Academic literature on the topic 'Chaotický systém'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chaotický systém.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chaotický systém"

1

SINGH, R., P. S. MOHARIR, and V. M. MARU. "COMPOUND CHAOS." International Journal of Bifurcation and Chaos 06, no. 02 (February 1996): 383–93. http://dx.doi.org/10.1142/s0218127496000138.

Full text
Abstract:
Compounding is a statistical notion. Essentially, it comprises of regarding the parameters in a particular statistical distribution as random variables with a prescribed distribution. The compound distribution then acquires the parameters of the compounding distribution as its own. As deterministic chaos, in spite of being deterministic, appears like a statistical phenomenon, the notion of compounding can be extended to chaotic systems. It is shown with illustrations that a chaotic system can be compounded by another chaotic system, giving rise to compound chaos which is, in general, “chaoticer”. The concept can also be used to make a periodic system chaotic, thus opening possibilities of “chaoticization”. Examples of compound chaos and chaoticization are given using Lorenz and Rössler systems, including their attractors and limit cycles as “compoundee” and/or “compounder” systems. The conclusions are based on quantitative studies of Lyapunov exponents and correlation dimensions.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Yeong-Jeu. "Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Chaotic Systems." International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (December 31, 2018): 1158–61. http://dx.doi.org/10.31142/ijtsrd20219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sun, Yeong-Jeu. "Simple Exponential Observer Design for the Generalized Liu Chaotic System." International Journal of Trend in Scientific Research and Development Volume-2, Issue-1 (December 31, 2017): 953–56. http://dx.doi.org/10.31142/ijtsrd7126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Yeong-Jeu, and Jer-Guang Hsieh. "Chaos Suppression and Stabilization of Generalized Liu Chaotic Control System." International Journal of Trend in Scientific Research and Development Volume-3, Issue-1 (December 31, 2018): 1112–15. http://dx.doi.org/10.31142/ijtsrd20195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Xiang, Juhyeon Lee, and Hyung-Kun Park. "Chaotic Prediction Based Channel Sensing in CR System." Transactions of The Korean Institute of Electrical Engineers 62, no. 1 (January 1, 2013): 140–42. http://dx.doi.org/10.5370/kiee.2012.62.1.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuznetsov, S. P., V. P. Kruglov, and Y. V. Sedova. "Mechanical Systems with Hyperbolic Chaotic Attractors Based on Froude Pendulums." Nelineinaya Dinamika 16, no. 1 (2020): 51–58. http://dx.doi.org/10.20537/nd200105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ma, Yancheng, Guoan Wu, and Lan Jiang. "Generalized Function Projective Lag Synchronization in Fractional-Order Chaotic Systems." International Journal of Information and Electronics Engineering 6, no. 5 (2016): 299–303. http://dx.doi.org/10.18178/ijiee.2016.6.5.642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mengfan Cheng, Mengfan Cheng, and Hanping Hu Hanping Hu. "Theoretical investigations of impulsive synchronization on semiconductor laser chaotic systems." Chinese Optics Letters 10, no. 10 (2012): 101901–4. http://dx.doi.org/10.3788/col201210.101901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dr.B., Gopinath, Kalyanasundaram M., Pradeepa M., and Karthika V. "Locating Hybrid Power Flow Controller in a 30-Bus System Using Chaotic Evolutionary Algorithm to Improve Power System Stability." Bonfring International Journal of Software Engineering and Soft Computing 8, no. 1 (March 30, 2018): 12–16. http://dx.doi.org/10.9756/bijsesc.8382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LÜ, JINHU, GUANRONG CHEN, and DAIZHAN CHENG. "A NEW CHAOTIC SYSTEM AND BEYOND: THE GENERALIZED LORENZ-LIKE SYSTEM." International Journal of Bifurcation and Chaos 14, no. 05 (May 2004): 1507–37. http://dx.doi.org/10.1142/s021812740401014x.

Full text
Abstract:
This article introduces a new chaotic system of three-dimensional quadratic autonomous ordinary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously, with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equilibria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations, periodic windows, and the compound structure of the new chaotic system are then investigated, either analytically or numerically. Of particular interest is the fact that this chaotic system can generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic attractor under the control of a simple constant input. Furthermore, the concept of generalized Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form. Finally, the important problems of classification and normal form of three-dimensional quadratic autonomous chaotic systems are formulated and discussed.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chaotický systém"

1

Rujzl, Miroslav. "Analýza a obvodové realizace speciálních chaotických systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442418.

