Journal articles on the topic 'Charge storage memory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Charge storage memory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Mabrook, M. F., Youngjun Yun, C. Pearson, D. A. Zeze, and M. C. Petty. "Charge Storage in Pentacene/Polymethylmethacrylate Memory Devices." IEEE Electron Device Letters 30, no. 6 (June 2009): 632–34. http://dx.doi.org/10.1109/led.2009.2018128.
Full textSpassov, Dencho, and Albena Paskaleva. "Challenges to Optimize Charge Trapping Non-Volatile Flash Memory Cells: A Case Study of HfO2/Al2O3 Nanolaminated Stacks." Nanomaterials 13, no. 17 (August 30, 2023): 2456. http://dx.doi.org/10.3390/nano13172456.
Full textTsoukalas, Dimitris, S. Kolliopoulou, P. Dimitrakis, P. Normand, and M. C. Petty. "Nanoparticles for Charge Storage Using Hybrid Organic Inorganic Devices." Advances in Science and Technology 54 (September 2008): 451–57. http://dx.doi.org/10.4028/www.scientific.net/ast.54.451.
Full textGong, Changjie, Xin Ou, Bo Xu, Xuexin Lan, Yan Lei, Jianxin Lu, Yan Chen, et al. "Enhanced charge storage performance in AlTi4Ox/Al2O3multilayer charge trapping memory devices." Japanese Journal of Applied Physics 53, no. 8S3 (July 7, 2014): 08NG02. http://dx.doi.org/10.7567/jjap.53.08ng02.
Full textTang, Zhen-Jie, Rong Li, and Jiang Yin. "The charge storage characteristics of ZrO2nanocrystallite-based charge trap nonvolatile memory." Chinese Physics B 22, no. 6 (June 2013): 067702. http://dx.doi.org/10.1088/1674-1056/22/6/067702.
Full textTsoukalas, Dimitris, and Emanuele Verrelli. "Inorganic Nanoparticles for either Charge Storage or Memristance Modulation." Advances in Science and Technology 77 (September 2012): 196–204. http://dx.doi.org/10.4028/www.scientific.net/ast.77.196.
Full textBandić, Zvonimir Z., Dmitri Litvinov, and M. Rooks. "Nanostructured Materials in Information Storage." MRS Bulletin 33, no. 9 (September 2008): 831–37. http://dx.doi.org/10.1557/mrs2008.178.
Full textLee, Meng Chuan, and Hin Yong Wong. "Technical Solutions to Mitigate Reliability Challenges due to Technology Scaling of Charge Storage NVM." Journal of Nanomaterials 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/195325.
Full textWang, Shuai, Jing Pu, Daniel S. H. Chan, Byung Jin Cho, and Kian Ping Loh. "Wide memory window in graphene oxide charge storage nodes." Applied Physics Letters 96, no. 14 (April 5, 2010): 143109. http://dx.doi.org/10.1063/1.3383234.
Full textLee, Gae-Hun, Jung-Min Lee, Yun Heub Song, Ji Chel Bea, Tetsu Tanaka, and Mitsumasa Koyanagi. "Multilevel Charge Storage in a Multiple Alloy Nanodot Memory." Japanese Journal of Applied Physics 50, no. 9R (September 1, 2011): 095001. http://dx.doi.org/10.7567/jjap.50.095001.
Full textLee, Gae-Hun, Jung-Min Lee, Yun Heub Song, Ji Chel Bea, Tetsu Tanaka, and Mitsumasa Koyanagi. "Multilevel Charge Storage in a Multiple Alloy Nanodot Memory." Japanese Journal of Applied Physics 50, no. 9 (September 20, 2011): 095001. http://dx.doi.org/10.1143/jjap.50.095001.
Full textFujiwara, Ichiro, Sigeru Kojima, and Jun'etsu Seto. "High Density Charge Storage Memory with Scanning Probe Microscopy." Japanese Journal of Applied Physics 35, Part 1, No. 5A (May 15, 1996): 2764–69. http://dx.doi.org/10.1143/jjap.35.2764.
