Journal articles on the topic 'Chalcopyrite compounds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Chalcopyrite compounds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kumari, Jyoti, Shalini Tomar, Sukhendra Sukhendra, Banwari Lal Choudharya, Upasana Rani, and Ajay Singh Verma. "Fundamental Physical Properties of LiInS2 and LiInSe2 Chalcopyrite Structured Solids." 3, no. 3 (September 28, 2021): 62–69. http://dx.doi.org/10.26565/2312-4334-2021-3-09.
Full textKhan, Karina, Kamal N. Sharma, Amit Soni, and Jagrati Sahariya. "First principle study of optical and electronic response of Ca-based novel chalcopyrite compounds." Physica Scripta 98, no. 3 (February 15, 2023): 035821. http://dx.doi.org/10.1088/1402-4896/acb8ee.
Full textDietrich, M., A. Burchard, D. Degering, M. Deicher, J. Kortus, R. Magerle, A. Möller, V. Samokhvalov, S. Unterricker, and R. Vianden. "Quadrupole Interaction in Ternary Chalcopyrite Semiconductors: Experiments and Theory." Zeitschrift für Naturforschung A 55, no. 1-2 (February 1, 2000): 256–60. http://dx.doi.org/10.1515/zna-2000-1-245.
Full textYalikun, Alimujiang, Ming-Hsien Lee, and Mamatrishat Mamat. "Theoretical investigation on the promotion of second harmonic generation from chalcopyrite family AIGaS2 to AIIGa2S4." RSC Advances 9, no. 71 (2019): 41861–67. http://dx.doi.org/10.1039/c9ra09109b.
Full textBairamov, B. H., V. Yu Rud', and Yu V. Rud'. "Properties of Dopants in ZnGeP2, CdGeAs2, AgGaS2 and AgGaSe2." MRS Bulletin 23, no. 7 (July 1998): 41–44. http://dx.doi.org/10.1557/s0883769400029080.
Full textVijayalakshmi, D., and G. Kalpana. "First principle calculations on structural, electronic, and magnetic properties of CdMAs2 (M = Sc, Ti, V) chalcopyrites." Canadian Journal of Physics 95, no. 11 (November 2017): 1031–36. http://dx.doi.org/10.1139/cjp-2016-0364.
Full textChandra, S., Anita Sinha, and V. Kumar. "Electronic and elastic properties of AIIB2IIIC4VI defect-chalcopyrite semiconductors." International Journal of Modern Physics B 33, no. 28 (November 10, 2019): 1950340. http://dx.doi.org/10.1142/s0217979219503405.
Full textValeri-Gil, M. L., and C. Rincón. "Thermal conductivity of ternary chalcopyrite compounds." Materials Letters 17, no. 1-2 (July 1993): 59–62. http://dx.doi.org/10.1016/0167-577x(93)90148-q.
Full textGrechenkov, Jurij, Aleksejs Gopejenko, Dmitry Bocharov, Inta Isakoviča, Anatoli I. Popov, Mikhail G. Brik, and Sergei Piskunov. "Ab Initio Modeling of CuGa1−xInxS2, CuGaS2(1−x)Se2x and Ag1−xCuxGaS2 Chalcopyrite Solid Solutions for Photovoltaic Applications." Energies 16, no. 12 (June 20, 2023): 4823. http://dx.doi.org/10.3390/en16124823.
Full textAikawa, Kosei, Mayumi Ito, Atsuhiro Kusano, Ilhwan Park, Tatsuya Oki, Tatsuru Takahashi, Hisatoshi Furuya, and Naoki Hiroyoshi. "Flotation of Seafloor Massive Sulfide Ores: Combination of Surface Cleaning and Deactivation of Lead-Activated Sphalerite to Improve the Separation Efficiency of Chalcopyrite and Sphalerite." Metals 11, no. 2 (February 2, 2021): 253. http://dx.doi.org/10.3390/met11020253.
Full textNagaoka, Akira, Yoshitaro Nose, Hideto Miyake, Michael A. Scarpulla, and Kenji Yoshino. "Solution growth of chalcopyrite compounds single crystal." Renewable Energy 79 (July 2015): 127–30. http://dx.doi.org/10.1016/j.renene.2014.10.015.