Full text
Abstract:
This master‘s thesis deals with analysis of electronic dynamical systems exhibiting chaotic solution. In introduction, some basic concepts for better understanding of dynamical systems are explained. After introduction, current knowledge from the world of circuits exhibiting chaotic solutions are discussed. The best-known chaotic systems are analyzed numerically in Matlab software. Numerical analysis and experimental verification were demonstrated at C class transistor amplifier, which confirmed the chaotic behavior and generation of a strange attractor.
APA, Harvard, Vancouver, ISO, and other styles
2

Khůlová, Jitka. "Stabilita a chaos v nelineárních dynamických systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392836.

Full text
Abstract:
Diplomová práce pojednává o teorii chaotických dynamických systémů, speciálně se pak zabývá Rösslerovým systémem. Kromě standardních výpočtů spojených s bifurkační analýzou se práce zaměřuje na problém stabilizace, konkrétně na stabilizaci rovnovážných bodů. Ke stabilizaci je využita základní metoda zpětnovazebního řízení s časovým zpožděním. Významnou část práce tvoří zavedení a implementace obecné metody pro hledání vhodné volby parametrů vedoucí k úspěšné stabiliaci. Dalším diskutovaným tématem je možnost synchronizace dvou Rösslerových systémů pomocí různých synchronizačních schémat.
APA, Harvard, Vancouver, ISO, and other styles
3

Schneider, Judith. "Dynamical structures and manifold detection in 2D and 3D chaotic flows." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973637420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borkovec, Ondřej. "Synchronizace chaotických dynamických systémů." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401496.

Full text
Abstract:
Diplomová práce pojednává o chaotických dynamických systémech se zvláštním zaměřením na jejich synchronizaci. Proces synchronizace je aplikován použitím dvou různých metod, a to - metodou úplné synchronizace na dva Lorenzovy systémy a metodou negativní zpětné vazby na dva Rösslerovy systémy. Dále je prozkoumána možná aplikace synchronizace chaotických systémů v oblasti soukromé komunikace, která je doplněná algoritmy v prostředí MATLAB.
APA, Harvard, Vancouver, ISO, and other styles
5

Che, Dzul-Kifli Syahida. "Chaotic dynamical systems." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3410/.

Full text
Abstract:
In this work, we look at the dynamics of four different spaces, the interval, the unit circle, subshifts of finite type and compact countable sets. We put our emphasis on chaotic dynamical system and exhibit sufficient conditions for the system on the interval, the unit circle and subshifts of finite type to be chaotic in three different types of chaos. On the interval, we reveal two weak conditions’s role as a fast track to chaotic behavior. We also explain how a strong dense periodicity property influences chaotic behavior of dynamics on the interval, the unit circle and subshifts of finite type. Finally we show how dynamics property of compact countable sets effecting the structure of the sets.
APA, Harvard, Vancouver, ISO, and other styles
6

Karavas, Costas. "Fractal chaotic systems : investigation of the geological system and its sedimentation behaviour." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60052.

Full text
Abstract:
Chaos theory has only recently been related to various phenomena in the earth sciences. Here, using systems theory in a description of geological processes, we study the chaotic development of sedimentary sequences.
The geosystem is treated as a partially specified system in order to apply qualitative stability analysis in the investigation of sedimentation behaviour and interactions among geological processes. The analysis suggests that the sedimentary system is unstable. This instability in conjunction with the system's sensitive dependence to internal fluctuations (i.e., those generated within the system) provide supporting evidence to suggest a chaotic behaviour for the sedimentation system.
We suggest that chaos could act as the common underlying mechanism which is manifest as the fractal-flicker noise character observed in reflectivity well logs. Acoustic impedance variations--the geophysical measures of lithologic variability--represent the internal organization of the interacting geological processes. This organization under a chaotic regime is responsible for the common statistical character found in various sedimentary basins.
APA, Harvard, Vancouver, ISO, and other styles
7

Michaels, Alan Jason. "Digital chaotic communications." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34849.

