Academic literature on the topic 'Characterization of Nickel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Characterization of Nickel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Characterization of Nickel"
B. Govindaraj, B. Govindaraj, Arunkumar Lagashetty, and A. Venkataraman A. Venkataraman. "Synthesis, Characterization and d.c conductivity of Nano sized Nickel Oxide." Indian Journal of Applied Research 3, no. 6 (October 1, 2011): 60–61. http://dx.doi.org/10.15373/2249555x/june2013/21.
Full textLucyszyn, Stepan. "Microwave Characterization of Nickel." PIERS Online 4, no. 6 (2008): 686–90. http://dx.doi.org/10.2529/piers080119215655.
Full textFritz, T., H. S. Cho, K. J. Hemker, W. Mokwa, and U. Schnakenberg. "Characterization of electroplated nickel." Microsystem Technologies 9, no. 1-2 (November 1, 2002): 87–91. http://dx.doi.org/10.1007/s00542-002-0199-1.
Full textQin, Hui Ru, Ji Min Xie, Jun Jie Jing, Wen Hua Li, and Zhi Feng Jiang. "Preparation and Characterization of Nickel Nanopowder for Conductive Pastes." Advanced Materials Research 347-353 (October 2011): 3485–88. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.3485.
Full textBrieu, M., J. J. Couderc, A. Rousset, and R. Legros. "TEM characterization of nickel and nickel-cobalt manganite ceramics." Journal of the European Ceramic Society 11, no. 2 (January 1993): 171–77. http://dx.doi.org/10.1016/0955-2219(93)90049-w.
Full textJiang, Ning, Shuang Ling Jin, Xia Shao, Hua Feng Zhang, Zhi Jun Li, Shi Min Zhang, Ming Lin Jin, and Rui Zhang. "Synthesis and Characterization of Ni-Doped Carbon Aerogels." Advanced Materials Research 1061-1062 (December 2014): 133–36. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.133.
Full textLi, Chang Yu, Shou Xin Liu, and Li Li Liu. "Preparation and Characterization of Flowerlike Nickel Oxide." Applied Mechanics and Materials 121-126 (October 2011): 1044–48. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.1044.
Full textPramana, Yanatra Budi, Bramianto Setiawan, Prihono Prihono, Yitno Utomo, Marianus Subandowo, and Krisyanti Budipramana. "A SIMPLE SYNTHESIS OF NICKEL OXIDE NANOTUBE USING HIGH VOLTAGE ELECTROLYSIS." Jurnal Neutrino 13, no. 1 (February 2, 2021): 13–18. http://dx.doi.org/10.18860/neu.v13i1.10224.
Full textMassarotti, V., D. Capsoni, V. Berbenni, R. Riccardi, A. Marini, and E. Antolini. "Structural Characterization of Nickel Oxide." Zeitschrift für Naturforschung A 46, no. 6 (June 1, 1991): 503–12. http://dx.doi.org/10.1515/zna-1991-0606.
Full textUchiyama*, Souichi, Yasuo Obayashi, Toshiaki Hayasaka, and Noboru Kawata. "Characterization of coprecipitated nickel catalysts." Applied Catalysis 47, no. 1 (February 1989): 155–63. http://dx.doi.org/10.1016/s0166-9834(00)83271-6.
Full textDissertations / Theses on the topic "Characterization of Nickel"
Bansa, Patrice B. "Property characterization of CVD nickel." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ63137.pdf.
Full textHissam, Jason C. "Characterization of nickel-substituted hexaaluminate catalysts." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5999.
Full textTitle from document title page. Document formatted into pages; contains vii, 78 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 74-76).
CORTEZ, ORFELINDA AVALO. "SYNTHESIS AND CHARACTERIZATION OF NANOSTRUCTURED IRON-NICKEL ALLOYS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=12975@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Oxido de níquel e hematita nanoestruturadas foram sintetizadas a partir da decomposição térmica de nitrato de níquel hexahidratado e nitrato férrico nonahidratado respectivamente, na faixa de temperatura de 350-450°C com variações no tempo reacional. Os tamanhos de cristalito do NiO e Fe2O3 foram estimados a partir dos difractogramas de Difração de Raios-X (XRD) utilizando os software PowderCell e Topas. Foi observado que o tamanho de cristalito varia em função da temperatura de sínteses. O resultado mais significante foi observado nos cristalitos de NiO os quais aumentam de 31 nm (T=350°C, 3hr) a 98 nm (T=450°C, 5hr). Foram realizados estudos cinéticos da redução NiO e Fe2O3 por hidrogênio na faixa de temperatura de 250-600°C. Ligas ferroníquel nanoestruturadas com composições FexNi100-x (x = 25, 50, and 75 w%) têm sido preparadas com sucesso por decomposição térmica de nitratos (formação de óxidos) e posterior redução com hidrogênio a 700ºC (formação das ligas). As ligas Fe-Ni, caracterizadas por difração de raios-X mostraram tamanhos de cristalito da ordem de 25nm. A fase rica em Ni, liga Fe25Ni75, apresentou uma estrutura γ(FCC). A liga Fe50Ni50 apresentou a existência de uma estrutura tetragonal. A fase rica em Fe, liga Fe75Ni25, contém uma mistura de fases α(BCC) e γ(FCC). A coexistência das fases e atribuída à segregação de fases que acontece nestas ligas como resultado da difusão atômica. A partir dos resultados das medições magnéticas efetuadas a 300K, pode-se estabelecer que as ligas Fe-Ni nanoestruturadas tem um comportamento superparamagnético.
Nickel oxide and hematite nanostructured were successfully prepared by thermal decomposition from nickel nitrate hexahydrate and ferric nitrate nonahydrate in the temperature range of 350-450°C with variation of the time. The average crystallite sizes of NiO and Fe2O3 were estimated from X-ray diffraction (XRD) peaks using the PowderCell and Topas software. We observed that the crystallite size changes as a function of synthesis temperature. The significant result was the large size of the resulting NiO crystallites, which increased from 31nm (T=350°C, 3hr) to 98nm (T=450°C, 5hr). Kinetic studies of the reduction of NiO and Fe2O3 by hydrogen in the temperature range 250-600°C have been investigated. Nanostructured Fe-Ni alloys with compositions FexNi100-x (x = 25, 50, and 75 w%) have been successively prepared by thermal decomposition from mixtures of nitrates (formation of oxides) and reduction by hydrogen at 700ºC (formation of alloys). The Fe-Ni alloys, characterized by X-ray diffraction show crystallites sizes about 25nm. The Nirich phase, Fe25Ni75 alloys show the existence of γ(FCC) phase. The Fe50Ni50 alloy show the existence of tetragonal phase. The Fe-rich phase, Fe75Ni25 alloy, contain a mixture of α(BCC) and γ(FCC) phases. The coexistence of these phases is attributed to phase segregation occurring in these alloys as a result of enhanced atomic diffusion. It was inferred from results of magnetic measurements at 300K, that nanostructured Fe-Ni alloys were in a superparamagnetic state.
Silva, Cauê Corrêa da. "Manufacturing and characterization of aluminium-nickel matrix composites." reponame:Repositório Institucional da UFSC, 2015. https://repositorio.ufsc.br/xmlui/handle/123456789/162713.
Full textMade available in DSpace on 2016-05-24T17:40:40Z (GMT). No. of bitstreams: 1 338916.pdf: 1608467 bytes, checksum: 23dec638e6d54767a7815bbbc05e726e (MD5) Previous issue date: 2015
Abtsract : The present work describes the designing of a manufacturing process for the production of aluminum matrix composites reinforced with carbon fibers. The matrix was chosen to be an interlayering of aluminum foils and nickel mesh stripes, cold rolled with 70% of thickness reduction, being then submitted to different heat treatments, of which immersion in pure aluminum melt was found to be the most promising. Microstructure and composition of the samples were analyzed with scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractography and microhardness test, whose results showed the presence of remaining nickel and intermetallic compounds formed during the processing, namely Ni2Al3 and NiAl, agreeing with studies on reactive diffusion found in the literature. Furthermore, composites were produced by incorporating nickel-coated carbon fibers to the manufacturing process, being evaluated the effect of the fibers addition to the material with scanning electron microscopy, energy-dispersive Xray spectroscopy, X-ray diffractography and fiber content estimation via image binarization. Intermetallic phases were also present in the microstructure of the composites, nevertheless in smaller extent and in an aluminum matrix. Bond between matrix and fibers was found to be strong, since no fiber pull out took place. Performed fiber content analysis showed that the optimum fiber volume content is between 15% and 40%. Mechanical properties of both without and with fibers materials were assessed through 4-point bending tests, having theirfracture surface analyzed afterwards.
O presente trabalho descreve o desenvolvimento de um processo de fabricação para a produção de compósitos de matriz de alumÃnio reforçados com fibras de carbono. O material escolhido para a matriz era constituÃdo por camadas intercaladas de folhas de alumÃnio e malha de nÃquel, laminadas a frio com 70% de redução de espessura, sendo então submetidos a diferentes tratamentos térmicos, dentre os quais imersão em fundido de alumÃnio mostrou-se o mais promissor. A microestrutura e a composição das amostras foram analisadas com microscopia eletrônica de varredura, espectroscopia dispersiva de raios-X, difratografia de raios-X e testes de microdureza, cujos resultados mostraram a presença de nÃquel remanescente e compostos intermetálicos, Ni2Al3 e NiAl, coincidindo com estudos sobre difusão reativa encontrados na literatura. Além disso, compósitos foram produzidos através da incorporação de fibras de carbono revestidas com nÃquel ao processo de fabricação, sendo avaliados os efeitos da adição de fibras ao material com microscopia eletrônica de varredura, espectroscopia dispersiva de raios-X, difratografia de raios-X e estimativa do teor de fibras através de binarização de imagens. Fases intermetálicas também estavam presentes na microestrutura do compósito, entretanto em menor quantidade e em uma matriz de alumÃnio. A adesão entre matriz e fibras foi avaliada como sendo alta, visto que não ocorrou o fenômeno de pull out das fibras. As análises de teor de fibra mostraram que o volume de fibras ótimo encontra-se entre 15% e 40%. Tanto propriedades mecânicas do material sem fibra, quanto do com fibra, foram aferidos com teste de flexão em 4 pontos, posteriormente tendo sua superfÃcie de fratura analisada.
Silva, Cauê Corrêa da. "Manufacturing and characterization of aluminium-nickel matrix composites." reponame:Repositório Institucional da UFSC, 2015. https://repositorio.ufsc.br/xmlui/handle/123456789/169520.
Full textMade available in DSpace on 2016-10-19T13:04:45Z (GMT). No. of bitstreams: 1 338916.pdf: 1608467 bytes, checksum: 23dec638e6d54767a7815bbbc05e726e (MD5) Previous issue date: 2015
Abtsract : The present work describes the designing of a manufacturing process for the production of aluminum matrix composites reinforced with carbon fibers. The matrix was chosen to be an interlayering of aluminum foils and nickel mesh stripes, cold rolled with 70% of thickness reduction, being then submitted to different heat treatments, of which immersion in pure aluminum melt was found to be the most promising. Microstructure and composition of the samples were analyzed with scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractography and microhardness test, whose results showed the presence of remaining nickel and intermetallic compounds formed during the processing, namely Ni2Al3 and NiAl, agreeing with studies on reactive diffusion found in the literature. Furthermore, composites were produced by incorporating nickel-coated carbon fibers to the manufacturing process, being evaluated the effect of the fibers addition to the material with scanning electron microscopy, energy-dispersive Xray spectroscopy, X-ray diffractography and fiber content estimation via image binarization. Intermetallic phases were also present in the microstructure of the composites, nevertheless in smaller extent and in an aluminum matrix. Bond between matrix and fibers was found to be strong, since no fiber pull out took place. Performed fiber content analysis showed that the optimum fiber volume content is between 15% and 40%. Mechanical properties of both without and with fibers materials were assessed through 4-point bending tests, having theirfracture surface analyzed afterwards.
O presente trabalho descreve o desenvolvimento de um processo de fabricação para a produção de compósitos de matriz de alumínio reforçados com fibras de carbono. O material escolhido para a matriz era constituído por camadas intercaladas de folhas de alumínio e malha de níquel, laminadas a frio com 70% de redução de espessura, sendo então submetidos a diferentes tratamentos térmicos, dentre os quais imersão em fundido de alumínio mostrou-se o mais promissor. A microestrutura e a composição das amostras foram analisadas com microscopia eletrônica de varredura, espectroscopia dispersiva de raios-X, difratografia de raios-X e testes de microdureza, cujos resultados mostraram a presença de níquel remanescente e compostos intermetálicos, Ni2Al3 e NiAl, coincidindo com estudos sobre difusão reativa encontrados na literatura. Além disso, compósitos foram produzidos através da incorporação de fibras de carbono revestidas com níquel ao processo de fabricação, sendo avaliados os efeitos da adição de fibras ao material com microscopia eletrônica de varredura, espectroscopia dispersiva de raios-X, difratografia de raios-X e estimativa do teor de fibras através de binarização de imagens. Fases intermetálicas também estavam presentes na microestrutura do compósito, entretanto em menor quantidade e em uma matriz de alumínio. A adesão entre matriz e fibras foi avaliada como sendo alta, visto que não ocorrou o fenômeno de pull out das fibras. As análises de teor de fibra mostraram que o volume de fibras ótimo encontra-se entre 15% e 40%. Tanto propriedades mecânicas do material sem fibra, quanto do com fibra, foram aferidos com teste de flexão em 4 pontos, posteriormente tendo sua superfície de fratura analisada.
Mwania, Tom Muinde. "Synthesis and characterization of nickel imine/amine complexes; a possible model for nickel superoxide dismutase." Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5416.
Full textThesis (M.S.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Chemistry
Arslan, Hulya. "Synthesis And Characterization Of Nickel Based Bulk Amorphous Alloys." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/3/12605099/index.pdf.
Full textHuang, Shiliang. "Open-Framework Germanates and Nickel Germanates : Synthesis and Characterization." Doctoral thesis, Stockholms universitet, Institutionen för material- och miljökemi (MMK), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75495.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Submitted. Paper 2: Submitted. Paper 3: Submitted. Paper 5: Manuscript.
Bahr, Douglas. "Fracture mechanics characterization of a single crystal nickel alloy." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/19604.
Full textKarim, Salma. "Preparation and characterization of supported and unsupported nickel complexes." Thesis, Brunel University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290951.
Full textBooks on the topic "Characterization of Nickel"
Bansa, Patrice B. Property characterization of CVD nickel. Ottawa: National Library of Canada, 2001.
Find full textYoo, Abraham. Microstructural and magnetic characterization of electrodeposited nanocrystalline nickel. Ottawa: National Library of Canada, 2003.
Find full textCenter, Lewis Research, ed. Characterization and cycle tests of lightweight nickel electrodes. Cleveland, Ohio: Lewis Research Center, 1989.
Find full textBritton, Doris L. Characterization and cycle tests of lightweight nickel electrodes. Cleveland, Ohio: Lewis Research Center, 1989.
Find full textChern, E. James. Eddy current characterization of magnetic treatment of materials. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1992.
Find full textKarim, Salma. Preparation and characterization of supported and unsupported nickel complexes. Uxbridge: Brunel University, 1991.
Find full textRobertson, Kevin. Characterization of nickel hydroxide sludge using the variable pressure SEM. Montréal, Qué: Dept.of Mining, Metals and Materials Engineering, McGill University, 2004.
Find full textC, Wilcox Roy, and United States. National Aeronautics and Space Administration., eds. Determination of cleavage planes and fracture characterization of Ni-based single crystal superalloys: Final progress report. Auburn, AL: Dept. of Mechanical Engineering, Auburn University, 1992.
Find full textG, Sandefur Paul, Young Clarence P, and Langley Research Center, eds. Braze alloy process and strength characterization studies for 18 nickel grade 200 maraging steel with application to wind tunnel models. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textFlint, R. Warren. Niche characterization of dominant estuarine benthic species. College Station, Tex: Sea Grant College Program, Texas A&M University, 1986.
Find full textBook chapters on the topic "Characterization of Nickel"
Li, Tao, Xuan Chen, Bo Zhang, and Xin Hong. "Characterization of Laterite Nickel Ore." In Characterization of Minerals, Metals, and Materials 2014, 541–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888056.ch63.
Full textYan, Ganggang, Zibiao Wang, Dinghao Le, Xijun Zhang, Xintao Sun, and Dalin Chen. "Separation of Nickel and Cobalt from Nickel and Cobalt Solution by Cyanex272." In Characterization of Minerals, Metals, and Materials 2022, 113–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92373-0_11.
Full textSasse, H. E., and U. König. "Preparation and Characterization of Nickel Silicide." In Springer Proceedings in Physics, 213–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93413-1_29.
Full textXu, Wenyong, Yufeng Liu, Hua Yuan, Zhou Li, and Guoqing Zhang. "Surface Characterization of Nickel-Base Superalloy Powder." In Springer Proceedings in Physics, 561–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5944-6_55.
Full textda Rocha Caffarena, Valeska, Alberto Passos Guimarães, Magali Silveira Pinho, Elizandra Martins Silva, Jefferson Leixas Capitaneo, and Marilia Sergio da Silva Beltrão. "Synthesis and Characterization of Electrodeposited Nickel Nanowires." In Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials II, 195–201. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470456224.ch21.
Full textGodínez-Azcuaga, Valery F., Miguel A. Marcial-Amaro, Jesús Porcayo-Calderón, and Obdulia Mayorga-Martin. "Ultrasonic Characterization of Nickel-Chromium-Base Anticorrosive Coatings." In Review of Progress in Quantitative Nondestructive Evaluation, 1285–89. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5339-7_166.
Full textJanković, Dragana, Dušan Kićević, and Mirjana Mitkov. "The Interface Characterization of Laminar Nickel-Alumina Composites." In Advanced Science and Technology of Sintering, 575–80. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4419-8666-5_81.
Full textCosta, Ana Cristina F. M., L. Gama, M. R. Morelli, and Ruth H. G. A. Kiminami. "Nickel Ferrite: Combustion Synthesis, Characterization and Magnetic Properties." In Advanced Powder Technology IV, 618–23. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-984-9.618.
Full textWei, Xue Yong, and Kyle Jiang. "Synthesis and Characterization of Nanoparticulate Strengthened Nickel Microcomponents." In Advances in Science and Technology, 299–304. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-11-7.299.
Full textWu, Xiao Feng, Yun Fa Chen, Qun Yan Li, and L. Q. Wei. "Preparation and Characterization of Integral Hollow Microspheres of Nickel Hydroxide and Nickel Oxide." In Solid State Phenomena, 187–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-30-2.187.
Full textConference papers on the topic "Characterization of Nickel"
Rashidifar, Mahsa, Sara Darbari, and Yaser Abdi. "Characterization of humidity sensor based on nickel-MoS2-nickel." In 2020 28th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2020. http://dx.doi.org/10.1109/icee50131.2020.9260786.
Full textShlepnev, Yuriy, and Scott McMorrow. "Nickel characterization for interconnect analysis." In 2011 IEEE International Symposium on Electromagnetic Compatibility - EMC 2011. IEEE, 2011. http://dx.doi.org/10.1109/isemc.2011.6038368.
Full textShi, Qian, Shih-Chia Chang, Michael W. Putty, and David B. Hicks. "Characterization of electroformed nickel microstructures." In Micromachining and Microfabrication, edited by Karen W. Markus. SPIE, 1995. http://dx.doi.org/10.1117/12.221293.
Full textRonsheim, Paul, Jeff McMurray, Philip Flaitz, Christopher Parks, Keith Thompson, David Larson, Thomas F. Kelly, et al. "Analysis of Nickel Silicides by SIMS and LEAP." In CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007 International Conference on Frontiers of Characterization and Metrology. AIP, 2007. http://dx.doi.org/10.1063/1.2799356.
Full textLi, K., E. Eddie, and S. P. Zhao. "TEM Characterization of Nickel Silicide Process." In 2006 IEEE International Conference on Semiconductor Electronics. IEEE, 2006. http://dx.doi.org/10.1109/smelec.2006.380707.
Full textJohnson, Za, Tim Kulin, Andy Pai, and Calvin Goroski. "Characterization Testing of Aircraft Nickel Electrodes." In Aerospace Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1366.
Full textLynam, Niall R., and Hamid R. Habibi. "Characterization Of Nickel Oxide Electrochromic Films." In 1988 International Congress on Optical Science and Engineering, edited by Claes-Goeran Granqvist and Carl M. Lampert. SPIE, 1989. http://dx.doi.org/10.1117/12.949915.
Full textKurian, Manju, Divya S. Nair, P. Predeep, Mrinal Thakur, and M. K. Ravi Varma. "Synthesis and Characterization of Nickel Zinc Ferrite." In OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3643621.
Full textKamdi, Z., A. R. Ainuddin, R. Hussin, and S. A. Ibrahim. "Corrosion behavior of tungsten carbide-nickel weld-overlay." In MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5089397.
Full textGonchond, J. P. "Combined XRR and RS Measurements of Nickel Silicide Films." In CHARACTERIZATION AND METROLOGY FOR ULSI TECHNOLOGY 2005. AIP, 2005. http://dx.doi.org/10.1063/1.2062960.
Full textReports on the topic "Characterization of Nickel"
Miller, M. K., D. J. Larson, and K. F. Russell. Characterization of segregation in nickel and titanium aluminides. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/459428.
Full textAuthor, Not Given. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1060187.
Full textWu, Ping, Robert Kershaw, Kirby Dwight, and Aaron Wold. Growth and Characterization of Nickel-Doped ZnS Single Crystals. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada199781.
Full textWidjaja, Agus. Synthesis and characterization of nickel hydroxide powders for battery application. Office of Scientific and Technical Information (OSTI), October 1997. http://dx.doi.org/10.2172/348926.
Full textRalston, C. Y., M. Kumar, and S. W. Ragsdale. Characterization of heterogeneous nickel sites in CO dehydrogenase from Clostridium thermoaceticum by nickel L-edge x-ray spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603654.
Full textChacon, L. C. The synthesis, characterization and reactivity of high oxidation state nickel fluorides. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/335167.
Full textStickle, W. F., J. R. Reynolds, and C. A. Jolly. Surface Characterization of Electrically Conducting Nickel Tetrathiooxalate/Poly(vinyl alcohol) Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada234598.
Full textD.S. Morton, S.A. Attanasio, and G.A. Young. Primary Water SCC Understanding and Characterization Through Fundamental Testing in the Vicinity of the Nickel/Nickel Oxide Phase Transition. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/821310.
Full textSmith, Michael Edward. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10108086.
Full textEastman, J. A., M. A. Beno, G. S. Knapp, and L. J. Thompson. X-ray diffraction characterization of defect behavior in nanocrystalline nickel during annealing. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10194718.
Full text