Academic literature on the topic 'Charge tranfer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Charge tranfer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Charge tranfer"
Fourmigue, M., K. Bechgaard, P. Auban, D. Jérôme, K. Boubekeur, and P. Batail. "Novel charge-tranfer salts based on the isoindolo[1,2,3-de]quinolizinium: An aza-analog of fluoranthene." Synthetic Metals 27, no. 3-4 (December 1988): 231–36. http://dx.doi.org/10.1016/0379-6779(88)90149-x.
Full textVogler, A., and H. Kunkely. "Photochemistry of [MCo2(CO)8] (M = Zn, Cd, Hg) induced by metal to metal charge tranfer excitation." Journal of Organometallic Chemistry 355, no. 1-3 (November 1988): 1–6. http://dx.doi.org/10.1016/0022-328x(88)89005-3.
Full textCaricato, Marco, Silvia Díez González, Idoia Arandia Ariño, and Dario Pasini. "Homochiral BINOL-based macrocycles with π-electron-rich, electron-withdrawing or extended spacing units as receptors for C60." Beilstein Journal of Organic Chemistry 10 (June 6, 2014): 1308–16. http://dx.doi.org/10.3762/bjoc.10.132.
Full textSamia, Anna C. S., John Cody, Christoph J. Fahrni, and Clemens Burda. "The Effect of Ligand Constraints on the Metal-to-Ligand Charge-Tranfer Relaxation Dynamics of Copper(I)−Phenanthroline Complexes: A Comparative Study by Femtosecond Time-Resolved Spectroscopy." Journal of Physical Chemistry B 108, no. 2 (January 2004): 563–69. http://dx.doi.org/10.1021/jp036857a.
Full textLind, Thomas, and Hermann Bank. "Effect of Ligand Metal Charge Transfer and Intravalence Charge Transfer Bands on the Colour of Grossular Garnet." Neues Jahrbuch für Mineralogie - Monatshefte 1997, no. 1 (March 26, 1997): 1–14. http://dx.doi.org/10.1127/njmm/1997/1997/1.
Full textPlatonov, Alexei N., Klaus Langer, Christian Chopin, Michael Andrut, and Michail N. Taran. "Fe2+ -Ti4+ charge-transfer in dumortierite." European Journal of Mineralogy 12, no. 3 (May 31, 2000): 521–28. http://dx.doi.org/10.1127/ejm/12/3/0521.
Full textBardsley, J. N., P. Gangopadhyay, and B. M. Penetrante. "Symmetric charge transfer to multiply charged ions." Physical Review A 40, no. 5 (September 1, 1989): 2742–44. http://dx.doi.org/10.1103/physreva.40.2742.
Full textPlatonov, Alexej N., Klaus Langer, Stanislas S. Matsuk, Mikhail N. Taran, and Xiaorui Hu. "Fe2+-Ti4+ charge-transfer in garnets from mantle eclogites." European Journal of Mineralogy 3, no. 1 (February 21, 1991): 19–26. http://dx.doi.org/10.1127/ejm/3/1/0019.
Full textVikhnin, V. S., A. A. Kaplyanskii, A. B. Kutsenko, G. K. Liu, J. V. Beitz, and S. E. Kapphan. "“Charge transfer–lattice” clusters induced by charged impurities." Journal of Luminescence 94-95 (December 2001): 775–79. http://dx.doi.org/10.1016/s0022-2313(01)00364-7.
Full textAbbasov, I. I., and J. I. Huseynov. "Charge-Transfer Processes in (SnS)1 – x(PrS)x Alloys." Ukrainian Journal of Physics 62, no. 10 (November 2017): 883–88. http://dx.doi.org/10.15407/ujpe62.10.0883.
Full textDissertations / Theses on the topic "Charge tranfer"
Das, Prolay. "Long-Range Charge Transfer in Plasmid DNA Condensates and DNA-Directed Assembly of Conducting Polymers." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19856.
Full textMARTINEZ, POZZONI UMBERTO LUIGI. "Oxide ultra-thin films on metals." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7463.
Full textAppling, Jeffrey Robert. "Gaseous charge transfer reactions of multiply charged ions." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/27382.
Full textBoichard, Benoît. "Synthèse et mise en forme de matériaux nanostructurés pour la photosensibilisation de réactions d’oxydoréduction." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S048/document.
