Academic literature on the topic 'Channel tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Channel tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Channel tracking"
Kao, Yang-Ta, Hsiau-Wen Lin, and Dai-Yi Qiu. "Implementation of Offline Consumer Behavior Tracking." International Journal of Pattern Recognition and Artificial Intelligence 35, no. 09 (May 4, 2021): 2150028. http://dx.doi.org/10.1142/s0218001421500282.
Full textKohli, Amit Kumar, Amrita Rai, and Meher Krishna Patel. "Variable Forgetting Factor LS Algorithm for Polynomial Channel Model." ISRN Signal Processing 2011 (December 30, 2011): 1–4. http://dx.doi.org/10.5402/2011/915259.
Full textLi, Yongzhi, Cheng Tao, Yapeng Li, Liu Liu, and Tao Zhou. "Investigation of Sphere Decoder and Channel Tracking Algorithms for Media-Based Modulation over Time-Selective Channels." Wireless Communications and Mobile Computing 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/2509824.
Full textVollmer, Mario, Swen Zaremba, Pierre Mertiny, and Klaus Drechsler. "Edge Race-Tracking during Film-Sealed Compression Resin Transfer Molding." Journal of Composites Science 5, no. 8 (July 21, 2021): 195. http://dx.doi.org/10.3390/jcs5080195.
Full textYu, Jiyong, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christopher W. Fletcher. "Speculative taint tracking (STT)." Communications of the ACM 64, no. 12 (December 2021): 105–12. http://dx.doi.org/10.1145/3491201.
Full textYANG, QINGHAI, and KYUNG SUP KWAK. "PILOT-AIDED MULTIUSER CHANNEL ESTIMATION AND TRACKING IN MIMO-OFDM SYSTEMS." Journal of Circuits, Systems and Computers 16, no. 03 (June 2007): 319–35. http://dx.doi.org/10.1142/s0218126607003691.
Full textDahiya, Suresh, and Arun Kumar Singh. "Channel estimation and channel tracking for correlated block-fading channels in massive MIMO systems." Digital Communications and Networks 4, no. 2 (April 2018): 138–47. http://dx.doi.org/10.1016/j.dcan.2017.07.006.
Full textPham, Phuong Thi Thu, and Tomohisa Wada. "Effective Scheme of Channel Tracking and Estimation for Mobile WiMAX DL-PUSC System." Journal of Computer Systems, Networks, and Communications 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/806279.
Full textSiddiq, Abdulrahman Ikram. "Variable Length Cyclic Prefix OFDM using Multipath Delay Tracking." Tikrit Journal of Engineering Sciences 18, no. 2 (June 30, 2011): 12–21. http://dx.doi.org/10.25130/tjes.18.2.02.
Full textBecker, Johannes K., David Li, and David Starobinski. "Tracking Anonymized Bluetooth Devices." Proceedings on Privacy Enhancing Technologies 2019, no. 3 (July 1, 2019): 50–65. http://dx.doi.org/10.2478/popets-2019-0036.
Full textDissertations / Theses on the topic "Channel tracking"
Mohanty, Nirode. "Phase Tracking Error in a Fading Channel." International Foundation for Telemetering, 1987. http://hdl.handle.net/10150/615322.
Full textThe phase tracking error of the reception of a QPSK signal transmitted in a severe fading environment is derived. The phase estimate derived from the phase lock loop (PLL) will be used by a binary phase shift keying (BPSK) receiver for the recovery of the data. The resultant probability of bit error is analyzed, and is shoen to be significantly improved when the phase of the transmitted signal is tracked by a PLL separately and utilized in the coherent detection.
Kho, Yau Hee. "MIMO Receiver Structures with Integrated Channel Estimation and Tracking." Thesis, University of Canterbury. Electrical and Computer Engineering, 2008. http://hdl.handle.net/10092/1264.
Full textMongol, Bayarpurev, Takaya Yamazato, and Masaaki Katayama. "Channel Estimation and Tracking Schemes for the Pulse-Shaping OFDM Systems." IEEE, 2009. http://hdl.handle.net/2237/13975.
Full textTu, Chao-Cheng. "Subspace-based blind channel estimation and tracking for MIMO-OFDM systems." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94926.
Full textLe multiplexage par répartition en fréquences orthogonales (orthogonal frequency division multiplexing, soit OFDM) à entrées et à sorties multiples (multiple-input multiple-output, soit MIMO) est maintenant généralement considéré comme une technologie à préconiser pour les nouveaux systèmes sans fil et ceux des générations ultérieures. Le MIMO-OFDM vise à augmenter la limite de capacité Shannon en combinant l'utilisation d'antennes multiples et la modulation orthogonale multiporteuse. Bien que la possibilité d'atteindre cette limite soit possible grâce à l'invention de techniques d'encodage et de décodage atteignant la capacité, en réalité, cette perspective d'avenir se base en grande partie sur l'existence et l'utilisation de techniques d'estimation de voie avancées. Pour faciliter l'estimation de voie rapide et fiable dans les systèmes MIMO-OFDM, on songe habituellement à l'insertion de symboles pilotes; cependant, la capacité de la voie est grandement réduite par leur insertion. L'utilisation d'estimation de voie aveugle fiable et à convergence rapide pour les MIMO-OFDM semble donc être une solution attrayante pour les futurs systèmes sans fil. À cette fin, l'estimation de voie aveugle basée sur des statistiques de deuxième ordre, au lieu des statistiques d'ordre supérieur, est généralement considérée comme une candidate acceptable. Parmi les approches aveugles basées sur les statistiques de deuxième ordre, l'estimation basée dans le sous-espace est attrayante, puisque des estimations fiables peuvent souvent être obtenues de façon simple en optimisant une fonction de coût quadratique. Néanmoins, la performance des estimateurs de voie aveugles basés dans le sous-espace peut être gravement dégradée dans des conditions instationnaires. Ce problème peut habituellement rendre la performance globalement insatisfaisante, surtout dans les systèmes MIMO-OFDM avec un nombre de sous-porteuses élevé. Afin de compen
David, Radu Alin. "Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication Systems." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/229.
Full textAtapattu, Lakmali Nadisha Kumari. "Channel tracking in SDMA-based multi-user MIMO-OFDM communications systems." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/65272/1/Lakmali_Atapattu_Thesis.pdf.
Full textGupte, Abhishek. "A Method for Tracking the Accuracy of Channel Estimates in MIMO Receivers." International Foundation for Telemetering, 2009. http://hdl.handle.net/10150/605996.
Full textMultiple input multiple output communication systems offer significant advantages, but only if the receiver has an accurate estimate of the channel state information (CSI). To obtain a CSI estimate, the transmitter must stop sending data, and instead send a training sequence. To maximize throughput, the time spent sending training data should be minimized. This paper describes a method which allows the receiver to track the accuracy of its CSI estimate, so that it can request new training data only when necessary.
Sung-hoon, Jang, Han Sung-hee, and Kim Heung-bum. "Auto-tracking antenna pattern effects on multipath channel model at test range." International Foundation for Telemetering, 2001. http://hdl.handle.net/10150/607672.
Full textTelemetry propagation channel is modeled to predict PCM/FM telemetry receiving signal level at APG(Anheung Proving Ground), ADD(Agency for Defense Development). Channel model is composed of direct wave and reflected wave in sea surface, so-called 2-ray model. Our 2-ray model includes transmitting antenna radiation pattern, auto-tracking antenna radiation pattern, sea surface reflection coefficient and phase depending on incident angle. Vertical and horizontal polarized receiving signal strength is obtained from pre-calculated flight trajectory of transmitter. Calculated results are compared with measured data in real flight test. 2-ray channel model can predict almost identical receiving signal level and calculate starting point of multi-path fading effect. Using these results, receiving system can be moved to more proper position before flight test.
Champion, James. "A 3-CHANNEL MONOPULSE TRACKING RECEIVER SYSTEM USING COMMERCIAL OFF-THE-SHELF EQUIPMENT." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/607375.
Full textThree-channel monopulse tracking receiver systems are commonly used for high performance tracking of satellites, missiles, or aircraft to maximize the reception of data. Typically, the receiver in such systems are custom designed for their end purpose. This results in a high cost to cover the development, service, and support of a highly specialized piece of equipment. This paper covers the requirements and performance of a 3-channel monopulse tracking receiver assembled from commercial-off-the-shelf (COTS) equipment. Such a system provides an option for designing or upgrading tracking stations with the lower cost, larger support base, and greater system configuration choices that are available with COTS equipment.
Hayman, Rebecca. "A DSP Algorithm for Multi-Channel Maximum Power Point Tracking in Photovoltaic Systems." Honors in the Major Thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/719.