Full textHammer, Maria S., Nils Neugebohrn, Julia Riediger, Janet Neerken, Jörg Ohland, Ingo Riedel, Oliver Kiowski, and Wiltraud Wischmann. "Defect-related electronic metastabilities in chalcopyrite compounds." Physica B: Condensed Matter 439 (April 2014): 60–63. http://dx.doi.org/10.1016/j.physb.2013.11.026.
Full textWahab, L. A., M. B. El-Den, A. A. Farrag, S. A. Fayek, and K. H. Marzouk. "Electrical and optical properties of chalcopyrite compounds." Journal of Physics and Chemistry of Solids 70, no. 3-4 (March 2009): 604–8. http://dx.doi.org/10.1016/j.jpcs.2008.12.018.
Full textSharma, Shekhar, Kug Sun Hong, and Robert F. Speyer. "Glass formation in chalcopyrite structured semiconducting compounds." Journal of Materials Science Letters 8, no. 8 (August 1989): 950–54. http://dx.doi.org/10.1007/bf01729956.
Full textYoodee, Kajornyod, and John C. Woolley. "Valence band structure of some chalcopyrite compounds." Journal of Physics and Chemistry of Solids 47, no. 9 (January 1986): 863–67. http://dx.doi.org/10.1016/0022-3697(86)90057-0.
Full textNeumann, H. "Interatomic force constants in AIIBIVCV2 chalcopyrite compounds." Crystal Research and Technology 24, no. 6 (June 1989): 619–24. http://dx.doi.org/10.1002/crat.2170240612.
Full textLiljeqvist, Maria, Olena I. Rzhepishevska, and Mark Dopson. "Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans." Applied and Environmental Microbiology 79, no. 3 (November 26, 2012): 951–57. http://dx.doi.org/10.1128/aem.02989-12.
Full textMeenakshi, S. "Pressure induced phase transition in defect chalcopyrite compounds." Journal of Physics: Conference Series 377 (July 30, 2012): 012024. http://dx.doi.org/10.1088/1742-6596/377/1/012024.
Full textBasalaev, Yu M. "New Diamond-Like Compounds with Anti-chalcopyrite Structure." Russian Physics Journal 57, no. 4 (August 2014): 558–60. http://dx.doi.org/10.1007/s11182-014-0275-x.
Full textSommer, H., A. Weiss, H. Neumann, and R. D. Tomlinson. "Comparative Photoemission Study of the CuInC2VI Chalcopyrite Compounds." Crystal Research and Technology 25, no. 10 (October 1990): 1183–87. http://dx.doi.org/10.1002/crat.2170251013.
Full textNeumann, H. "Bulk Modulus-Volume Relationship in Ternary Chalcopyrite Compounds." physica status solidi (a) 96, no. 2 (August 16, 1986): K121—K125. http://dx.doi.org/10.1002/pssa.2210960245.
Full textMatukhin V. L., Gavrilenko A. N., Schmidt E. V., Orlinskii S. B., Sevastianov I. G., Garkavyi S. O., Navratil J., and Novak P. "Application of radio spectroscopy methods for the study of thermoelectrics with a chalcopyrite structure." Semiconductors 56, no. 1 (2022): 27. http://dx.doi.org/10.21883/sc.2022.01.53012.23.
Full textMatukhin V. L., Gavrilenko A. N., Schmidt E. V., Orlinskii S. B., Sevastianov I. G., Garkavyi S. O., Navratil J., and Novak P. "Application of radio spectroscopy methods for the study of thermoelectrics with a chalcopyrite structure." Semiconductors 56, no. 1 (2022): 21. http://dx.doi.org/10.21883/sc.2022.01.53698.23.
Full textAsokamani, R., R. Mercy Amirthakumari, and G. Pari. "A Theoretical Study on the Pressure Dependence of the Band Gap in ${\rm A^{I}B^{III}C^{VI}_2}$ Compounds." International Journal of Modern Physics B 11, no. 16 (June 30, 1997): 1959–67. http://dx.doi.org/10.1142/s0217979297001027.
Full textLathwal, Sanjay, Aditi Gaur, Karina Khan, Sunil Kumar Goyal, Amit Soni, and Jagrati Sahariya. "DFT Investigations of BeSnN2 Chalcopyrite Compound for Optoelectronic Applications." IOP Conference Series: Materials Science and Engineering 1225, no. 1 (February 1, 2022): 012020. http://dx.doi.org/10.1088/1757-899x/1225/1/012020.
Full textUrsaki, V. V., I. I. Burlakov, I. M. Tiginyanu, Y. S. Raptis, E. Anastassakis, and A. Anedda. "Phase transitions in defect chalcopyrite compounds under hydrostatic pressure." Physical Review B 59, no. 1 (January 1, 1999): 257–68. http://dx.doi.org/10.1103/physrevb.59.257.
Full textZeier, Wolfgang G., Hong Zhu, Zachary M. Gibbs, Gerbrand Ceder, Wolfgang Tremel, and G. Jeffrey Snyder. "Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4." J. Mater. Chem. C 2, no. 47 (October 27, 2014): 10189–94. http://dx.doi.org/10.1039/c4tc02218a.
Full textPark, H. L. "Order-disorder behaviour in chalcopyrite compounds (AIBIIIC 2 VI )." Journal of Materials Science Letters 4, no. 5 (May 1985): 545–46. http://dx.doi.org/10.1007/bf00720028.
Full textNeumann, H. "Trends in the microhardness of the CuBIIIC2VI chalcopyrite compounds." Crystal Research and Technology 24, no. 8 (August 1989): 815–21. http://dx.doi.org/10.1002/crat.2170240817.
Full textMatukhin, V. L., A. N. Gavrilenko, E. V. Schmidt, I. G. Sevastyanov, F. R. Sirazutdinov, J. Navratil, and P. Novak. "A 63,65Cu NMR Study of Cu1–XPdxFeS2 Chalcopyrite Compounds." Journal of Applied Spectroscopy 87, no. 5 (November 2020): 825–29. http://dx.doi.org/10.1007/s10812-020-01077-0.
Full textMárquez, R., and C. Rincón. "On the Dielectric Constants of AIBIIIC2VI Chalcopyrite Semiconductor Compounds." physica status solidi (b) 191, no. 1 (September 1, 1995): 115–19. http://dx.doi.org/10.1002/pssb.2221910112.
Full textMöller, W., G. Kühn, and H. Neumann. "Heat capacity and lattice anharmonicity in CdBIVC2V chalcopyrite compounds." Crystal Research and Technology 22, no. 4 (April 1987): 533–38. http://dx.doi.org/10.1002/crat.2170220416.
Full textSchorr, Susan. "The role of point defects in multinary chalcogenide compound semiconductors." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C230. http://dx.doi.org/10.1107/s2053273314097691.
Full textKumari, J., C. Singh, R. Agrawal, B. L. Choudhary, and A. S. Verma. "Investigations of physical properties of lithium-based chalcopyrite semiconductors: non-toxic materials for photovoltaic applications." Journal of Optoelectronic and Biomedical Materials 15, no. 1 (January 2023): 11–21. http://dx.doi.org/10.15251/jobm.2023.151.11.
Full textSharma, Shikha, Karina Khan, Mamta Soni, Ushma Ahuja, Amit Soni, and Jagrati Sahariya. "Investigation of electronic and optical properties of alkali atom doped CuInSe2 using density functional theory." Physica Scripta 98, no. 8 (July 17, 2023): 085927. http://dx.doi.org/10.1088/1402-4896/ace489.
Full textTyuterev, V. G. "Electron short-wave phonon scattering in crystals with chalcopyrite lattice." Canadian Journal of Physics 98, no. 8 (August 2020): 818–23. http://dx.doi.org/10.1139/cjp-2019-0523.
Full textRinco´n, Carlos. "Order-disorder transition in ternary chalcopyrite compounds and pseudobinary alloys." Physical Review B 45, no. 22 (June 1, 1992): 12716–19. http://dx.doi.org/10.1103/physrevb.45.12716.
Full textReshak, Ali Hussain, and S. Auluck. "Electronic properties of chalcopyrite CuAlX2(X=S,Se,Te) compounds." Solid State Communications 145, no. 11-12 (March 2008): 571–76. http://dx.doi.org/10.1016/j.ssc.2007.12.034.
Full textRincón, C., and M. L. Valeri-Gil. "Microhardness, Debye temperature and bond ionicity of ternary chalcopyrite compounds." Materials Letters 28, no. 4-6 (October 1996): 297–300. http://dx.doi.org/10.1016/0167-577x(96)00073-0.
Full textHara, K., T. Shinozawa, J. Yoshino, and H. Kukimoto. "MOVPE growth and characterization of I-III-VI2 Chalcopyrite compounds." Journal of Crystal Growth 93, no. 1-4 (1988): 771–75. http://dx.doi.org/10.1016/0022-0248(88)90618-5.
Full textPelosi, C., O. De Melo, and O. Ori. "On the role of order-disorder phenomena in chalcopyrite compounds." Materials Letters 8, no. 1-2 (April 1989): 17–20. http://dx.doi.org/10.1016/0167-577x(89)90088-8.
Full textYamada, Akimasa, Paul Fons, Shigeru Niki, Yunosuke Makita, and Hiroyuki Oyanagi. "Translational Phase Domains in the Cation Sublattice of Chalcopyrite Compounds." Japanese Journal of Applied Physics 35, Part 2, No. 7A (July 1, 1996): L843—L845. http://dx.doi.org/10.1143/jjap.35.l843.
Full textZhang, Jiawei, Ruiheng Liu, Nian Cheng, Yubo Zhang, Jihui Yang, Ctirad Uher, Xun Shi, Lidong Chen, and Wenqing Zhang. "High-Performance Pseudocubic Thermoelectric Materials from Non-cubic Chalcopyrite Compounds." Advanced Materials 26, no. 23 (April 1, 2014): 3848–53. http://dx.doi.org/10.1002/adma.201400058.
Full textHergert, Frank, Stefan Jost, Rainer Hock, Michael Purwins, and Jörg Palm. "Predicted reaction paths for the formation of multinary chalcopyrite compounds." physica status solidi (a) 203, no. 11 (September 2006): 2615–23. http://dx.doi.org/10.1002/pssa.200669561.
Full textOhrendorf, F. W., and H. Haeuseler. "Lattice Dynamics of Chalcopyrite Type Compounds. Part I. Vibrational Frequencies." Crystal Research and Technology 34, no. 3 (March 1999): 339–49. http://dx.doi.org/10.1002/(sici)1521-4079(199903)34:3<339::aid-crat339>3.0.co;2-e.
Full textCichy, Bartłomiej, Dominika Wawrzynczyk, Marek Samoc, and Wiesław Stręk. "Electronic properties and third-order optical nonlinearities in tetragonal chalcopyrite AgInS2, AgInS2/ZnS and cubic spinel AgIn5S8, AgIn5S8/ZnS quantum dots." Journal of Materials Chemistry C 5, no. 1 (2017): 149–58. http://dx.doi.org/10.1039/c6tc03854a.
Full textNie, Zhen Yuan, Hong Chang Liu, Jin Lan Xia, Zi Wei Yin, Li Zhu Liu, Jian Jun Song, Hong Rui Zhu, Yun Yang, Xiang Jun Zhen, and Guan Zhou Qiu. "Differential Surface Properties and Iron Distribution of Acidianus manzaensis YN25 Grown on Four Different Energy Substrates." Advanced Materials Research 1130 (November 2015): 463–67. http://dx.doi.org/10.4028/www.scientific.net/amr.1130.463.
Full textWada, Takahiro. "CuInSe2 and related I–III–VI2 chalcopyrite compounds for photovoltaic application." Japanese Journal of Applied Physics 60, no. 8 (July 22, 2021): 080101. http://dx.doi.org/10.35848/1347-4065/ac08ac.
Full textMudryi, A. V., I. A. Victorov, V. F. Gremenok, A. I. Patuk, I. A. Shakin, and M. V. Yakushev. "Optical spectroscopy of chalcopyrite compounds CuInS2, CuInSe2 and their solid solutions." Thin Solid Films 431-432 (May 2003): 197–99. http://dx.doi.org/10.1016/s0040-6090(03)00210-4.
Full textHergert, F., S. Jost, R. Hock, M. Purwins, and J. Palm. "Formation reactions of chalcopyrite compounds and the role of sodium doping." Thin Solid Films 515, no. 15 (May 2007): 5843–47. http://dx.doi.org/10.1016/j.tsf.2006.12.037.
Full text