLee, Boram, and Woohun Lee. "Cheese cam." In the 27th international conference extended abstracts. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1520340.1520654.
Full textWerk, Das, and Derek Flood. "Say Cheese." In ACM SIGGRAPH 2001 video review. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/945314.945348.
Full textCollins, Emily I. M., Anna L. Cox, and Frank Lee. "Say Cheese!" In CHI PLAY '16: The annual symposium on Computer-Human Interaction in Play. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2967934.2968096.
Full textReports on the topic "Cheese"
Cohen, Victoria, Svetlozara Chobanova, and Iulia Iulia Gherman. Risk assessment for vulnerable consumers from Listeria monocytogenes in blue cheese. Food Standards Agency, November 2023. http://dx.doi.org/10.46756/sci.fsa.tqb580.
Full textBohnert, G. W. Bioconversion of Cheese Waste (Whey). Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/16549.
Full textChahyadi, Raymond. An Estimation for the Demand of High-End vs Low-End Cheese. Ames (Iowa): Iowa State University, August 2022. http://dx.doi.org/10.31274/cc-20240624-167.
Full textPeter Hodum, Peter Hodum. Say “cheese”: Using automated cameras to assess the status of a threatened seabird. Experiment, July 2016. http://dx.doi.org/10.18258/7342.
Full textNattress, Daniel, Alan Bennett, Mary Canniff, Judith Aylward, Stephen Moody, and Alan LaBrode. Improved Storage Stability of Meal, Ready-To-Eat Cheese Spread Under Heat-Stressing Conditions. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada509973.
Full textEastwood, A. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations]. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/834790.
Full textTestroet, Eric D., Mathew R. O'Neil, Donald C. Beitz, and Stephanie Clark. Feeding Lactating Holstein Dairy Cows Reduced-Fat Dried Distillers Grains with Solubles: Quality of Baby Swiss Cheese. Ames (Iowa): Iowa State University, January 2017. http://dx.doi.org/10.31274/ans_air-180814-305.
Full textBryant, C. A., S. A. Wilks, and C. W. Keevil. Survival of SARS-CoV-2 on the surfaces of food and food packaging materials. Food Standards Agency, November 2022. http://dx.doi.org/10.46756/sci.fsa.kww583.
Full textBarash, Itamar, and Robert E. Rhoads. Translational Mechanisms that Govern Milk Protein Levels and Composition. United States Department of Agriculture, November 2004. http://dx.doi.org/10.32747/2004.7586474.bard.
Full textGrossmann, Rafael J. Chest Tube Insertion. Touch Surgery Simulations, March 2015. http://dx.doi.org/10.18556/touchsurgery/2015.s0041.
Full text