Full textThe development of a society based on solar energy requires a way to store it. One possibility consists in water splitting that needs a material to collect and transform the energy contained in light beam in an electric charges movement. Among all possibility, we hereby explore the applicability of nanometers-sized semiconductor rods composed of a cadmium selenide core and a cadmium sulfide shell. Based on methods already developed and a new functionalization methodology, the obtained particles exhibit a high monodispersity and can be dispersed in water, a useful property for the final purpose. Their photo-electrochemical properties have been explored by electrochemical microscopy that allowed to determine whether there is charge transfer between mediators in solution and quantum rods deposited as substrate and its direction. It reveals that under light irradiation and in all cases herein experimented, they transfer electrons to the mediators, making them more reductive than para-benzoquinone. This transfer is fastened when the ratio between the length and the diameter of the rods increased until an optimum, but also when the width of the organic isolating shell decreases, as revealed by time-resolved reduction of resazurin, a colored rédox molecular probe. These charge transfer have been used to functionalize particles by reduction of a disulfide bridge or a gold salt. Finally, strategies have been explored to make these quantum rods able to photosensibilized water reduction through synthesis of a cobaloxime, a molecular catalyst, or metal salt reduction as cobalt and nickel known to exhibit catalytic activity
Mohideen, Mohamed Farhaan. "Charge transfer process." Thesis, Staffordshire University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246022.
Full textShen, Jie. "Processus de transfert de charge lors de l'intéraction d'ions de Li avec des surfaces métalliques et agrégats supportés." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112142.
Full textThe present work investigates the neutralization of Li+ ions on metals and supportedmetal clusters. Neutralization on a transition metal surface Pd (100) for differentparameters was studied. Highly efficient neutralization on this surface with a highwork functions was observed and contradicts our traditional views on resonant chargetransfer (RCT) mechanism. A modified RCT picture involving new neutralizationprocesses occurring at a short atom-surface distance and an adiabatic behaviourleading to efficient neutralization at large distances, that has emerged from previousstudies on noble metal surfaces appears in qualitative agreement with our data.The experimental results on the dependence of the Li neutralization on the Auclusters supported on different substrates are reported and discussed. As acomplement to this, a STM study into the morphology of Au nanoparticles on apristine HOPG substrate as well as Ar+ ions sputtered HOPG substrate has beenperformed. The observations reveal that Au clusters preferentially form onedimensional chains along steps on pristine HOPG. In the case of Ar+ ions sputteredHOPG substrate, the size and height of cluster are dependent on surface defects.We found that neutralization is very efficient on small clusters and in general muchlarger than on surfaces of gold crystals. We demonstrate existence of strongdifferences as a function of cluster support type as in case of alumina supports orcluster chains on HOPG and clusters on defects on HOPG terraces
Onyemauwa, Frank Okezie. "Investigation of the Role of Groove Hydration and Charged Nucleosides in DNA Charge Transfer." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11634.
Full textHerman, Leslie. "Ru(II) under illumination: a study of charge and energy transfer elementary processes." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210399.
Full textL’ensemble de notre travail s’est concentré sur ces deux domaines d’applications. Par l’étude de différents processus de transfert de charges/d’énergie au sein des complexes seuls (processus intramoléculaires) ou en interaction avec un environnement spécifique (processus intermoléculaires), nous avons souhaité mettre en évidence l’intérêt de l’utilisation d’un nouveau ligand plan étendu, le tpac, au sein de complexes du Ru(II). Un tel ligand permet en effet de conférer d’une part une affinité élevée des complexes résultants pour l’ADN, et d’autre part, de par sa nature pontante, de connecter des unités métalliques entre elles au sein d’entités supramoléculaires de taille importante.
Les propriétés photophysiques de quatre complexes basés sur le ligand plan étendu tpac, le [Ru(phen)2tpac]2+ (P) et son homologue dinucléaire le [(phen)2Ru tpac Ru(phen)2]4+ (PP) (à base de ligands ancillaires phen), ainsi que le [Ru(tap)2tpac]2+ (T) et son homologue dinucléaire le [(tap)2Ru tpac Ru(tap)2]4+ (TT) (à base de ligands ancillaires tap), ont été étudiées et comparées entre elles.
L’examen de ces propriétés, d’abord pour les complexes seuls en solution, en parallèle avec celles de complexes dinucléaires contenant un ligand pontant PHEHAT, a permis de mettre en évidence l’importance de la nature du ligand pontant utilisé. Ces résultats ont ainsi révélé qu’un choix judicieux du ligand pontant permet de construire des entités de grande taille capables de transférer l’énergie lumineuse vers un centre (cas du ligand PHEHAT), ou, au contraire, de relier entre elles des entités ne s’influençant pas l’une l’autre d’un point de vue photophysique (cas du ligand tpac).
Les propriétés des complexes du tpac, étudiés cette fois en présence de matériel génétique (mononucléotide GMP, ADN ou polynucléotides synthétiques), se sont révélées très différentes selon que le complexe portait des ligands ancillaires phen (P, PP) ou tap (T, TT). Seuls les complexes à base de tap sont en effet photoréactifs envers les résidus guanine. Nous avons dès lors focalisé cette partie de notre travail sur les deux complexes T et TT. Cette photoréaction, ainsi que le transfert d’électron photoinduit entre ces complexes excités et la guanine, ont pu être mis en évidence par différentes techniques de spectroscopie d’émission tant stationnaire que résolue dans le temps, ainsi que par des mesures d’absorption transitoire dans des échelles de temps de la nano à la femto/picoseconde. L’étude du comportement photophysique des complexes en fonction du pH a en outre révélé de manière très intéressante que, pour des études en présence d’ADN, la protonation des états excités des complexes devait être considérée. Les résultats de cette étude nous ont fourni des pistes quant à l’attribution des processus observés en absorption transitoire.
Le transfert d’électron a également fait l’objet d’une étude par des méthodes théoriques. Ces calculs ab initio ont permis de mettre en évidence une faible influence de l’énergie de réorganisation sur la vitesse de transfert d’électron, qui semble dépendre plus sensiblement de la non-adiabaticité du processus, mais surtout de l’énergie libre de la réaction et d’un éventuel couplage à un transfert de proton.
L’ensemble des résultats obtenus avec les complexes T et TT en présence de matériel génétique, qui, de manière assez inattendue, sont très semblables, indiquent que ces complexes présentent tous deux un grand intérêt pour le développement de nouvelles drogues antitumorales photoactivables.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Stanger, Jonathan Jeffrey. "Charge Transfer Mechanisms in Electrospinning." Thesis, University of Canterbury. Physics and Astronomy, 2008. http://hdl.handle.net/10092/1667.
Full textLindner, Susi. "Charge transfer at phthalocyanine interfaces." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-146526.
Full textBooks on the topic "Charge tranfer"
Misra, Ramprasad, and S. P. Bhattacharyya. Intramolecular Charge Transfer. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527801916.
Full textJ, Mattay, and Baumgarten M, eds. Electron transfer. Berlin: Springer-Verlag, 1994.
Find full textV, Sweedler Jonathan, Ratzlaff Kenneth L, and Denton M. Bonner, eds. Charge-transfer devices in spectroscopy. New York: VCH, 1994.
Find full textHorváth, Ottó. Charge transfer photochemistry of coordinationcompounds. New York: VCH, 1993.
Find full textKagakkai, Nihon, ed. Denshi idō: Electron transfer. Tōkyō-to Bunkyō-ku: Kyōritsu Shuppan, 2013.
Find full textJ, Mattay, Fox Marye Anne 1947-, Lymar S. V, Fox Marye Anne 1947-, Gust Devens, Willner Itamar, and Mattay J, eds. Photoinduced electron transfer III. Berlin: Springer-Verlag, 1991.
Find full textMiller, R. J. Dwayne, 1956-, ed. Surface electron transfer processes. New York: VCH, 1995.
Find full textKuznetsov, A. M. Charge transfer in physics, chemistry and biology: Physical mechanisms of elementary processes and an introduction to the theory. Amsterdam: Gordon and Breach Publishers, 1995.
Find full text1938-, Müller Achim, ed. Electron and proton transfer in chemistry and biology. Amsterdam: Elsevier, 1992.
Find full text1946-, Schuster G. B., and Angelov Dimitŭr Simeonov, eds. Long-range charge transfer in DNA. Berlin: Springer, 2004.
Find full textBook chapters on the topic "Charge tranfer"
Kimura, Y., Y. Takebayashi, and N. Hirota. "Electron Tranfer in the Hexamethylbenzene/Tetracyanoethylene Charge-Transfer Complex in the Supercritical Fluids." In Springer Series in Chemical Physics, 235–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80314-7_101.
Full textGooch, Jan W. "Charge-Transfer." In Encyclopedic Dictionary of Polymers, 136. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2223.
Full textCharnley, Steven B. "Charge Transfer." In Encyclopedia of Astrobiology, 427–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_264.
Full textStebbings, R. F. "Charge Transfer." In Advances in Chemical Physics, 195–246. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143568.ch6.
Full textCharnley, Steven B. "Charge Transfer." In Encyclopedia of Astrobiology, 285. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_264.
Full textCharnley, Steven B. "Charge Transfer." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_264-3.
Full textRettig, Wolfgang. "Photoinduced charge separation via twisted intramolecular charge transfer states." In Electron Transfer I, 253–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-57565-0_78.
Full textMori, Takehiko. "Charge-Transfer Complexes." In Electronic Properties of Organic Conductors, 253–310. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55264-2_7.
Full textDennerl, Konrad. "Charge Transfer Reactions." In High-Resolution X-Ray Spectroscopy, 57–91. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-9884-2_6.
Full textBarandiarán, Zoila, Jonas Joos, and Luis Seijo. "Charge Transfer States." In Springer Series in Materials Science, 195–225. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94984-6_7.
Full textConference papers on the topic "Charge tranfer"
Havener, C. C. "Low Energy Charge Transfer With Multi-Charged Ions Using Merged Beams." In ATOMIC PROCESSES IN PLASMAS: 14th APS Topical Conference on Atomic Processes in Plasmas. AIP, 2004. http://dx.doi.org/10.1063/1.1824874.
Full textLee, Sebok, Myungsam Jen, Gisang Lee, and Yoonsoo Pang. "Structural Changes of Nitroaromatic Molecules During the Intramolecular Charge Transfer." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.fth2d.5.
Full textBilbao, Argenis V., Michael G. Giesselmann, and Stephen B. Bayne. "Charge transfer-based sensorless voltage feedback in HV capacitor chargers." In 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC). IEEE, 2016. http://dx.doi.org/10.1109/ipmhvc.2016.8012811.
Full textHan, Weiji, and Liang Zhang. "Charge transfer and energy transfer analysis of battery charge equalization." In 2015 IEEE International Conference on Automation Science and Engineering (CASE). IEEE, 2015. http://dx.doi.org/10.1109/coase.2015.7294250.
Full textBagchi, B., and V. Krishnan. "SOLVATION DYNAMICS & CHARGE TRANSFER REACTIONS." In Conference on Solvation Dynamics & Charge Transfer Reactions. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814540018.
Full textCevheri, Necmettin, and Minami Yoda. "Evanescent-Wave Particle Velocimetry Studies of Electrokinetically Driven Flows: Divalent Counterion Effects." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75274.
Full textBeiersdorfer, P. "X-ray signatures of charge transfer reactions involving cold, very highly charged ions." In The 21st international conference on the physics of electronic and atomic collisions (21 IPEAC). AIP, 2000. http://dx.doi.org/10.1063/1.1302692.
Full textCunningham, Ethan, Martin Beyer, Milan Oncak, and Christian van der Linde. "PHOTOINDUCED CHARGE TRANSFER PROCESSES." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.fj10.
Full textChen, Bin, and Bingmei Fu. "A Charge-Diffusion-Filtration Model for Endothelial Surface Glycocalyx." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56149.
Full textXu, Dongyan, Deyu Li, Yongsheng Leng, and Yunfei Chen. "Molecular Dynamics Simulation of Water and Ion Profiles Near Charged (100) and (111) Silicon Surfaces." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52248.
Full textReports on the topic "Charge tranfer"
Milinazzo, Jared Joseph. Energy Transfer of a Shaped Charge. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1334941.
Full textBrus, Louis. Graphene Charge Transfer, Spectroscopy, and Photochemical Reactions. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1341618.
Full textCarroll, David L. Charge Transfer Nanocomposites: The Effects of Scale-Hierarchy. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada468765.
Full textHervier, Antoine. Charge Transfer and Support Effects in Heterogeneous Catalysis. Office of Scientific and Technical Information (OSTI), December 2011. http://dx.doi.org/10.2172/1076791.
Full textLast, Isidore, and Thomas F. George. Cooperative Absorption-Induced Charge Transfer in a Solid. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada229553.
Full textLaw, Edward, Samuel Gan-Mor, Hazel Wetzstein, and Dan Eisikowitch. Electrostatic Processes Underlying Natural and Mechanized Transfer of Pollen. United States Department of Agriculture, May 1998. http://dx.doi.org/10.32747/1998.7613035.bard.
Full textKhalil, Munira. Correlating electronic and vibrational motions in charge transfer systems. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1168632.
Full textBaker, Lawrence Robert. Charge Transfer and Catalysis at the Metal Support Interface. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1174166.
Full textPiotr Piotrowiak. Electronic and Nuclear Factors in Charge and Excitation Transfer. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/832834.
Full textJohn F. Endicott. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates. Office of Scientific and Technical Information (OSTI), October 2009. http://dx.doi.org/10.2172/966130.
Full text