Full textBachelors
Engineering and Computer Science
Electrical Engineering
Books on the topic "Channel tracking"
Hawes, Alison. Landscape detective: Tracking changes in your surroundings. St. Catharines, Ont: Crabtree Pub. Co., 2011.
Find full textRacherla, Naresh Kumar. Logging and tracking file changes on LAN. Oxford: Oxford Brookes University, 2003.
Find full textTracking discourses: Politics, identity and social change. Lund: Nordic Academic Press, 2011.
Find full textService, United States Forest. Watershed condition framework: A framework for assessing and tracking changes to watershed condition. Washington, D.C: United States Department of Agriculture, Forest Service, 2011.
Find full textWhat America lost: Decades that made a difference : tracking attitude changes through handwriting. Bloomington, IN: AuthorHouse, 2009.
Find full textKahn, James A. Tracking the new economy: Using growth theory to detect changes in trend productivity. [New York, N.Y.]: Federal Reserve Bank of New York, 2003.
Find full textDavey, Judith A. Tracking social change in New Zealand: From birth to death IV. Wellington [N.Z.]: Institute of Policy Studies, 1998.
Find full textTracking effective indigenous adaptation strategies on impacts of climate variability on food security and health of subsistence farmers in Tanzania. Nairobi, Kenya: African Technology Policy Studies Network, 2011.
Find full textAfrican Technology Policy Studies Network, ed. Tracking effective indigenous adaptation strategies on impacts of climate variability on food security and health of subsistence farmers in Tanzania. Nairobi, Kenya: African Technology Policy Studies Network, 2011.
Find full textNias building up hope tracking the future: A study on social and cultural change. Jakarta: Yayasan Tanggul Bencana Indonesia, 2007.
Find full textBook chapters on the topic "Channel tracking"
Che, Manqiang, Runling Wang, Yan Lu, Yan Li, Hui Zhi, and Changzhen Xiong. "Channel Pruning for Visual Tracking." In Lecture Notes in Computer Science, 70–82. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11009-3_3.
Full textReynolds, R. S. "A BWR Fuel Channel Tracking System." In Artificial Intelligence and Other Innovative Computer Applications in the Nuclear Industry, 617–23. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1009-9_75.
Full textDanelljan, Martin, Gustav Häger, Fahad Shahbaz Khan, and Michael Felsberg. "Coloring Channel Representations for Visual Tracking." In Image Analysis, 117–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19665-7_10.
Full textPedrosa, Pedro, Rui Dinis, Daniel Castanheira, Adão Silva, and Atílio Gameiro. "Channel Tracking and Equalization for UAV Communications." In Integration of Unmanned Aerial Vehicles in Wireless Communication and Networks, 1–26. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-03880-8_1.
Full textSong, Yanwu, Shaochuan Wu, Wenbin Zhang, and Huafeng Zhang. "Millimeter Wave Massive MIMO Channel Estimation and Tracking." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 57–69. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22968-9_6.
Full textGalassi, Alfredo R., Giuseppe Vadalà, Rocco Giunta, Davide Diana, and Giuseppina Novo. "Channel Tracking Guidewire and Technique for Retrograde Approach." In Current Trend and Techniques of Percutaneous Coronary Intervention for Chronic Total Occlusion, 71–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3069-2_7.
Full textMartin, Rainer, and Israel Cohen. "Single-Channel Speech Presence Probability Estimation and Noise Tracking." In Audio Source Separation and Speech Enhancement, 87–106. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781119279860.ch6.
Full textXu, Jianqiang, and Yao Lu. "Robust Visual Tracking Based on Multi-channel Compressive Features." In MultiMedia Modeling, 341–52. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51811-4_28.
Full textZhang, Zhen, Chao Wang, and Xiqun Lu. "An Adaptive Feature Channel Weighting Scheme for Correlation Tracking." In Lecture Notes in Computer Science, 168–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30508-6_14.
Full textMohamed, Ehab Mahmoud, Osamu Muta, and Hiroshi Furukawa. "Decision Directed Channel Tracking for MIMO-Constant Envelope Modulation." In Communications in Computer and Information Science, 619–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21984-9_51.
Full textConference papers on the topic "Channel tracking"
Prasad, Ranjitha, and K. Giridhar. "Robust Channel Tracking in Fast Fading MIMO channels." In IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference. IEEE, 2008. http://dx.doi.org/10.1109/glocom.2008.ecp.830.
Full textHuang, S. H., T. C. Yang, and Chen-Fen Huang. "Subspace channel tracking for correlated underwater acoustic communication channels." In the Seventh ACM International Conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2398936.2398969.
Full textKarami, Ebrahim, and Markku Juntti. "Joint ML Channel Tracking and Decoding for MIMO Channels." In 2007 41st Annual Conference on Information Sciences and Systems. IEEE, 2007. http://dx.doi.org/10.1109/ciss.2007.4298359.
Full textKazemi, Parham, Hanan Al-Tous, Christoph Studer, and Olav Tirkkonen. "Channel Charting Assisted Beam Tracking." In 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring). IEEE, 2022. http://dx.doi.org/10.1109/vtc2022-spring54318.2022.9860709.
Full textAbuturab, Muhammad Rafiq, and Ayman Alfalou. "Coherent superposition based single-channel color image encryption using gamma distribution and biometric phase keys." In Pattern Recognition and Tracking XXXII, edited by Mohammad S. Alam. SPIE, 2021. http://dx.doi.org/10.1117/12.2586814.
Full textLee, Dajung, Janarbek Matai, Brad Weals, and Ryan Kastner. "High throughput channel tracking for JTRS wireless channel emulation." In 2014 24th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 2014. http://dx.doi.org/10.1109/fpl.2014.6927410.
Full textBourdoux, A., H. Cappelle, and A. Dejonghe. "Channel Tracking for Fast Time-Varying Channels in IEEE802.11p Systems." In 2011 IEEE Global Communications Conference (GLOBECOM 2011). IEEE, 2011. http://dx.doi.org/10.1109/glocom.2011.6134024.
Full textWang, Xiaoyuan, Wei Li, Yanping liu, and Yunzhe chen. "Training-based Adaptive Channel Tracking for Correlated Underwater Acoustic Channels." In WUWNET'19: International Conference on Underwater Networks & Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3366486.3366512.
Full textAngelosante, Daniele, Ezio Biglieri, and Marco Lops. "Multipath Channel Tracking in OFDM Systems." In 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2007. http://dx.doi.org/10.1109/pimrc.2007.4394478.
Full textYan, Zhen-ya, Bao-yu Zheng, and Jing-wu Cui. "Blind channel tracking in cooperative MIMO." In 2007 International Symposium on Intelligent Signal Processing and Communication Systems. IEEE, 2007. http://dx.doi.org/10.1109/ispacs.2007.4445948.
Full textReports on the topic "Channel tracking"
Murphy, D. P., R. E. Pechacek, D. P. Taggart, and R. A. Meger. Density Channel Tracking Studies on Pulserad. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada232649.
Full textZissman, M. A., IV Seward, and D. C. Two-Talker Pitch Tracking for Co-Channel Talker Interference Suppression. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada253418.
Full textZhou, Q., and Y. Morton. Precise GPS Signal Tracking in Interference and Multipath Environment Using a Multi-Channel Software Receiver. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada559186.
Full textTryggvason, Gretar, Igor Bolotnov, Jun Fang, and Jiacai Lu. Verification of bubble tracking method and DNS examinations of single- and two-phase turbulent channel flows. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1409272.
Full textResearch Institute (IFPRI), International Food Policy. Food policy indicators: Tracking change. Washington, DC: International Food Policy Research Institute, 2018. http://dx.doi.org/10.2499/9780896292987_annex.
Full textResearch Institute (IFPRI), International Food Policy. Food policy indicators: Tracking change. Washington, DC: International Food Policy Research Institute, 2020. http://dx.doi.org/10.2499/9780896293670_08.
Full textAraujo, E. G., D. R. Karuppiah, Y. Yang, R. A. Grupen, P. A. Deegan, B. S. Lerner, E. M. Riseman, and Z. Zhu. Software Mode Changes for Continuous Motion Tracking. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada438801.
Full textResearch Institute (IFPRI), International Food Policy. Food policy indicators: Tracking change: Global Hunger Index (GHI). Washington, DC: International Food Policy Research Institute, 2018. http://dx.doi.org/10.2499/1024320720.
Full textResearch Institute (IFPRI), International Food Policy. Food policy indicators: Tracking change: Agricultural Total Factor Productivity TFP. Washington, DC: International Food Policy Research Institute, 2018. http://dx.doi.org/10.2499/1024320073.
Full textResearch Institute (IFPRI), International Food Policy. Food policy indicators: Tracking change: Food Policy Research Capacity Indicators FPRCI. Washington, DC: International Food Policy Research Institute, 2018. http://dx.doi.org/10.2499/1024320472.
Full text