Academic literature on the topic 'Chassis Control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chassis Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chassis Control"

1

Semmler, Sascha J., and Peter E. Rieth. "Global Chassis Control — The Networked Chassis." ATZautotechnology 5, no. 2 (March 2005): 38–42. http://dx.doi.org/10.1007/bf03246883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwarz, Ralf, and Peter Rieth. "Global Chassis Control – Systemvernetzung im Fahrwerk (Global Chassis Control – Integration of Chassis Systems)." at - Automatisierungstechnik 51, no. 7-2003 (July 2003): 300–312. http://dx.doi.org/10.1524/auto.51.7.300.22740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, Shuen, and Yu Ling Li. "Vehicle Active Chassis Integrated Control Based on Multi-Model Intelligent Hierarchical Control." Advanced Materials Research 591-593 (November 2012): 1770–75. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.1770.

Full text
Abstract:
According to the characteristics of the vehicle active chassis system, multi-model system including Electric Power Steering System (EPS), Anti-lock Braking System (ABS) and Semi-active Suspension system (SAS) is established. Then, using the strategy of intelligent hierarchical control, the coordinated controller of active chassis system is designed. The bottom layer controller includes 3 separate controllers, i.e., suspension, steering and braking system controllers. They are used to carry out different control tasks and achieve performance indexes of subsystems. The upper layer coordinated controller is used to judge the vehicle states. At the same time, combined with the vehicle chassis coordinated control logic and the characteristics of feed-back information coming from the bottom controllers, the upper coordinated controller make whole coordination and control decision-making to vehicle active chassis subsystems. The simulation results show that the intelligent hierarchical control can improve the vehicle operational performances effectively.
APA, Harvard, Vancouver, ISO, and other styles
4

Dong, En Guo, Jie Xuan Lou, and Lei Zhang. "Integrated Control of Vehicle Chassis Based on PID." Applied Mechanics and Materials 644-650 (September 2014): 25–28. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.25.

Full text
Abstract:
In control system of vehicle chassis, two integrated control sub-systems of chassis have achieved some better results than a single sub-system control. However the two integrated sub-system control can not improve some dynamic performance on vehicle when other sub-system of chassis is disturbed. In order to improve vehicle dynamic performance of some sub-system, an integrated control method based on multi-system with suspension, steering system and brake system is designed. In the model, a 14-DOF vehicle model is used, and an integrated control method based on multi-system of chassis is designed in software of Matlab/Simulink with an integrated controller of PID. Simulation results show that the overall vehicle performance based on the three integrated control systems of chassis is better than those of two integrated control system.
APA, Harvard, Vancouver, ISO, and other styles
5

Sui, Tingting, Jinhao Liu, Jianli Wang, and Jianting Zhang. "A Barycenter Control Method for the Bioinspired Forest Chassis Robot on Slope." Journal of Robotics 2021 (April 30, 2021): 1–15. http://dx.doi.org/10.1155/2021/5528746.

Full text
Abstract:
To improve the stability of forestry chassis on the slope, a chassis-installed barycenter adjustable mechanism (BAM) is designed, and the control method of the counterweight is proposed to make the chassis barycenter move suitably to achieve the design purpose. The kinematic analysis of BAM is carried out, and the relationship between the translation, rotation, and vertical displacement of counterweight and the chassis barycenter is calculated. Furthermore, the variation curves obtained in Matlab show the barycenter can translate 100 mm, rotate from 0 to 360 degrees, and lower about 180 mm in the vertical direction. Adams is adopted to complete the kinematics simulation of the chassis, indicating that the control method can effectively adjust the barycenter position. Finally, experiments are carried out under slope conditions to analyze chassis stability by testing plantar pressure. The results show that forest chassis using the barycenter control method helps keep stable on the slope of 15 degrees, much better than standard normal chassis.
APA, Harvard, Vancouver, ISO, and other styles
6

Matthews, Christian, Paul B. Dickinson, and A. Thomas Shenton. "Chassis Dynamometer Torque Control: A Robust Control Methodology." SAE International Journal of Passenger Cars - Mechanical Systems 2, no. 1 (April 20, 2009): 263–70. http://dx.doi.org/10.4271/2009-01-0074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kasac, Josip, Josko Deur, Branko Novakovic, Matthew Hancock, and Francis Assadian. "Optimization of Global Chassis Control Variables." IFAC Proceedings Volumes 41, no. 2 (2008): 2081–86. http://dx.doi.org/10.3182/20080706-5-kr-1001.00353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yim, Seongjin. "Integrated chassis control with adaptive algorithms." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 230, no. 9 (September 30, 2015): 1264–72. http://dx.doi.org/10.1177/0954407015605947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hutter, Marco, Philipp Leemann, Gabriel Hottiger, Ruedi Figi, Stefan Tagmann, Gonzalo Rey, and George Small. "Force Control for Active Chassis Balancing." IEEE/ASME Transactions on Mechatronics 22, no. 2 (April 2017): 613–22. http://dx.doi.org/10.1109/tmech.2016.2612722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grupp, Matthias, Martin Krenn, Holger Vieler, Christian Popp, and Stefan Strobl. "Integriertes Chassis Management und Fahrdynamik Control." ATZextra 13, no. 8 (November 2008): 108–12. http://dx.doi.org/10.1365/s35778-008-0172-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chassis Control"

1

Brandao, Felipe Tavares de Vilhena. "Integrated control of vehicle chassis systems." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/7641.

Full text
Abstract:
This thesis develops a method to integrate several automotive intelligent chassis systems, such as Anti-lock Brake System, Traction Control System, Direct Yaw Control and Active Rear Wheel Steering, using evolutionary approaches. The Integrated Vehicle Control System (IVCS) combines and supervises all controllable systems in the vehicle, optimising the over all performance and minimising the energy consumption. The IVCS is able to improve the driving safety avoiding and preventing critical or unstable situations. Furthermore, if a critical or unstable configuration is reached, the integrated system should be able to recover a stable condition. The control structure proposed in this work has as main characteristics the modularity, extensibility and flexibility, fitting the requirements of a 'plug-and-play' philosophy. The investigation is divided into four steps: Vehicle Modelling, Soft-Computing, Behaviour Based Control, and Integrated Vehicle Control System. Several mathematical vehicle models, which are applied to designing and developing the control systems, are presented. MATLAB, SIMULINK and ADAMS are used as tools to implement and simulate those models. A methodology for learning and optimisation is presented. This methodology is based on Evolutionary Algorithms, integrating the Genetic Leaming Automata, CARLA and Fuzzy Logic System. The Behaviour Based Control is introduced as the main approach to designing the controllers and coordinators. The methodology previously described is used to learn the behaviours and optimise their performance, and the same technique is applied to coordinators. Several comparisons with other controllers are also carried out. From this an Integrated Vehicle Control System is designed, developed and implemented under a virtual environment. A range of manoeuvres is carried out in order to investigate its performance under diverse conditions. The leaming and optimisation method proposed in this thesis shows effective performance being able to learn all the controller and coordinator structures. The proposed approach for IVCS also demonstrates good performance, and is well suited to a 'plug-and-play' philosophy. This research provides a foundation for the implementation of the designed controllers and coordinators in a prototype vehicle.
APA, Harvard, Vancouver, ISO, and other styles
2

Kissai, Moad. "Optimal Coordination of Chassis Systems for Vehicle Motion Control." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLY004/document.

Full text
Abstract:
Le contrôle global du châssis a fait récemment l'objet d'une attention particulière. Cela serait motivé surtout par l’approche des véhicules entièrement autonomes. Ces véhicules, en particulier le niveau 5 d’automatisation SAE (J3016), devraient remplacer le conducteur humain dans presque toutes les situations. Le véhicule automatisé devrait être capable de gérer en harmonie des situations couplées où sont intégrés le contrôle longitudinal, latéral et éventuellement vertical. Pour ce faire, le véhicule dispose de plusieurs systèmes intégrés par axe de contrôle. En effet, les équipementiers automobiles et les nouveaux acteurs de l'industrie automobile proposent continuellement de nouvelles solutions pour satisfaire des performances bien spécifiques. Le constructeur automobile doit quant à lui coordonner différents sous-systèmes provenant de différentes parties prenantes afin de garantir une expérience de conduite fiable et confortable. Jusqu'à présent, les constructeurs automobiles privilégiaient des solutions simples consistant à ajouter une couche de coordination en aval des sous-systèmes concurrents afin de limiter les potentiels conflits. La plupart des stratégies adoptées consistent à prioriser un système par rapport à un autre en fonction de certains scénarios conflictuels prévisibles. Les véhicules autonomes ont besoin de sous-systèmes supplémentaires pour fonctionner en toute sécurité. Ainsi, les interactions entre les sous-systèmes s'amplifieront au point de devenir imprévisibles. Cette thèse met l'accent sur l'approche de coordination qui devrait être adoptée par les véhicules du futur. En particulier, la couche de coordination est déplacée en amont des sous-systèmes autonomes pour assurer une distribution de commande optimale. Cette couche agit comme un superviseur basé sur des algorithmes d'allocation optimale du contrôle. La synthèse des correcteurs repose sur les théories du contrôle robuste permettant de faire face aux changements environnementaux et aux incertitudes paramétriques et dynamiques du véhicule. Les résultats ont d’abord montré que même en ce qui concerne les véhicules actuels, l’approche en amont peut offrir des avantages supplémentaires pour ce qui est de la résolution de problèmes à objectifs multiples. En outre, l’approche en amont permet de coordonner les sous-systèmes des véhicules présentant une sur-actionnement plus élevé. La tolérance aux pannes peut être assurée entre des systèmes de châssis complètement différents, et des objectifs qualitatifs, s'ils sont rigoureusement formalisés, peuvent être satisfaits. Plus les sous-systèmes seront nombreux à l'avenir, plus l'approche en amont deviendrait pertinente pour le contrôle du mouvement des véhicules. Nous espérons que les avantages conséquents présentés dans cette thèse grâce à une approche de coordination en amont optimale encourageraient les constructeurs automobiles et leurs équipementiers à opter pour des solutions plus ouvertes, à proposer ensemble les normalisations nécessaires et accélérer ainsi le développement des véhicules autonomes
A large interest has been given recently to global chassis control. One of the main reasons for this would be the approach of fully autonomous vehicles. These vehicles, especially the SAE (J3016) level 5 of automation, are expected to replace the human driver in all situations. The automated vehicle should be able to manage coupled situations in harmony where longitudinal control, lateral control, and eventually vertical control are involved. To do so, the vehicle has more than one embedded system per control axis. Equipment suppliers and new entering automotive actors are continually proposing new solutions to satisfy a specific performance required from future passenger cars. Consequently, the car manufacturer has to coordinate different subsystems coming from different stakeholders to ensure a safe and comfortable driving experience. Until these days, car manufactures favoured simple solutions consisting on adding a coordination layer downstream the competing subsystems in order to mitigate eventual conflicts. Most of strategies adopted consist on prioritizing one system over another depending on predictable conflicting scenarios. Autonomous vehicles need additional subsystems to operate safely. Interactions between these subsystems will increase to the point of becoming unpredictable. This thesis focus on the coordination approach that should be adopted by future vehicles. Particularly, the coordination layer is moved upstream the standalone subsystems to ensure an optimal control distribution. This layer acts as a supervisor depending on optimization-based control allocation algorithms. The control synthesis is based on robust control theories to face environmental changes and the vehicle’s parameters and dynamics uncertainties. Results showed first that even regarding today’s vehicles, the upstream approach can offer additional advantages when it comes to multiple objectives problems solving. In addition, the upstream approach is able to coordinate subsystems of vehicles with a higher over-actuation. Fault-tolerance can be ensured between completely different chassis systems, and qualitative objectives, if rigorously formalized, can be satisfied. The more numerous subsystems will get in the future, the more relevant the upstream approach would become to vehicle motion control. We expect that the important benefits shown in this thesis thanks to an optimal upstream coordination approach would encourage car manufacturers and equipment to switch towards more open solutions, propose together the necessary standardizations, and accelerate the autonomous vehicles development
APA, Harvard, Vancouver, ISO, and other styles
3

Selby, Mark Albert. "Intelligent vehicle motion control." Thesis, University of Leeds, 2003. http://etheses.whiterose.ac.uk/1038/.

Full text
Abstract:
This thesis investigates the principle of co-ordination of chassis subsystems by proposing a new control structure for co-ordinating active steering technologies and a brake based directional stability controller. A non-linear vehicle handling model was developed for this study using the Mattab and Simulink tools. This consists of a 4 degree of freedom (d. o. f) lumped-parameter model that includes longitudinal, lateral, yaw and roll motions with quasi-static longitudinal load transfer effects including non-linear suspension and tyre descriptions. The non-linear vehicle dynamics are discussed for the whole operating regime and two specific driving tasks are identified, steerability and stability. In the context of the vehicle states these are yaw rate control and side slip angle bounding respectively. Linear active steering controllers for front, rear and four wheel steering are designed and evaluated in the context of the vehicle handling problem throughout the non-linear operating regime to assist the driver in the two driving tasks previously defined. It is shown through the analysis of the vehicle dynamics in the Chapter 3 that linear controllers can be used to significantly improve the handling behaviour of a non-linear vehicle when only one active input is considered, however when controlling two active inputs, non-linear multivariable approach is required to deal with the strongly coupled nature of the vehicle handling with respect to front and rear steering inputs. A brake based stability system that reflects the state of the art is implemented. The work then proposes a novel co-ordination controller structure for coordination of an active steering controllers and a brake based stability controller for improving to vehicle handling control. The controller was assessed both in steady state and transient tests selected to simulate real world driving manoeuvres over the whole non-linear vehicle handling regime. The co-ordination controller is found to lead to a trade-off between stability and limit cornering performance. The proposed structure improves vehicle stability and reduces interactions in the longitudinal vehicle motion. A detailed discussion of the implications of a coordinated control approach showing it to be a powerful tool providing, the interactions can be conveniently related vehicle handling task and that an appropriate measure of vehicle performance is available. The limitations of the approach are discussed. The most significant limitations being a) the difficulty in proving the optimalty of a heuristic control structure, b) the difficult in assessing the controller behaviour and its interaction with a real driver and c) the likely complexity of the rule base for coordinating more than 2 or 3 systems or describing more complex interactions than were observed here.
APA, Harvard, Vancouver, ISO, and other styles
4

Chokor, Abbas. "Design of several centralized and decentralized multilayer robust control architectures for global chassis control." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2514.

Full text
Abstract:
Le Contrôle Global du Châssis (CGC) est une tâche cruciale dans les véhicules intelligents. Il consiste à assister le conducteur par l'intermédiaire de plusieurs fonctionnalités automatisées, notamment à des fins de sécurité active et de confort. Etant donné que les dynamiques de ces fonctionnalités sont interconnectées, les performances attendues sont parfois contradictoires. Par conséquent, le CGC consiste à coordonner les différents systèmes ADAS « Advanced Driving Assistance Systems » afin de créer des synergies entre les dynamiques interconnectées pour améliorer les performances globales du véhicule. Plusieurs stratégies de coordination puissantes ont déjà été développées, soit dans le monde académique, soit dans le monde industriel pour gérer ces interconnexions. Du fait que les besoins en matière de sécurité active augmentent d'un côté et que la technologie pouvant être intégrée dans les véhicules évolue, une intense activité de recherche et développement est toujours en cours dans le domaine du contrôle global du châssis. Cette thèse analyse différentes interconnexions dynamiques et développe des nouvelles stratégies CGC dans lesquelles le braquage actif avant, le freinage différentiel actif et les suspensions actives sont coordonnés - tous ensemble ou partiellement afin d'améliorer les performances globales du véhicule, à savoir l'évitement du renversement, la stabilité latérale, le confort de conduite (manœuvrabilité) et confort des passagers. Plusieurs architectures multicouches formées par trois couches hiérarchiques sont proposées. La couche inférieure représente les actionneurs implémentés dans le véhicule qui génèrent leurs entrées de commande en fonction des ordres envoyés depuis la couche intermédiaire. La couche intermédiaire est la couche de contrôle qui est chargée de générer les entrées de contrôle qui minimisent les erreurs entre les variables d'état souhaitées et réelles du véhicule, à savoir les mouvements de lacet, de dérapage, de roulis, de tangage et de soulèvement, quelle que soit la situation de conduite. La couche supérieure est la couche de prise de décision. Elle surveille instantanément la dynamique du véhicule selon différents critères, puis génère des paramètres de pondération pour adapter les performances des contrôleurs en fonction des conditions de conduite, c'est-à-dire pour améliorer la manœuvrabilité, la stabilité latérale, l'évitement du renversement et le confort de conduite du véhicule. Les architectures proposées se diffèrent dans les couches de contrôle et de décision en fonction des actionneurs intégrés proposés. Par exemple, les couches de décisions se diffèrent par les critères qui surveillent la dynamique du véhicule et la manière dont la décision est prise (logique floue ou relations explicites). Les couches de contrôle se diffèrent par leurs structures, où des contrôleurs centralisés et décentralisés sont développés. Dans l'architecture centralisée, un seul contrôleur optimal MEMS Multi-Entrées-Multi-Sorties génère les entrées de commande optimales basées sur la technique de commande LPV/H∞. Dans l'architecture décentralisée, les contrôleurs sont découplés. La technique STSM (Super-Twisting Sliding Mode) est appliquée pour déduire chaque entrée de commande. Les architectures proposées sont testées et validées sur le simulateur professionnel SCANeR Studio et sur un modèle complexe non linéaire du véhicule. La simulation montre que toutes les architectures sont pertinentes pour le contrôle global du châssis. Celle centralisée est optimale, complexe et garantit la stabilité globale, tandis que celle décentralisée ne garantit pas la stabilité globale, mais elle est intuitive, simple et robuste
Global Chassis Control (GCC) is crucial task in intelligent vehicles. It consists of assisting the driver by several automated functionalities especially for active safety and comfort purposes. Due to the fact that the dynamics of these functionalities are interconnected, thus the awaited performances are sometimes contradictory. Hence, the main task in GCC field is to coordinate the different Advanced Driving Assistance Systems (ADAS) to create synergies between the interconnected dynamics in order to improve the overall vehicle performance. Several powerful coordination strategies have already been developed either in the academic world or in the industrial one to manage these interconnections. Because the active safety needs are increasing from one side, and the technology that can be embedded into vehicles is evolving, an intense research and development is still involved in the field of global chassis control. This thesis analyzes di_erent dynamics interconnections and develops new several GCC strategies where the Active Front Steering, Active Differential Braking, and the Active Suspensions are coordinated - all together or partially - to improve the vehicle overall performance i.e. the rollover avoidance, the lateral stability, the driving comfort (maneuverability), and the ride comfort. Several multilayer architectures formed by three hierarchical layers are proposed. The lower layer represents the actuators implemented into the vehicle which generate their control inputs based on the orders sent from the middle layer. The middle layer is the control layer which is responsible to generate the control inputs that minimize the errors between the desired and actual vehicle state variables i.e. the yaw, side-slip, roll, pitch, and heave motions, regardless of the driving situation. The higher layer is the decision making layer. It instantly monitors the vehicle dynamics by di_erent criteria, then, it generates weighting parameters to adapt the controllers performances according to the driving conditions i.e. to improve the vehicle's maneuverability, lateral stability, rollover avoidance, and ride comfort. The proposed architectures di_er in the control and decision layers depending on the proposed embedded actuators. For instance, the decision layers di_er in the monitored criteria and the way the decision is taken (fuzzy logic or explicit relations). The control layers di_er in structure, where centralized and decentralized controllers are developed. In the centralized architecture, one single Multi-Input-Multi-Output optimal controller generates the optimal control inputs based on the Linear Parameter Varying (LPV)/H-infinity control technique. In the decentralized architecture, the controllers are decoupled, where the Super-Twisting Sliding Mode (STSM) technique is applied to derive each control input apart. The proposed architectures are tested and validated on the professional simulator « SCANeR Studio » and on a Full vehicle nonlinear complex model. Simulation shows that all architectures are relevant to the global chassis control. The centralized one is optimal, complex and overall stability is guaranteed, while the decentralized one does not guarantee the overall stability, but it is intuitive, simple, and robust
APA, Harvard, Vancouver, ISO, and other styles
5

Rengaraj, Chandrasekaran. "Integration of active chassis control systems for improved vehicle handling performance." Thesis, University of Sunderland, 2012. http://sure.sunderland.ac.uk/4017/.

Full text
Abstract:
This thesis investigates the principle of integration of vehicle dynamics control systems by proposing a novel control architecture to integrate the brake-based electronic stability control (ESC), active front steering (AFS), normal suspension force control (NFC) and variable torque distribution (VTD). A nonlinear 14 degree of freedom passive vehicle dynamics model was developed in Matlab/Simulink and validated against commercially available vehicle dynamics software CarSim. Dynamics of the four active vehicle control systems were developed. Fuzzy logic and PID control strategies were employed considering their robustness and effectiveness in controlling nonlinear systems. Effectiveness of active systems in extending the vehicle operating range against the passive ones was investigated. From the research, it was observed that AFS is effective in improving the stability at lower lateral acceleration (latac) region with less interference to the longitudinal vehicle dynamics. But its ability diminishes at higher latac regions due to tyre lateral force saturation. Both ESC and VTD are found to be effective in stabilising the vehicle over the entire operating region. But the intrusive nature of ESC promotes VTD as a preferred stability control mechanism at the medium latac range. But ESC stands out in improving stability at limits where safety is of paramount importance. NFC is observed to improve the ability to generate the tyre forces across the entire operating range. Based on this analysis, a novel rule based integrated chassis control (ICC) strategy is proposed. It uses a latac based stability criterion to assign the authority to control the stability and ensures the smooth transition of the control authority amongst the three systems, AFS, VTD and ESC respectively. The ICC also optimises the utilisation of NFC to improve the vehicle handling performance further, across the entire operating regions. The results of the simulation are found to prove that the integrated control strategy improves vehicle stability across the entire vehicle operating region.
APA, Harvard, Vancouver, ISO, and other styles
6

Soukka, Erik. "Chassis Design of a Control Pod for a Kite Power System." Thesis, KTH, Marina system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-240262.

Full text
Abstract:
This is the report of a master thesis in light weight design of a component in a system that harnesses wind power with a kite. The thesis is a degree project in Naval Architecture at KTH with the course code SD271X. The design work is mostly of a structural nature, but systems engineering, and conceptual design is also a major part of thestudy. The first part introduces the problem where the client, SkySails Power GmbH, is looking to design a new control pod for a system that carries 3 times the load as a previous design. The thesis is limited to the design of the load bearing chassis of the pod, but because at the time the other sub systems or components have not yetbeen designed, the study includes concept design of the entire pod system. The flight pattern and load cases of the kite are studied to get the right understanding of the forces that affect the system. The goal is to design achassis that is as affordable, light weight, and as strong as needed for the task.The requirements of the design problem are decided by the master student and the client together after a prestudy was made but they had minor changes further along the design process. It is a real life, organic iterative design process that has a goal from the start to use the opportunity of an outsider to reconsider the design of akey component of the client’s product.The result is a chassis design that is cheaper to produce and weighs less than if the old chassis would be linearly scaled up with the loads. This design has the same concept as the last but with a couple of modifications concerning some attachments to the rest of the system. The requirement of maintaining all previous functionsis achieved. A significant part of the thesis was to determine the boundaries between the areas of where FEM modelling is applicable and where hand calculations estimations are necessary. The results from this work will be used to build a prototype of the chassis, test it in a tensile testing machine, and finally integrate it into theentire system and flown.
I en värld som hotas av klimatförändringar på grund av utsläppen av fossila bränslen i atmosfären, men där människorna som befolkar den har ett stort behov av energi för sin livsstil finns det ett behov av alternativa källor och metoder till att utvinna den. Ett relativt nytt och hållbart sätt till detta är kite-baserad vindkraft. Mananvänder sig av en skärm eller drake, lite som en fallskärm fast i större storlek, som är kopplad med en vajer till en bas-station där vajern rullas upp på en trumma. Skärmen fungerar som en vinge och skapar ett lyft när den flyger i kors-vind och rullar ut vajern på trumman som fungerar samtidigt som en elektrisk generator. Alternativtlåter man skärmen ha ett konstant avstånd och har bas-stationen installerad på ett fartyg och använder lyftet från skärmen till att driva fram fartyget.Ett av företagen som arbetar med att få denna teknik lönsammare än konventionell vindkraft i vissa väder och geografiska lägen är SkySails som gav i uppdrag som examensarbete att utveckla en ny modell av chassit till styrenheten till sitt kite-system. Styrenhetens ligger mellan skärmen och vajern och har som huvudfunktion attstyra draken som görs med en mindre elektrisk motor och ett tandat bälte. Dessutom innehåller styrenheten mycket elektronik och sensorer vilket gör utvecklingen till ett komplext problem. Studentens två huvuduppgifter var göra en konceptuell utvecklingsstudie av hela styrenheten och att utveckla ett chassi, till ett stadie att dengår att tillverka från ritningar, för det mest framgångsrika konceptet. Chassit måste tåla hela skärmens laster och kosta och väga så lite som möjligt.Designprocessen var iterativ med ett systemingenjörsmässigt angreppssätt. Första delen av tiden ägnades åt att studera den befintliga styrenheten och lära sig om hela kite-teknologin. Sedan sattes tydligare och mätbara mål och specifikationer tillsammans med uppdragsgivaren. Därefter började den kreativa fasen och skissa fram bådekonventionella och okonventionella koncept för hela styrenheten. De tre mest lovande koncepten utvärderades mot de tidigare satta kriterierna så kvantifierbart som möjligt och det visade sig att det koncept som hade används var fortfarande det bästa. Sista fasen av arbetet var att sätta gränssnittet för chassit i detta koncept ochdesigna chassit så lätt som möjligt.Resultatet blev ett liknande chassi jämfört med vad det var innan men med en vikt som var lägre än om det förra chassit hade ökat sin vikt lika mycket som lastökningen. Kostnaden för chassitillverkningen gick ner i absoluta termen på grund av byte av material och tillverkningsmetod. Av detta kan man påstå att examensarbetet varframgångsrikt och nådde sina mål. Däremot måste en prototyp tillverkas testas i för att fastställa att modellerna som tog fram designen motsvarar verkligheten. Dessutom måste de andra komponenterna tillverkas i för att hela styrenheten kunna testas så som den är avsedd att användas. Chassit och styrenheten är bara ett steg på vägentill en hållbarare värld men metoderna som användes kan återanvändas.
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, A. G. W. "A transputer ring network for real time distributed control applications." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boes, Christoph. "Active automatic chassis actuation for an excavator." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71224.