Full textCui, J. B., R. Sordan, M. Burghard, and K. Kern. "Carbon nanotube memory devices of high charge storage stability." Applied Physics Letters 81, no. 17 (October 21, 2002): 3260–62. http://dx.doi.org/10.1063/1.1516633.
Full textSpassov, Dencho, Albena Paskaleva, Elżbieta Guziewicz, Wojciech Wozniak, Todor Stanchev, Tsvetan Ivanov, Joanna Wojewoda-Budka, and Marta Janusz-Skuza. "Charge Storage and Reliability Characteristics of Nonvolatile Memory Capacitors with HfO2/Al2O3-Based Charge Trapping Layers." Materials 15, no. 18 (September 9, 2022): 6285. http://dx.doi.org/10.3390/ma15186285.
Full textSalaoru, Iulia, and Shashi Paul. "Memory Effect of a Different Materials as Charge Storage Elements for Memory Applications." Advances in Science and Technology 77 (September 2012): 205–8. http://dx.doi.org/10.4028/www.scientific.net/ast.77.205.
Full textYin, Changyong, Ziqi Zhao, Shiqi Zhang, and Zexiang Gao. "Research on the operation state prediction of energy storage unit based on neural network." Journal of Physics: Conference Series 2558, no. 1 (August 1, 2023): 012035. http://dx.doi.org/10.1088/1742-6596/2558/1/012035.
Full textKim, Eunkyeom, Kyoungmin Kim, Daeho Son, Jeongho Kim, Kyungsu Lee, Moonsup Han, Sunghwan Won, Junghyun Sok, Wan-Shick Hong, and Kyoungwan Park. "Nonvolatile memory characteristics of metallic nanodots as charge-storage nodes." Microelectronic Engineering 85, no. 12 (December 2008): 2366–69. http://dx.doi.org/10.1016/j.mee.2008.09.037.
Full textYeh, P. H., L. J. Chen, P. T. Liu, D. Y. Wang, and T. C. Chang. "Metal nanocrystals as charge storage nodes for nonvolatile memory devices." Electrochimica Acta 52, no. 8 (February 2007): 2920–26. http://dx.doi.org/10.1016/j.electacta.2006.09.006.
Full textNakamura, Taichi. "Multilevel storage memory using serial—parallel–serial charge—coupled device." Electronics and Communications in Japan (Part II: Electronics) 72, no. 2 (1989): 23–34. http://dx.doi.org/10.1002/ecjb.4420720204.
Full textLiu, Weihua, Fei Wu, Xiang Chen, Meng Zhang, Yu Wang, Xiangfeng Lu, and Changsheng Xie. "Characterization Summary of Performance, Reliability, and Threshold Voltage Distribution of 3D Charge-Trap NAND Flash Memory." ACM Transactions on Storage 18, no. 2 (May 31, 2022): 1–25. http://dx.doi.org/10.1145/3491230.
Full textLu, X. B., and J. Y. Dai. "Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications." Applied Physics Letters 88, no. 11 (March 13, 2006): 113104. http://dx.doi.org/10.1063/1.2179374.
Full textLiu, W. J., L. Chen, P. Zhou, Q. Q. Sun, H. L. Lu, S. J. Ding, and David W. Zhang. "Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device." Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/6751497.
Full textShih, Wen-Chieh, Chih-Hao Cheng, Joseph Ya-min Lee, and Fu-Chien Chiu. "Charge-Trapping Devices Using Multilayered Dielectrics for Nonvolatile Memory Applications." Advances in Materials Science and Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/548329.
Full textKim, Moon Kyung, and Sandip Tiwari. "NON-VOLATILE HIGH SPEED & LOW POWER CHARGE TRAPPING DEVICES." International Journal of High Speed Electronics and Systems 17, no. 01 (March 2007): 147–52. http://dx.doi.org/10.1142/s0129156407004369.
Full textCui, Ziyang, Dongxu Xin, Taeyong Kim, Jiwon Choi, Jaewoong Cho, and Junsin Yi. "Improvement of the Charge Retention of a Non-Volatile Memory by a Bandgap-Engineered Charge Trap Layer." ECS Journal of Solid State Science and Technology 10, no. 12 (December 1, 2021): 125002. http://dx.doi.org/10.1149/2162-8777/ac3f1d.
Full textYang, Yang, Liping Ma, and Jianhua Wu. "Organic Thin-Film Memory." MRS Bulletin 29, no. 11 (November 2004): 833–37. http://dx.doi.org/10.1557/mrs2004.237.
Full textChou, Ying-Hsuan, Hsuan-Chun Chang, Cheng-Liang Liu, and Wen-Chang Chen. "Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices." Polymer Chemistry 6, no. 3 (2015): 341–52. http://dx.doi.org/10.1039/c4py01213e.
Full textZhou, H. C., Y. X. Zhou, Yu Qiu, and Jun Zhu. "Enhanced charge storage capability of (Bi2O3)0.4(ZrO2)0.6 charge trapping layer in nanocrystal memory devices." Functional Materials Letters 12, no. 04 (August 2019): 1950046. http://dx.doi.org/10.1142/s1793604719500462.
Full textKwon, Wookhyun, In Jun Park, and Changhwan Shin. "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage." JSTS:Journal of Semiconductor Technology and Science 15, no. 2 (April 30, 2015): 286–91. http://dx.doi.org/10.5573/jsts.2015.15.2.286.
Full textEl-Atab, N., and A. Nayfeh. "Ultra-Small ZnO Nanoparticles for Charge Storage in MOS-Memory Devices." ECS Transactions 72, no. 5 (May 19, 2016): 73–79. http://dx.doi.org/10.1149/07205.0073ecst.
Full textGanguly, Udayan, Edwin C. Kan, and Yuegang Zhang. "Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals." Applied Physics Letters 87, no. 4 (July 25, 2005): 043108. http://dx.doi.org/10.1063/1.1999014.
Full textAlba-Martin, Maria, Timothy Firmager, Joseph Atherton, Mark C. Rosamond, Daniel Ashall, Amal Al Ghaferi, Ahmad Ayesh, et al. "Improved memory behaviour of single-walled carbon nanotubes charge storage nodes." Journal of Physics D: Applied Physics 45, no. 29 (July 2, 2012): 295401. http://dx.doi.org/10.1088/0022-3727/45/29/295401.
Full textRay, Sounak K., Debashis Panda, and Rakesh Aluguri. "Enhanced charge storage characteristics of nickel nanocrystals embedded flash memory structures." Journal of Experimental Nanoscience 8, no. 3 (April 2013): 389–95. http://dx.doi.org/10.1080/17458080.2012.708440.
Full textZheng, Chaoyue, Tong Tong, Yueming Hu, Yuming Gu, Huarui Wu, Dequn Wu, Hong Meng, et al. "Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices." Small 14, no. 25 (May 27, 2018): 1800756. http://dx.doi.org/10.1002/smll.201800756.
Full textLiu, L., J. P. Xu, F. Ji, J. X. Chen, and P. T. Lai. "Improved memory characteristics by NH3-nitrided GdO as charge storage layer for nonvolatile memory applications." Applied Physics Letters 101, no. 3 (July 16, 2012): 033501. http://dx.doi.org/10.1063/1.4737158.
Full textYang, Kun, Hongxia Liu, Shulong Wang, Wenlong Yu, and Tao Han. "Comprehensive Performance Quasi-Non-Volatile Memory Compatible with Large-Scale Preparation by Chemical Vapor Deposition." Nanomaterials 10, no. 8 (July 27, 2020): 1471. http://dx.doi.org/10.3390/nano10081471.
Full textLi, Chao, Bo Lei, Wendy Fan, Daihua Zhang, M. Meyyappan, and Chongwu Zhou. "Molecular Memory Based on Nanowire–Molecular Wire Heterostructures." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 138–50. http://dx.doi.org/10.1166/jnn.2007.18011.
Full textZhang, Guoxian, Yu-Jung Lee, Prabhat Gautam, Chia-Chi Lin, Cheng-Liang Liu, and Julian M. W. Chan. "Pentafluorosulfanylated polymers as electrets in nonvolatile organic field-effect transistor memory devices." Journal of Materials Chemistry C 7, no. 26 (2019): 7865–71. http://dx.doi.org/10.1039/c9tc00756c.
Full textIslam, Sk Masiul, and P. Banerji. "Size effect of InAs quantum dots grown by metal organic chemical vapor deposition technique in storing electrical charges for memory applications." RSC Advances 5, no. 9 (2015): 6906–11. http://dx.doi.org/10.1039/c4ra13317j.
Full textLU, CHIH-YUAN. "NONVOLATILE MEMORY TECHNOLOGY: A DRIVER TO FUTURE NANOELECTRONICS." SPIN 02, no. 01 (March 2012): 1230001. http://dx.doi.org/10.1142/s2010324712300010.
Full textJin, Risheng, Keli Shi, Beibei Qiu, and Shihua Huang. "Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate." Nanotechnology 33, no. 2 (October 22, 2021): 025201. http://dx.doi.org/10.1088/1361-6528/ac2dc5.
Full textJames, David D., Akhtar Bayat, Scott R. Smith, Jean-Christophe Lacroix, and Richard L. McCreery. "Nanometric building blocks for robust multifunctional molecular junctions." Nanoscale Horizons 3, no. 1 (2018): 45–52. http://dx.doi.org/10.1039/c7nh00109f.
Full textLo, Chen-Tsyr, Yu Watanabe, Hiroshi Oya, Kazuhiro Nakabayashi, Hideharu Mori, and Wen-Chang Chen. "Non-volatile transistor memory devices using charge storage cross-linked core–shell nanoparticles." Chemical Communications 52, no. 45 (2016): 7269–72. http://dx.doi.org/10.1039/c6cc02750d.
Full textKim, Jaemin, Donghee Son, Mincheol Lee, Changyeong Song, Jun-Kyul Song, Ja Hoon Koo, Dong Jun Lee, et al. "A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement." Science Advances 2, no. 1 (January 2016): e1501101. http://dx.doi.org/10.1126/sciadv.1501101.
Full textWang, Jer-Chyi, Chih-Ting Lin, and Chi-Feng Chang. "Effects of charge storage dielectric thickness on hybrid gadolinium oxide nanocrystal and charge trapping nonvolatile memory." Current Applied Physics 14, no. 3 (March 2014): 232–36. http://dx.doi.org/10.1016/j.cap.2013.11.019.
Full textNovak, Steven, Bongmook Lee, Xiangyu Yang, and Veena Misra. "Platinum Nanoparticles Grown by Atomic Layer Deposition for Charge Storage Memory Applications." Journal of The Electrochemical Society 157, no. 6 (2010): H589. http://dx.doi.org/10.1149/1.3365031.
Full textMiura, Atsushi, Yukiharu Uraoka, Takashi Fuyuki, Shigeo Yoshii, and Ichiro Yamashita. "Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node." Journal of Applied Physics 103, no. 7 (April 2008): 074503. http://dx.doi.org/10.1063/1.2888357.
Full textLin, Chao-Cheng, Ting-Chang Chang, Chun-Hao Tu, Wei-Ren Chen, Chih-Wei Hu, Simon M. Sze, Tseung-Yuen Tseng, Sheng-Chi Chen, and Jian-Yang Lin. "Charge Storage Characteristics of Mo Nanocrystal Memory Influenced by Ammonia Plasma Treatment." Journal of The Electrochemical Society 156, no. 9 (2009): H716. http://dx.doi.org/10.1149/1.3155446.
Full textLiu, L., J. P. Xu, F. Ji, X. D. Huang, and P. T. Lai. "A Novel MONOS Memory With High-$\kappa$ HfLaON as Charge-Storage Layer." IEEE Transactions on Device and Materials Reliability 11, no. 2 (June 2011): 244–47. http://dx.doi.org/10.1109/tdmr.2011.2117428.
Full textSargentis, Ch, K. Giannakopoulos, A. Travlos, P. Normand, and D. Tsamakis. "Study of charge storage characteristics of memory devices embedded with metallic nanoparticles." Superlattices and Microstructures 44, no. 4-5 (October 2008): 483–88. http://dx.doi.org/10.1016/j.spmi.2008.03.003.
Full text