Full text
Abstract:
This dissertation provides the conceptual development, modeling and simulation, physical implementation, and measured hardware results for a practicable digital coherent chaotic communication system. Such systems are highly desirable for robust communications due to the maximal entropy signal characteristics that satisfy Shannon's ideal noise-like waveform and provide optimal data transmission across a flat communications channel. At the core of the coherent chaotic communications system is a fully digital chaotic circuit, providing an efficiently controllable mechanism that overcomes the traditional bottleneck of chaotic circuit state synchronization. The analytical, simulation, and hardware results yield a generalization of direct sequence spread spectrum waveforms, that can be further extended to create a new class of maximal entropy waveforms suitable for optimized channel performance, maximal entropy transmission of chaotically spread amplitude modulated data constellations, and permission-based multiple access systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Mathew, Manu K. "Nonlinear system identification and prediction /." Online version of thesis, 1993. http://hdl.handle.net/1850/11594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baek, Seung-Jong. "Synchronization in chaotic systems." College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7728.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Xian Zhu. "Transport in chaotic systems." W&M ScholarWorks, 1996. https://scholarworks.wm.edu/etd/1539623882.

Full text
Abstract:
This dissertation addresses the general problem of transport in chaotic systems. Typical fluid problem of the kind is the advection and diffusion of a passive scalar. The magnetic field evolution in a chaotic conducting media is an example of the chaotic transport of a vector field. In kinetic theory, the collisional relaxation of a distribution function in phase space is also an advection-diffusion problem, but in a higher dimensional space.;In a chaotic flow neighboring points tend to separate exponentially in time, exp({dollar}\omega t{dollar}) with {dollar}\omega{dollar} the Liapunov exponent. The characteristic parameter for the transport of a scalar in a chaotic flow is {dollar}\Omega\ \equiv\ \omega L\sp2/D{dollar} where L is the spatial scale and D is the diffusivity. For {dollar}\Omega\ \gg\ 1{dollar}, the scalar is advected with the flow for a time {dollar}t\sb{lcub}a{rcub}\ \equiv{dollar} ln(2{dollar}\Omega{dollar})/2{dollar}\omega{dollar} and then diffuses during the relatively short period 1/{dollar}\omega{dollar} centered on the time {dollar}t\sb{lcub}a{rcub}{dollar}. This rapid diffusion occurs only along the field line of the {dollar}\rm \ s\sb\infty{dollar} vector, which defines the stable direction for neighboring streamlines to converge. Diffusion is impeded at the sharp bends of an {dollar}\rm \ s{dollar} line because of a peculiarly small finite time Lyapunov exponent, hence a class of diffusion barriers is created inside a chaotic sea. This result comes from a fundamental relationship between the finite time Lyapunov exponent and the geometry of the {dollar}\rm \ s{dollar} lines, which we rigorously show in 2D and numerically validated for 3D flows.;The evolution of a general 3D magnetic field in a highly conducting chaotic media is also related to the spatial-temporal dependence of the finite time Lyapunov exponent. The Ohmic dissipation in a chaotic plasma will become a dominate process despite a small plasma resistivity. We show that the Ohmic heating in a chaotic plasma occurs in current filaments or current sheets. The particular form is determined by the time dependence of spatial gradient of the finite time Lyapunov exponent along a direction in which neighboring point neither diverge nor converge.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Chaotický systém"

1

Marek, Miloš. Chaotic Behaviour of Deterministic Dissipative Systems. Cambridge [England]: Cambridge University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. New York, NY: Springer New York, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1948-, Hsu Sze-Bi, ed. Lectures on chaotic dynamical systems. Providence, R.I: American Mathematical Society, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chaotic oscillations in mechanical systems. Manchester: Manchester University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rasband, S. Neil. Chaotic dynamics of nonlinear systems. New York: Wiley, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bernhard, Michael A. Introduction to chaotic dynamical systems. Monterey, Calif: Naval Postgraduate School, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiggins, Stephen. Chaotic transport in dynamical systems. New York: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zelinka, Ivan, Sergej Celikovsky, Hendrik Richter, and Guanrong Chen, eds. Evolutionary Algorithms and Chaotic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wiggins, Stephen. Chaotic Transport in Dynamical Systems. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-3896-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banerjee, Tanmoy, and Debabrata Biswas. Time-Delayed Chaotic Dynamical Systems. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70993-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Chaotický systém"

1

Goertzel, Ben. "Linguistic Systems." In Chaotic Logic, 63–87. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goertzel, Ben. "Belief Systems." In Chaotic Logic, 165–90. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goertzel, Ben. "Self-Generating Systems." In Chaotic Logic, 113–43. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-2197-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hanslmeier, Arnold. "Chaos in the Solar System." In The Chaotic Solar Cycle, 37–51. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9821-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chadli, Mohammed. "Chaotic Systems Reconstruction." In Evolutionary Algorithms and Chaotic Systems, 237–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10707-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crisanti, Andrea, Giovanni Paladin, and Angelo Vulpiani. "Chaotic Dynamical Systems." In Springer Series in Solid-State Sciences, 43–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84942-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chirikov, Boris V. "Chaotic Quantum Systems." In Mathematical Physics X, 34–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77303-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eubank, Stephen G., and Farmer J. Doyne. "Modeling Chaotic Systems." In Introduction to Nonlinear Physics, 152–75. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2238-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suykens, Johan, Mustak Yalçın, and Joos Vandewalle. "Chaotic Systems Synchronization." In Chaos Control, 117–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44986-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kato, Hisao. "Chaotic Continua in Chaotic Dynamical Systems." In Topological Dynamics and Topological Data Analysis, 85–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0174-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Chaotický systém"

1

Hammel, Stephen, and P. W. Bo Hammer. "System identification in experimental data." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rasmussen, K. O. "Nonlinear localization in a disordered system." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salarieh, Hassan, and Aria Alasty. "Chaos Synchronization in a Class of Chaotic Systems Using Kalman Filter and Feedback Linearization Methods." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95214.

Full text
Abstract:
In this paper a combination of Kalman filter and feedback linearization methods is used to present a controller-identifier system for synchronizing two different chaotic systems. The drive system has some unknown parameters which are supposed to have linear form within its dynamic equation. An identifier based on Kalman filter approach is designed to estimate the unknown parameters of the drive system, and simultaneously a feedback linearizing controller is used to synchronize the chaotic behavior of the response system with the drive chaotic system. The method proposed in this paper is applied to the Lure’ and the Genesio dynamic systems as the drive and response chaotic systems. The results show the high performance of the method to identify and synchronize two different chaotic systems with unknown parameters and in presence of noise.
APA, Harvard, Vancouver, ISO, and other styles
4

Brindley, John, and Tomasz Kapitaniak. "Enhanced predictability in chaotic geophysical systems." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.50999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vavriv, D. M. "Chaotic dynamics of weakly nonlinear systems." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brac̆ic̆, Maja. "Characteristic frequencies of the human blood distribution system." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Janson, Natalie B., and Vadim S. Anishchenko. "Modeling the dynamical systems on experimental data." In Chaotic, fractal, and nonlinear signal processing. AIP, 1996. http://dx.doi.org/10.1063/1.51006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bailley, Mike. "Modeling and Imaging Mechanical Chaos." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84394.

Full text
Abstract:
The word “chaotic system” [Peitgen92] describes a system whose outputs are very sensitive to its initial conditions. Because of their inherent complex nature, chaotic systems are difficult to visualize and understand. This paper describes the visualization of a mechanical chaotic system — a magnetic pendulum. The program uses dynamics modeling and imaging, so that a user can experiment with different configurations and then visualize how that configuration responds to all input conditions. The result shows interesting patterns and insights into the mechanical system itself. This same technique would be applicable to visualizing many other chaotic systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Arrayás, M. "A phase transition in a system driven by coloured noise." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lading, Brian. "Chaotic synchronization in a system of two coupled β-cells." In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302387.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Chaotický systém"

1

Sussman, Gerald J., and Jack Wisdom. Chaotic Evolution of the Solar System. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada260055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jen, E., M. Alber, R. Camassa, W. Choi, J. Crutchfield, D. Holm, G. Kovacic, and J. Marsden. Applied mathematics of chaotic systems. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/257451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Hua O., and Eyad H. Abed. Bifurcation Control of Chaotic Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada454958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abarbanel, H. D. Topics in Pattern Formation and Chaotic Systems. Fort Belvoir, VA: Defense Technical Information Center, May 1993. http://dx.doi.org/10.21236/ada265922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CARNEGIE-MELLON UNIV PITTSBURGH PA. Non-Linear Dynamics and Chaotic Motions in Feedback Controlled Elastic System. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada208628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bryant, P. H. Studies of nonlinear and chaotic phenomena in solid state systems. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/5708439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grebogi, C., and J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5955609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cuomo, Kevin M., Alan V. Oppenheim, and Steven H. Isabelle. Spread Spectrum Modulation and Signal Masking Using Synchronized Chaotic Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1992. http://dx.doi.org/10.21236/ada459567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grebogi, C., and J. A. Yorke. The study of effects of small perturbations on chaotic systems. Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6214490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narducci, L. M. Instabilities and Chaotic Behavior of Active and Passive Laser Systems. Fort Belvoir, VA: Defense Technical Information Center, March 1985. http://dx.doi.org/10.21236/ada153366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography