To see the other types of publications on this topic, follow the link: Chalcogenide Waveguides.

Journal articles on the topic 'Chalcogenide Waveguides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chalcogenide Waveguides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Наливайко, В. И., and М. А. Пономарева. "Оптические решеточно-волноводные сенсоры на основе халькогенидных стекол." Журнал технической физики 126, no. 4 (2019): 523. http://dx.doi.org/10.21883/os.2019.04.47523.182-18.

Full text
Abstract:
AbstractThe operating principle of the optical grating waveguide sensors is considered. The waveguide sensitivity and detection limit of sensors with waveguides of oxide and chalcogenide glasses are compared. The advantages of the grating waveguide sensors with waveguides with a high contrast of refraction indices are shown. The conditions of obtaining a maximum waveguide sensitivity of the grating waveguide sensors are formulated.
APA, Harvard, Vancouver, ISO, and other styles
2

Mushahid, Husain, and Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication." Advanced Materials Research 679 (April 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Full text
Abstract:
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li, et al. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics." Photonics 9, no. 2 (February 7, 2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Full text
Abstract:
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
APA, Harvard, Vancouver, ISO, and other styles
4

Chauvet, Mathieu, Gil Fanjoux, Kien Phan Huy, Virginie Nazabal, Frédéric Charpentier, Thierry Billeton, Georges Boudebs, Michel Cathelinaud, and Simon-Pierre Gorza. "Kerr spatial solitons in chalcogenide waveguides." Optics Letters 34, no. 12 (June 5, 2009): 1804. http://dx.doi.org/10.1364/ol.34.001804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dyatlov, Mikhail, Philippe Delaye, Laurent Vivien, and Nicolas Dubreuil. "Bi-directional spectral broadening measurements for accurate characterisation of nonlinear hybrid integrated waveguides." EPJ Web of Conferences 266 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202226601007.

Full text
Abstract:
The emerging interest in integrated optical technologies raises the need for precise characterisation techniques for waveguides presenting nonlinearities. Here we propose a non-interferometric measurement to accurately characterise the Kerr contribution in hybrid waveguides and illustrate its performances using SiN waveguides with a GSS chalcogenide top-layer. The sensitivity of our technique in terms of nonlinear phase reaches 10 mrad and its accuracy makes possible to extract the nonlinear contributions from the top-layer.
APA, Harvard, Vancouver, ISO, and other styles
6

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite, et al. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing." Sensors 9, no. 9 (September 15, 2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Ying, Perry Ping Shum, Feng Luan, and Ming Tang. "Raman-Assisted Wavelength Conversion in Chalcogenide Waveguides." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (March 2012): 646–53. http://dx.doi.org/10.1109/jstqe.2011.2128856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides." Journal of the American Ceramic Society 88, no. 9 (September 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zha, Yunlai, Pao Tai Lin, Lionel Kimerling, Anu Agarwal, and Craig B. Arnold. "Inverted-Rib Chalcogenide Waveguides by Solution Process." ACS Photonics 1, no. 3 (February 21, 2014): 153–57. http://dx.doi.org/10.1021/ph400107s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Andriesh, A. M. "Properties of chalcogenide glasses for optical waveguides." Journal of Non-Crystalline Solids 77-78 (December 1985): 1219–28. http://dx.doi.org/10.1016/0022-3093(85)90878-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Petkova, Tamara, Vania Ilcheva, P. Ilchev, and P. Petkov. "Ge-Chalcogenide Glasses – Properties and Application as Optical Material." Key Engineering Materials 538 (January 2013): 316–19. http://dx.doi.org/10.4028/www.scientific.net/kem.538.316.

Full text
Abstract:
The great interest toward chalcogenide materials is due to the simple technology of preparation in bulk forms and thin films; good thermal and mechanical properties; transparency and photo-sensibility in the IR spectral range. These advantages determine the possibilities for potential application of these materials like optical storage media, memory devices, optical elements (lenses, waveguides, gratings, etc). The idea of present study is to trace the impact of gallium or indium as metal introduction on the behaviors of the glasses from germanium - chalcogenide system.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Lin, Anuradha M. Agarwal, Lionel C. Kimerling, and Jurgen Michel. "Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared." Nanophotonics 3, no. 4-5 (August 1, 2014): 247–68. http://dx.doi.org/10.1515/nanoph-2013-0020.

Full text
Abstract:
AbstractGroup IV photonics hold great potential for nonlinear applications in the near- and mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We discuss the material properties of silicon, silicon nitride, silicon nano-crystals, silica, germanium, and chalcogenide glasses including arsenic sulfide and arsenic selenide to use them for waveguide core, cladding and slot layer. The waveguides are analyzed and improved for four spectrum ranges from visible, near-IR to mid-IR, with material dispersion given by Sellmeier equations and wavelength-dependent nonlinear Kerr index taken into account. Broadband dispersion engineering is emphasized as a critical approach to achieving on-chip octave-spanning nonlinear functions. These include octave-wide supercontinuum generation, ultrashort pulse compression to sub-cycle level, and mode-locked Kerr frequency comb generation based on few-cycle cavity solitons, which are potentially useful for next-generation optical communications, signal processing, imaging and sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
13

Baker, Neil J., Ho W. Lee, Ian C. Littler, C. Martijn de Sterke, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden, and Barry Luther-Davies. "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides." Optics Express 14, no. 20 (2006): 9451. http://dx.doi.org/10.1364/oe.14.009451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lee, Michael W., Christian Grillet, Cameron L. C. Smith, David J. Moss, Benjamin J. Eggleton, Darren Freeman, Barry Luther-Davies, et al. "Photosensitive post tuning of chalcogenide photonic crystal waveguides." Optics Express 15, no. 3 (2007): 1277. http://dx.doi.org/10.1364/oe.15.001277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mirnaziry, Sayyed Reza, Christian Wolff, M. J. Steel, Benjamin J. Eggleton, and Christopher G. Poulton. "Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides." Optics Express 24, no. 5 (February 25, 2016): 4786. http://dx.doi.org/10.1364/oe.24.004786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gai, Xin, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla, and Barry Luther-Davies. "Progress in optical waveguides fabricated from chalcogenide glasses." Optics Express 18, no. 25 (December 6, 2010): 26635. http://dx.doi.org/10.1364/oe.18.026635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Finsterbusch, K., N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden, and B. Luther-Davis. "Long-period gratings in chalcogenide (As2S3) rib waveguides." Electronics Letters 42, no. 19 (2006): 1094. http://dx.doi.org/10.1049/el:20062257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Canciamilla, Antonio, Francesco Morichetti, Stefano Grillanda, Philippe Velha, Marc Sorel, Vivek Singh, Anu Agarwal, Lionel C. Kimerling, and Andrea Melloni. "Photo-induced trimming of chalcogenide-assisted silicon waveguides." Optics Express 20, no. 14 (June 27, 2012): 15807. http://dx.doi.org/10.1364/oe.20.015807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Serna, Samuel, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu, and Laurent Vivien. "Nonlinear optical properties of integrated GeSbS chalcogenide waveguides." Photonics Research 6, no. 5 (April 13, 2018): B37. http://dx.doi.org/10.1364/prj.6.000b37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Yanbing, Jochen Schröder, Chad Husko, Simon Lefrancois, Duk-Yong Choi, Steve Madden, Barry Luther-Davies, and Benjamin J. Eggleton. "Pump-degenerate phase-sensitive amplification in chalcogenide waveguides." Journal of the Optical Society of America B 31, no. 4 (March 12, 2014): 780. http://dx.doi.org/10.1364/josab.31.000780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ta’eed, Vahid G., Mehrdad Shokooh-Saremi, Libin Fu, David J. Moss, Martin Rochette, Ian C. M. Littler, Benjamin J. Eggleton, Yinlan Ruan, and Barry Luther-Davies. "Integrated all-optical pulse regenerator in chalcogenide waveguides." Optics Letters 30, no. 21 (November 1, 2005): 2900. http://dx.doi.org/10.1364/ol.30.002900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov, and Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing." Fibers 11, no. 6 (June 16, 2023): 54. http://dx.doi.org/10.3390/fib11060054.

Full text
Abstract:
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
APA, Harvard, Vancouver, ISO, and other styles
23

Robert, Bruno, Rémi Pélissier, Raphaël Escalier, Ahmad Mehdi, Csilla Gergely, and Caroline Vigreux. "Strategies for selective functionalization of amorphous chalcogenide rib waveguides." Optical Materials 127 (May 2022): 112327. http://dx.doi.org/10.1016/j.optmat.2022.112327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Song, Jingcui, Xiaojie Guo, Wentao Peng, Jingshun Pan, Lei Wan, Tianhua Feng, Siqing Zeng, et al. "Stimulated Brillouin Scattering in Low-Loss Ge25Sb10S65 Chalcogenide Waveguides." Journal of Lightwave Technology 39, no. 15 (August 2021): 5048–53. http://dx.doi.org/10.1109/jlt.2021.3078722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong, and R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides." Optics Letters 27, no. 5 (March 1, 2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gmachl, C., H. Y. Hwang, R. Paiella, D. L. Sivco, J. N. Baillargeon, F. Capasso, and A. Y. Cho. "Quantum cascade lasers with low-loss chalcogenide lateral waveguides." IEEE Photonics Technology Letters 13, no. 3 (2001): 182–84. http://dx.doi.org/10.1109/68.914314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang, and Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass." Optics Letters 39, no. 12 (June 10, 2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer." IEEE Journal of Selected Topics in Quantum Electronics 11, no. 2 (March 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Suzuki, Keijiro, Yohei Hamachi, and Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides." Optics Express 17, no. 25 (November 23, 2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Xiong, C., L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton. "Quantum-correlated photon pair generation in chalcogenide As_2S_3 waveguides." Optics Express 18, no. 15 (July 16, 2010): 16206. http://dx.doi.org/10.1364/oe.18.016206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Taleb Bendiab, Anis, Malick Bathily, Caroline Vigreux, Raphaël Escalier, Annie Pradel, Raphaël K. Kribich, and Ryad Bendoula. "Chalcogenide rib waveguides for the characterization of spray deposits." Optical Materials 86 (December 2018): 298–303. http://dx.doi.org/10.1016/j.optmat.2018.10.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rivero, C., P. Sharek, W. Li, K. Richardson, A. Schulte, G. Braunstein, R. Irwin, V. Hamel, K. Turcotte, and E. Knystautas. "Structural analysis of chalcogenide waveguides using Rutherford backscattering spectroscopy." Thin Solid Films 425, no. 1-2 (February 2003): 59–67. http://dx.doi.org/10.1016/s0040-6090(02)01139-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tremblay, Jean-Étienne, Marcin Malinowski, Kathleen A. Richardson, Sasan Fathpour, and Ming C. Wu. "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides." Optics Express 26, no. 16 (August 3, 2018): 21358. http://dx.doi.org/10.1364/oe.26.021358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors." Journal of Non-Crystalline Solids 352, no. 6-7 (May 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jean, Philippe, Alexandre Douaud, Vincent Michaud-Belleau, Sandra Helena Messaddeq, Jérôme Genest, Sophie LaRochelle, Younès Messaddeq, and Wei Shi. "Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides." Optics Letters 45, no. 10 (May 13, 2020): 2830. http://dx.doi.org/10.1364/ol.392879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yan, Kunlun, Khu Vu, and Steve Madden. "Internal gain in Er-doped As_2S_3 chalcogenide planar waveguides." Optics Letters 40, no. 5 (February 24, 2015): 796. http://dx.doi.org/10.1364/ol.40.000796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yan, Kunlun, Khu Vu, Rongping Wang, and Steve Madden. "Greater than 50% inversion in Erbium doped Chalcogenide waveguides." Optics Express 24, no. 20 (September 28, 2016): 23304. http://dx.doi.org/10.1364/oe.24.023304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jakobs, Sebastian, Alexander Petrov, and Manfred Eich. "Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides." Journal of the Optical Society of America B 31, no. 2 (January 3, 2014): 178. http://dx.doi.org/10.1364/josab.31.000178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Godbout, Nicolas, Xavier Daxhelet, Suzanne Lacroix, and Alain Villeneuve. "Methodology for the optimization of nonlinear properties of waveguides: application to chalcogenide channel waveguides." Journal of the Optical Society of America B 17, no. 4 (April 1, 2000): 561. http://dx.doi.org/10.1364/josab.17.000561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cao, Tun, Zhongming Wang, and Libang Mao. "Reconfigurable label-free shape-sieving of submicron particles in paired chalcogenide waveguides." Nanoscale 14, no. 6 (2022): 2465–74. http://dx.doi.org/10.1039/d1nr05798g.

Full text
Abstract:
A paired Sb2Se3 waveguides were demonstrated to sort polystyrene spherical and rod-shaped submicron particles. Reconfigurable shape-sieving of particles was achieved by reversibly transiting Sb2Se3 state.
APA, Harvard, Vancouver, ISO, and other styles
41

Кришеник, В. М. "Relaxation processes in film waveguides based on chalcogenide vitreous semiconductors." Scientific Herald of Uzhhorod University.Series Physics 9 (July 15, 2001): 110–20. http://dx.doi.org/10.24144/2415-8038.2001.9.110-120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq, and Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding." Optics Express 29, no. 13 (June 17, 2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Herzog, Amir, Benjamin Hadad, Victor Lyubin, Matvey Klebanov, Avraham Reiner, Avishay Shamir, and Amiel A. Ishaaya. "Chalcogenide waveguides on a sapphire substrate for mid-IR applications." Optics Letters 39, no. 8 (April 15, 2014): 2522. http://dx.doi.org/10.1364/ol.39.002522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ta'eed, V. G., M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Yinlan Ruan, and B. Luther-Davies. "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 3 (May 2006): 360–70. http://dx.doi.org/10.1109/jstqe.2006.872727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Suzuki, Keijiro, and Toshihiko Baba. "Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides." Optics Express 18, no. 25 (December 6, 2010): 26675. http://dx.doi.org/10.1364/oe.18.026675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shokooh-Saremi, M., V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies. "Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides." Electronics Letters 41, no. 13 (2005): 738. http://dx.doi.org/10.1049/el:20050981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

McMillen, Ben, Botao Zhang, and Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass." MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl, and Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides." Optics Express 18, no. 15 (July 7, 2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Han, Ting, Steve Madden, Douglas Bulla, and Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography." Optics Express 18, no. 18 (August 26, 2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation." Applied Surface Science 208-209 (March 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography