Dissertations / Theses on the topic 'Chebyshev approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 28 dissertations / theses for your research on the topic 'Chebyshev approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Park, Jae H. "Chebyshev Approximation of Discrete polynomials and Splines." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/30195.
Full textPh. D.
Chit, Nassim N. "Weighted Chebyshev complex-valued approximation for FIR digital filters." Thesis, Swansea University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278340.
Full textTaylor, Barbara J. "Chebyshev centers and best simultaneous approximation in normed linear spaces." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63872.
Full textPachon, Ricardo. "Algorithms for polynomial and rational approximation." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:f268a835-46ef-45ea-8610-77bf654b9442.
Full textFilip, Silviu-Ioan. "Robust tools for weighted Chebyshev approximation and applications to digital filter design." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN063/document.
Full textThe field of signal processing methods and applications frequentlyrelies on powerful results from numerical approximation. One suchexample, at the core of this thesis, is the use of Chebyshev approximationmethods for designing digital filters.In practice, the finite nature of numerical representations adds an extralayer of difficulty to the design problems we wish to address using digitalfilters (audio and image processing being two domains which rely heavilyon filtering operations). Most of the current mainstream tools for thisjob are neither optimized, nor do they provide certificates of correctness.We wish to change this, with some of the groundwork being laid by thepresent work.The first part of the thesis deals with the study and development ofRemez/Parks-McClellan-type methods for solving weighted polynomialapproximation problems in floating-point arithmetic. They are veryscalable and numerically accurate in addressing finite impulse response(FIR) design problems. However, in embedded and power hungry settings,the format of the filter coefficients uses a small number of bits andother methods are needed. We propose a (quasi-)optimal approach basedon the LLL algorithm which is more tractable than exact approaches.We then proceed to integrate these aforementioned tools in a softwarestack for FIR filter synthesis on FPGA targets. The results obtainedare both resource consumption efficient and possess guaranteed accuracyproperties. In the end, we present an ongoing study on Remez-type algorithmsfor rational approximation problems (which can be used for infinite impulseresponse (IIR) filter design) and the difficulties hindering their robustness
Melkemi, Khaled. "Orthogonalité des B-splines de Chebyshev cardinales dans un espace de Sobolev pondéré." Phd thesis, Université Joseph Fourier (Grenoble), 1999. http://tel.archives-ouvertes.fr/tel-00004843.
Full textJohnson, William Joel Dietmar. "Rational fraction approximations for passive network functions." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001083.
Full textMasson, Yannick. "Existence et construction de réseaux de Chebyshev avec singularités et application aux gridshells." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1144/document.
Full textChebyshev nets are coordinate systems on surfaces obtained by pure shearing of a planar domain.These nets are used in particular to model gridshells, an architectural construction which is well-known for its low environmental impact. The main issue when designing a gridshell is the lack of diversityof the accessible shapes. Indeed, although any surface admits locally a Chebyshev net at any point, the global existence for these coordinate systems is only possible for a restricted set of surfaces. The research for sufficient conditions ensuring the global existence of Chebyshev nets is still ongoing. A result achieved in this thesis is an improvement on these conditions. Since the improvement in this direction seems to be rather limited, we broaden the perspective by introducing Chebyshev nets with singularities. Our main result is the existence of a global Chebyshev net with conical singularities on any surface with total positive curvature less than $2pi$ and with finite total negative curvature. Our proof is constructive, so that this method can be applied to practical cases. We have implemented a special instance of this algorithm in the software Rhinoceros and some discrete Chebyshev nets constructed using this method are presented
Essakhi, Brahim. "Modélisation électromagnétique 3D sur une large bande de fréquences par combinaison d'une méthode d'éléments finis et d'une approximation par fractions rationnelles : application aux structures rayonnantes." Paris 11, 2005. http://www.theses.fr/2005PA112151.
Full textThe tools for digital simulation know an intensive use in the resolution of the problems of CEM. One of the reasons is that the increasing complexity of the problems to be studied makes the experimentation difficult to realize. Moreover, measurements cannot be made that in a restricted number of points of space. The finite element method has the advantages of easily being able to take into account complex geometries and heterogeneous mediums. It uses a grid in conformity, which adapts to the geometry of the analyzed structure and which allows local refinements in the areas where variations of the physical properties, geometrical or of the fields are more significant. A temporal formulation allows the analysis of problems directly in the field of time. A frequential formulation results in solving a linear system for each frequency of study. In many applications, the electromagnetic quantities must be given on a broad frequency band and the linear system must be solved for each frequency of interest. This involves a cost of significant calculation. An alternative consists in seeking an approximation of the solution in the form of a development in series or of a rational fraction. A possible approach consists in developing the solution in Taylor series around a centre frequency. The interval of convergence of the series is limited but it is possible to extend this interval of validity while resorting to a rational approximation of Padé. The approximation of Chebyshev is an other method based on rational approximation, it consists in seeking an interpolation of the solution
Midgley, Stuart. "Quantum waveguide theory." University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.
Full textVolkmer, Toni. "Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222820.
Full textIn dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt. Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen. Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören
Joldes, Mioara Maria. "Approximations polynomiales rigoureuses et applications." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00657843.
Full textLe, Quéré Patrick. "Etude de la transition à l'instationnarité des écoulements de convection naturelle en cavité verticale différentiellement chauffée par méthodes spectrales chebyshev." Poitiers, 1987. http://www.theses.fr/1987POIT2003.
Full textMason, J. C. "Near-best approximations by Chebyshev polynomials with applications." Thesis, University of Huddersfield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.411894.
Full textMace, Rob-Roy L. "Reduction of the Gibbs Phenomenon via interpolation using Chebyshev polynomials, filterying, and chebyshev-padé approximations." Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=.
Full textBhikkaji, Bharath. "Model Reduction and Parameter Estimation for Diffusion Systems." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4252.
Full textMinsker, Stanislav. "Non-asymptotic bounds for prediction problems and density estimation." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44808.
Full textLevesley, Jeremy. "A study of Chebyshev weighted approximations to the solution of Symm's integral equation for numerical conformal mapping." Thesis, Coventry University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304879.
Full textUrban, Lukáš. "Laboratorní úloha zaměřená na obvody se spínanými kapacitory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217788.
Full textLING, MING-XING, and 林明興. "Quadrature mirror filter design by Chebyshev approximation." Thesis, 1989. http://ndltd.ncl.edu.tw/handle/49760218487555791989.
Full textLiu, Yu-Chen, and 劉育成. "Rational Chebyshev Approximation and Generalized Fractional Programs." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/62033766952873260845.
Full text國立嘉義大學
應用數學系研究所
98
Rational Chebyshev approximation is used to find a rational function to approximate a given continuous function. Rational Chebyshev approximation is also an application of the generalized fractional programs which can be solved by Dinkelbach-type algorithm. Besides rational Chebyshev approximation, Pad'e fractional approximation also can produce a fractional function which approximate to the given continuous function. We implement Dinkelbach-type algorithm for solving rational Chebyshev approximation in Matlab and compare it with Pad'e approximation from numerical points of view.
CHEN, XIANGKUN. "DESIGN OF OPTIMAL DIGITAL FILTERS (APPROXIMATION, CHEBYSHEV, LINEAR PHASE, MINIMUM PHASE, COMPLEX DOMAIN)." Thesis, 1986. http://hdl.handle.net/1911/15961.
Full textChang, Hsin-Chih, and 張信志. "A New WLS Chebyshev Approximation Method for the Design of IIR Digital Filters." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/83373246513680110483.
Full text國立清華大學
電機工程研究所
82
This thesis proposes a new approximation method using the weighted least squares (WLS) algorithm for the design of IIR filters. The WLS algorithm used by Chi and Chiou's approxima- tion method for the design of FIR filters is modified for the designed of IIR filters. When the desired frequency response including magnitude and phase is specified, the designed IIR filter is nearly equiripple in absolute (complex) approxima- tion error, but it is not guaranteed to be stable. The pro- posed approximation method can also be used for the design of allpass filters by taking into account of some constraint in filter coefficients. The designed allpass filter is equiripple in phase and will be stable by adding an appropriate positive group delay to the desired group delay response. On the other hand, when only magnitude of the desired frequency response is specified, the designed IIR filter is minimum-phase. Six de- signed examples are provided to support the proposed approxi- mation method. Finally, we draw some conclusions.
Bani, Younes Ahmad H. "Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics." Thesis, 2013. http://hdl.handle.net/1969.1/151375.
Full text郭永田. "A new self-initated optimum WLS chebyshev approximation method for the design of linear phase fir digital filters." Thesis, 1991. http://ndltd.ncl.edu.tw/handle/18215789495672715919.
Full textWolfkill, Karlan Stephen. "Pseudo-spectral approximations of Rossby and gravity waves in a two-Layer fluid." Thesis, 2012. http://hdl.handle.net/1957/30138.
Full textGraduation date: 2012
Dostalík, Mark. "Vliv materiálových parametrů na stabilitu termální konvekce." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-346943.
Full text