Full text
Abstract:
This paper shows an electrohydraulic control system to stabilize the chassis of a mobile machine driving across an off-road ground profile. The active hydraulic suspension system is based on new electronics, SW- and control architectures and the use of state of the art industrial components. The paper shows, that the static and dynamic performance of the system is dominated by the servo valve, which represents the central component of the system.
APA, Harvard, Vancouver, ISO, and other styles
9

AMRIK, SINGH PHUMAN SINGH. "Autonomous Collision Avoidance by Lane Change Maneuvers using Integrated Chassis Control for Road Vehicles." Kyoto University, 2019. http://hdl.handle.net/2433/242443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ryberg, Sebastian. "Driver Chassis Control Functions in New Vehicles : Based on Steering, Suspension, and Propulsion Actuators." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-56597.

Full text
Abstract:
The thesis project is performed at ÅF Industry at their chassis department in Trollhättan, where their focus lay at chassis and body functions for the automotive industry. There are many functions in a car now a day, the act and function names for those functions have a huge variety between automotive brands. ÅF want a catalogue, with a collection of functions and what they do, how they act, pros and cons, and in- & output, with focus on steering, propulsion, and suspension actuators.    Through benchmarking, all functions have been collected in a list of functions for five different automotive brands. Another student from Karlstad University, worked parallel with a similar thesis, focusing on braking actuators. Some information passed through our theses to help each other during the benchmark. From the benchmark, five datasheets were made, to add to the catalogue. Out of those five functions one had to pass the elimination matrix to be tested and evaluated.   In this thesis, the function to be tested were Drive Profile with focus on suspension. The function was tested in a Saab 9-5 Aero equipped with an VBOX 3i at NEVS test track. Test method for the test was ISO 3888-2 severe lane-change, obstacle avoidance. The result for the test was that Sport profile was stiffer than Comfort and Intelligent, and therefore recovered the roll rate much quicker in hard cornering. The profile to choose, while entry a hard cornering is the Sport profile because of the fast roll rate recovery, also the steering torque felt way better for the driver with the Sport profile activated.     It is concluded that it is a problem with all variety of function names. Especial for customer who wants to compare cars when he/she is going to buy a new car.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Chassis Control"

1

Zhao, Wanzhong, and Chunyan Wang. Nonlinear Control Technology of Vehicle Chassis-by-Wire System. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7322-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

International, Conference on Vehicle Braking and Chassis Control (2004 Leeds Great Britain). International conference, Braking 2004: Vehicle braking and chassis control. Bury St. Edmunds, UK: Professional Engineering Pub., 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ni, Jun, Jibin Hu, and Changle Xiang. Design and Advanced Robust Chassis Dynamics Control for X-by-Wire Unmanned Ground Vehicle. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-031-01496-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Costa, Alvaro Neto. Application of multibody system (MBS) techniques to automotive vehicle chassis simulation for motion control studies. [s.l.]: typescript, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

International Symposium on Advanced Vehicle Control (1992 Yokohama, Japan). Proceedings of the International Symposium on Advanced Vehicle Control, 1992: AVEC '92 : September 14 (Mon.)-17 (Thur.), 1992, Pacific Convention Plaza Yokohama, Japan. Tokyo, Japan: The Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhongguo qi che gong cheng xue hui. Proceedings of the FISITA 2012 World Automotive Congress: Volume 10: Chassis Systems and Integration Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

The devil & the deep blue sea: An investigation into the scapegoating of Canada's grey seal. Halifax: Fernwood Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carson, Rachel. Silent spring. Thorndike, Me: G.K. Hall, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carson, Rachel. Silent spring. Boston: Houghton Mifflin, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carson, Rachel. Silent spring. 4th ed. Boston: Houghton Mifflin, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chassis Control"

1

Heißing, Bernd, and Metin Ersoy. "Chassis Control Systems." In Chassis Handbook, 493–556. Wiesbaden: Vieweg+Teubner, 2011. http://dx.doi.org/10.1007/978-3-8348-9789-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schuller, Jürgen. "CHASSIS ARCHITECTURES – Electronic chassis platform – highly integrated ECU for chassis control functions." In Proceedings, 349–65. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14219-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nagai, Masao, and Pongsathorn Raksincharoensak. "Advanced Chassis Control and Automated Driving." In Vehicle Dynamics of Modern Passenger Cars, 247–307. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79008-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhao, Wanzhong. "Active Anti-rollover Control of Wired Chassis." In Vehicle Steer-by-Wire System and Chassis Integration, 387–446. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4250-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Poussot-Vassal, Charles, Olivier Sename, Soheib Fergani, Moustapha Doumiati, and Luc Dugard. "Global Chassis Control Using Coordinated Control of Braking/Steering Actuators." In Robust Control and Linear Parameter Varying Approaches, 237–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36110-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Wanzhong. "Active Collision Avoidance Control of Wired Chassis System." In Vehicle Steer-by-Wire System and Chassis Integration, 335–86. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4250-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Häußler, Alexander. "Automated driving, electrification and connectivity – the evolution of vehicle motion control." In 6th International Munich Chassis Symposium 2015, 17–32. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09711-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shibuya, Hiroshi, Hiroo Iida, Hiroyuki Kanayama, Daigo Fujii, Xabier Carrera Akutain, and Kotaro Shima. "Development of an active motion system of tire contact point control." In 6th International Munich Chassis Symposium 2015, 95–102. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09711-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Keller, Martin, Carsten Haß, Alois Seewald, and Torsten Bertram. "A vehicle lateral control approach for collision avoidance by emergency steering maneuvers." In 6th International Munich Chassis Symposium 2015, 175–97. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09711-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sigilló, Michele, Markus Dold, Claudio Delmarco, and Kristof Polmans. "Implementation and testing of different control strategies on a steer-by-wire research platform." In 6th International Munich Chassis Symposium 2015, 519–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09711-0_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chassis Control"

1

Semmler, Sascha J., Peter E. Rieth, and Steffen J. Linkenbach. "Global Chassis Control - The Networked Chassis." In SAE 2006 Automotive Dynamics, Stability and Controls Conference and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-1954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yuming Hou, Jie Zhang, Yunqing Zhang, and Liping Chen. "Integrated chassis control using ANFIS." In 2008 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2008. http://dx.doi.org/10.1109/ical.2008.4636414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sallee, Debbie, and Ross Bannatyne. "Advanced Electronic Chassis Control Systems." In Future Transportation Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gaspar, Peter, Zoltan Szabo, and Jozsef Bokor. "LPV-based reconfigurable chassis design." In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7074964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vivas-Lopez, Carlos Alberto, Ruben Morales-Menendez, Ricardo Ramirez-Mendoza, Olivier Sename, and Luc Dugard. "Chassis Control based on Fuzzy Logic." In 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2016. http://dx.doi.org/10.1109/fuzz-ieee.2016.7737771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hwang, Woongi, and Woon-sung Lee. "Reliability Improvement of Global Chassis Control." In 2006 SICE-ICASE International Joint Conference. IEEE, 2006. http://dx.doi.org/10.1109/sice.2006.315580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bouvin, Jean-Louis, Emna Hamrouni, Xavier Moreau, Andre Benine-Neto, Vincent Hernette, Pascal Serrier, and Alain Oustaloup. "Hierarchical approach for Global Chassis Control." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Villegas, Carlos, Yin-Lam Chow, Martin Corless, Robert Shorten, and Wynita Griggs. "A decentralized control technique for vehicle chassis control." In 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011). IEEE, 2011. http://dx.doi.org/10.1109/cdc.2011.6161109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fulu Sun, Junping Jiang, Wei Liu, Zhijie Pan, and Fuquan Zhao. "Research on automotive chassis tuning." In 2011 Second International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2011. http://dx.doi.org/10.1109/mace.2011.5988407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bajcinca, Naim. "Fault-tolerant distributed feedback global chassis control." In 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE, 2013. http://dx.doi.org/10.1109/icat.2013.6684070.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chassis Control"

1

Aizawa, Yusuke, Hiroyuki Kondou, Hidekazu Nishimura, and Isamu Inoue. Gear Shift Control for Four-Wheeled Vehicle on a Chassis Dynamometer. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography