Dissertations / Theses on the topic 'Chaotický systém'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Chaotický systém.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Rujzl, Miroslav. "Analýza a obvodové realizace speciálních chaotických systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442418.
Full textKhůlová, Jitka. "Stabilita a chaos v nelineárních dynamických systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392836.
Full textSchneider, Judith. "Dynamical structures and manifold detection in 2D and 3D chaotic flows." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973637420.
Full textBorkovec, Ondřej. "Synchronizace chaotických dynamických systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401496.
Full textChe, Dzul-Kifli Syahida. "Chaotic dynamical systems." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.
Full textKaravas, Costas. "Fractal chaotic systems : investigation of the geological system and its sedimentation behaviour." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60052.
Full textThe geosystem is treated as a partially specified system in order to apply qualitative stability analysis in the investigation of sedimentation behaviour and interactions among geological processes. The analysis suggests that the sedimentary system is unstable. This instability in conjunction with the system's sensitive dependence to internal fluctuations (i.e., those generated within the system) provide supporting evidence to suggest a chaotic behaviour for the sedimentation system.
We suggest that chaos could act as the common underlying mechanism which is manifest as the fractal-flicker noise character observed in reflectivity well logs. Acoustic impedance variations--the geophysical measures of lithologic variability--represent the internal organization of the interacting geological processes. This organization under a chaotic regime is responsible for the common statistical character found in various sedimentary basins.
Michaels, Alan Jason. "Digital chaotic communications." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34849.
Full textMathew, Manu K. "Nonlinear system identification and prediction /." Online version of thesis, 1993. http://hdl.handle.net/1850/11594.
Full textBaek, Seung-Jong. "Synchronization in chaotic systems." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7728.
Full textThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Tang, Xian Zhu. "Transport in chaotic systems." W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623882.
Full textKateregga, George William. "Bifurcations in a chaotic dynamical system." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401527.
Full textVavriv, Dmytro. "Chaotic instabilities and their applications." Göttingen Cuvillier, 2009. http://d-nb.info/998762474/04.
Full textÇiftçi, Mahmut. "Channel equalization for chaotic communications systems." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/15464.
Full textSchäfer, Rudi. "Correlation functions and fidelity decay in chaotic systems." [S.l. : s.n.], 2004. http://archiv.ub.uni-marburg.de/diss/z2004/0660/.
Full textWeibert and Kirsten. "Semiclassical quantization of integrable and chaotic billiard systems by." Phd thesis, Universitaet Stuttgart, 2001. http://elib.uni-stuttgart.de/opus/volltexte/2001/815/index.html.
Full textBäcker, Arnd. "Eigenfunctions in chaotic quantum systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1213275874643-50420.
Full textWiklund, Kjell Ottar. "Multifractal properties of chaotic systems." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338772.
Full textBernhard, Michael A. "Introduction to chaotic dynamical systems." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23708.
Full textSantoboni, Giovanni. "Synchronisation of coupled chaotic systems." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391672.
Full textXu, Daolin. "Flexible control of chaotic systems." Thesis, University College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338926.
Full textBäcker, Arnd. "Eigenfunctions in chaotic quantum systems." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23663.
Full textPolo, Fabrizio. "Equidistribution on Chaotic Dynamical Systems." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306527005.
Full textFrisk, Martin. "Synchronization in chaotic dynamical systems." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-287624.
Full textTse, Pak-hoi Isaac. "Dynamical systems theory and school change." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B37626218.
Full textTse, Pak-hoi Isaac, and 謝伯開. "Dynamical systems theory and school change." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37626218.
Full textKraut, Suso. "Multistable systems under the influence of noise." Phd thesis, [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0011/kraut.pdf.
Full textGhofranih, Jahangir. "Control and estimation of a chaotic system." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29601.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Çek, Mehmet Emre Savacı Ferit Acar. "Analysis of observed chaotic data/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/elektronikvehaberlesme/T000493.rar.
Full textEckstein, Bernd. "Bandcounter: Counting bands of multiband chaotic attractors." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2006. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-28244.
Full textClodong, Sébastien. "Recurrent outbreaks in ecology chaotic dynamics in complex networks /." [S.l. : s.n.], 2004. http://pub.ub.uni-potsdam.de/2004/0062/clodong.pdf.
Full textMulansky, Mario. "Chaotic diffusion in nonlinear Hamiltonian systems." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6318/.
Full textDiese Arbeit beschäftigt sich mit dem Phänomen der Diffusion in nichtlinearen Systemen. Unter Diffusion versteht man normalerweise die zufallsmäss ige Bewegung von Partikeln durch den stochastischen Einfluss einer thermodynamisch beschreibbaren Umgebung. Dieser Prozess ist mathematisch beschrieben durch die Diffusionsgleichung. In dieser Arbeit werden jedoch abgeschlossene Systeme ohne Einfluss der Umgebung betrachtet. Dennoch wird eine Art von Diffusion, üblicherweise bezeichnet als Subdiffusion, beobachtet. Die Ursache dafür liegt im chaotischen Verhalten des Systems. Vereinfacht gesagt, erzeugt das Chaos eine intrinsische Pseudo-Zufälligkeit, die zu einem gewissen Grad mit dem Einfluss einer thermodynamischen Umgebung vergleichbar ist und somit auch diffusives Verhalten provoziert. Zur quantitativen Beschreibung dieses subdiffusiven Prozesses wird eine Verallgemeinerung der Diffusionsgleichung herangezogen, die Nichtlineare Diffusionsgleichung. Desweiteren wird die mikroskopische Dynamik des Systems mit analytischen Methoden untersucht, und Schlussfolgerungen für den makroskopischen Diffusionsprozess abgeleitet. Die Technik der Verbindung von mikroskopischer Dynamik und makroskopischen Beobachtungen, die in dieser Arbeit entwickelt wird und detailliert beschrieben ist, führt zu einem tieferen Verständnis von hochdimensionalen chaotischen Systemen. Die mit mathematischen Mitteln abgeleiteten Ergebnisse sind darüber hinaus durch ausführliche Simulationen verifiziert, welche teilweise auf einem der leistungsfähigsten Supercomputer Europas durchgeführt wurden, dem sp6 in Bologna, Italien. Desweiteren können die in dieser Arbeit vorgestellten Erkenntnisse und Techniken mit Sicherheit auch in anderen Fällen bei der Untersuchung chaotischer Systeme Anwendung finden.
Grant, Angela Elyse. "Finding optimal orbits of chaotic systems." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/3220.
Full textThesis research directed by: Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Kohler, Heiner. "Group integrals in chaotic quantum systems." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961274352.
Full textWilliams, Christopher. "Chaotic synchronisation in wideband communication systems." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299732.
Full textCarlu, Mallory. "Instability in high-dimensional chaotic systems." Thesis, University of Aberdeen, 2019. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=240675.
Full textRichard, Michael D. (Michael David). "Estimation and detection with chaotic systems." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12230.
Full textIncludes bibliographical references (p. 209-214).
by Michael D. Richard.
Sc.D.
Ramirez, Daniel Alonso. "Semiclassical quantization and classical chaotic systems." Doctoral thesis, Universite Libre de Bruxelles, 1995. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212531.
Full textRichardson, Julie K. "Parametric modelling for linear system identification and chaotic system noise reduction." Thesis, University of Strathclyde, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405388.
Full textRosenblum, Michael G. "Phase synchronization of chaotic systems from theory to experimental applications /." [S.l. : s.n.], 2002. http://pub.ub.uni-potsdam.de/2003/0007/rosenbl.pdf.
Full textReiss, Joshua D. "The analysis of chaotic time series." Diss., Full text available online (restricted access), 2001. http://images.lib.monash.edu.au/ts/theses/reiss.pdf.
Full textAlbert, Gerald (Gerald Lachian). "Synchronous Chaos, Chaotic Walks, and Characterization of Chaotic States by Lyapunov Spectra." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc277794/.
Full textCromwell, Jeff B. "Chaotic price dynamics of agricultural commodities." Morgantown, W. Va. : [West Virginia University Libraries], 2004. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3625.
Full textTitle from document title page. Document formatted into pages; contains vi, 166 p. : ill. Includes abstract. Includes bibliographical references (p. 142-160).
Lindquist, Roslyn Gay. "The dimension of a chaotic attractor." PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4182.
Full textLocquet, Alexandre Daniel. "Chaotic optical communications using delayed feedback systems." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10431.
Full textKim, Ho Jun. "Quantification of chaotic mixing in microfluidic systems." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1084.
Full textLesnik, Dmitry. "Transport scaling in incompletely chaotic Hamiltonian systems." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964989263.
Full textLocquet, Alexandre Daniel. "Chaotic optical communications using delayed feedback systems." Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-01102006-133806/.
Full textBertrand Boussert, Committee Member ; Douglas B. Williams, Committee Member ; William T. Rhodes, Committee Member ; Yves Berthelot, Committee Member ; David S. Citrin, Committee Chair.
Everson, R. M. "Detection and description of deterministic chaotic systems." Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233210.
Full textYannacopoulos, A. N. "Diffusion models in strongly chaotic Hamiltonian systems." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357654.
Full textShin, Kihong. "Characterisation and identification of chaotic dynamical systems." Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242459.
Full text