Academic literature on the topic 'Chalcogenide Waveguides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chalcogenide Waveguides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Chalcogenide Waveguides"
Наливайко, В. И., and М. А. Пономарева. "Оптические решеточно-волноводные сенсоры на основе халькогенидных стекол." Журнал технической физики 126, no. 4 (2019): 523. http://dx.doi.org/10.21883/os.2019.04.47523.182-18.
Full textMushahid, Husain, and Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication." Advanced Materials Research 679 (April 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.
Full textLuo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li, et al. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics." Photonics 9, no. 2 (February 7, 2022): 94. http://dx.doi.org/10.3390/photonics9020094.
Full textChauvet, Mathieu, Gil Fanjoux, Kien Phan Huy, Virginie Nazabal, Frédéric Charpentier, Thierry Billeton, Georges Boudebs, Michel Cathelinaud, and Simon-Pierre Gorza. "Kerr spatial solitons in chalcogenide waveguides." Optics Letters 34, no. 12 (June 5, 2009): 1804. http://dx.doi.org/10.1364/ol.34.001804.
Full textDyatlov, Mikhail, Philippe Delaye, Laurent Vivien, and Nicolas Dubreuil. "Bi-directional spectral broadening measurements for accurate characterisation of nonlinear hybrid integrated waveguides." EPJ Web of Conferences 266 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202226601007.
Full textAnne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite, et al. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing." Sensors 9, no. 9 (September 15, 2009): 7398–411. http://dx.doi.org/10.3390/s90907398.
Full textHuang, Ying, Perry Ping Shum, Feng Luan, and Ming Tang. "Raman-Assisted Wavelength Conversion in Chalcogenide Waveguides." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 2 (March 2012): 646–53. http://dx.doi.org/10.1109/jstqe.2011.2128856.
Full textCurry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides." Journal of the American Ceramic Society 88, no. 9 (September 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.
Full textZha, Yunlai, Pao Tai Lin, Lionel Kimerling, Anu Agarwal, and Craig B. Arnold. "Inverted-Rib Chalcogenide Waveguides by Solution Process." ACS Photonics 1, no. 3 (February 21, 2014): 153–57. http://dx.doi.org/10.1021/ph400107s.
Full textAndriesh, A. M. "Properties of chalcogenide glasses for optical waveguides." Journal of Non-Crystalline Solids 77-78 (December 1985): 1219–28. http://dx.doi.org/10.1016/0022-3093(85)90878-6.
Full textDissertations / Theses on the topic "Chalcogenide Waveguides"
Spurny, Marcel. "Photonic crystal waveguides in chalcogenide glasses." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2111.
Full textBuettner, Thomas Frank Sebastian. "Brillouin Frequency Comb Generation in Chalcogenide Waveguides." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14447.
Full textKarim, Mohammad. "Design and optimization of chalcogenide waveguides for supercontinuum generation." Thesis, City University London, 2015. http://openaccess.city.ac.uk/13592/.
Full textLian, Zheng Gang. "Fabrication of rib waveguides and optical fibres in chalcogenide glasses." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13750/.
Full textLopez, Cedric. "EVALUATION OF THE PHOTO-INDUCED STRUCTURAL MECHANISMS IN CHALCOGENIDE." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3088.
Full textPh.D.
Other
Optics and Photonics
Optics
Pope, April. "Near-infrared raman spectroscopy of chalcogenide waveguides and application to evanescent wave spectroscopy of bio-assemblies." Honors in the Major Thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/346.
Full textBachelors
Arts and Sciences
Physics
Almeida, Juliana Mara Pinto de. "Nanoparticles in oxide and chalcogenide glasses: optical nonlinearities and waveguide fabrication by femtosecond laser pulses." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-10112015-102237/.
Full textO laser de femtossegundos tem sido uma ferramenta essencial tanto para a óptica não-linear quanto para o processamento de materiais na escala micrométrica, na qual os vidros calcogenetos e óxidos de metais pesados têm recebido atenção especial, não apenas pelas suas elevadas não-linearidades ópticas de terceira ordem, mas também devido à sua transparência até o infravermelho. Embora seja esperado que nanopartículas metálicas melhorem as propriedades ópticas dos vidros, não existe investigações experimentais suficientes sobre a sua influência no índice de refração não linear (n2) e no coeficiente de absorção linear (β), sobretudo no regime de femtossegundos. Com base nos interesses científicos e tecnológicos de vidros altamente não-lineares, o objetivo deste trabalho foi aplicar pulsos laser de femtossegundos em dois domínios principais: (i) na campo da ciência fundamental, para estudar o efeito de nanopartículas metálicas nas propriedades ópticas não lineares de terceira ordem destes materiais; e (ii) no domínio da ciência aplicada, visando o desenvolvimento de dispositivos fotônicos, realizado pelo fabricação de guias de onda tridimensionais contendo nanopartículas metálicas. Este objetivo foi alcançado através das técnicas de varredura-z e microfabricação com laser de femtossegundos, que proporcionaram a caracterização óptica não-linear e o desenvolvimento de guias de onda, respectivamente. Primeiramente, foram investigadas as propriedades ópticas não-lineares de terceira ordem do vidro GeO2-Bi2O3 contendo nanopartículas de ouro, as quais promoveram saturação da absorção na região da banda de ressonância de plásmon. Por outro lado, essas nanopartículas não afetaram o n2, que se manteve constante no intervalo de comprimento de onda 480 - 1500 nm. As mesmas características foram investigadas para uma matriz Pb2P2O7-WO3 dopada com nanopartículas de cobre. Em contraste com os vidros dopados com ouro, estas amostras apresentaram um ligeiro aumento do índice de refração não linear quando a energia de excitação está próxima da banda de ressonância de plásmon. Observou-se ainda que a matriz Pb2P2O7-WO3 é ideal para a obtenção de nanopartículas de prata através da microfabricação com laser de femtossegundos. Similarmente, nanopartículas de cobre foram produzidas em vidro de borosilicato usando somente uma varredura a laser. A explicação para a formação de nanopartículas metálicas é abordada nesta tese, bem como sua aplicação em guias de onda. Deste modo, demonstrou-se a funcionalidade de guias de onda ópticos compostos por nanopartículas de Cu0 e Ag0. Ainda com base nos interesses tecnológicos em vidros dopados com nanopartículas, demonstrou-se uma síntese de nanopartículas de sulfeto de prata em vidro calcogeneto usando o processamento de única etapa, realizada em parceria com pesquisadores da Universidade de Princeton. Os materiais investigados neste trabalho de doutorado são de grande importância para aplicações em fotônica, em que a síntese de nanopartículas, a fabricação de guias de onda e a caracterização óptica não-linear foram realizadas.
Kuriakose, Tintu. "Demonstration of the spatial self-trapping of a plasmonic wave." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCD029/document.
Full textThis dissertation contributes to the research area of nonlinear plasmonics an emerging field of optics. The main goal is to demonstrate experimentally the spatial self-trapping of a plasmonic wave.The study begins with the fabrication and the characterization of slab Ge-Sb-Se chalcogenide waveguides. A technique based on the formation of spatial solitons is developed to estimate their Kerr nonlinearities. Linear and nonlinear optical properties of the waveguides are studied at the wavelengths of 1200 nm and 1550 nm.Plasmonic structures are then designed to propagate hybrid plasmon-soliton waves with moderate propagation losses. They are constituted of the previous waveguides covered with nanolayers of silica and gold.Optical characterizations reveal a giant self-focusing undergone by the wave that propagates inside the plasmonic structure. The behavior is present only for TM polarized light as expected from theory. Detailed experimental results of this plasmon enhanced nonlinear self-trapping corresponding to different configurations are presented. Simulations confirm the obtained experimental results.This fundamental demonstration confirms the concept of plasmon-assisted self-focusing while revealing a very efficient nonlinear effect. This opens new perspectives for the development of integrated nonlinear photonic devices as well as new physical phenomena
Hoffman, Galen Brandt. "Direct Write of Chalcogenide Glass Integrated Optics Using Electron Beams." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322494007.
Full textRivers, Paul Edmund. "Pulsed laser deposition of chalcogenide glass materials for potential waveguide laser applications." Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/15493/.
Full textBook chapters on the topic "Chalcogenide Waveguides"
Shemesh, K., Yu Kaganovskii, and M. Rosenbluh. "Fabrication of Channel Waveguides in Chalcogenide Glass Films by a Focused Laser Beam." In Planar Waveguides and other Confined Geometries, 111–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1179-0_5.
Full textBledt, Carlos M., Daniel V. Kopp, and James A. Harrington. "Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Silver Coated Hollow Glass Waveguides (HGWS) for Infrared Spectroscopy and Laser Delivery." In Ceramic Transactions Series, 1–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118511350.ch1.
Full textSingh, Satya Pratap, Jasleen Kaur, Keshav Samrat Modi, Umesh Tiwari, and Ravindra Kumar Sinha. "Tunable Optical Parametric Amplification in Chalcogenide Slot Waveguide." In Springer Proceedings in Physics, 207–10. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_46.
Full textHitaishi, V., K. Jayakrishnan, and Nandam Ashok. "Design and Analysis of Chalcogenide GeAsSe Waveguide for Dispersion Properties." In Springer Proceedings in Materials, 87–96. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1616-0_9.
Full textSharma, Rohan, Surleen Kaur, Pooja Chauhan, and Ajeet Kumar. "Numerical Modeling and Analysis of GAP-Se Chalcogenide Based Rib Waveguide for Nonlinear Applications." In Springer Proceedings in Physics, 129–36. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7691-8_12.
Full textBoussard-Plédel, C. "Chalcogenide waveguides for infrared sensing." In Chalcogenide Glasses, 381–410. Elsevier, 2014. http://dx.doi.org/10.1533/9780857093561.2.381.
Full textTodorov, Rossen, Jordanka Tasseva, and Tsvetanka Babev. "Thin Chalcogenide Films for Photonic Applications." In Photonic Crystals - Innovative Systems, Lasers and Waveguides. InTech, 2012. http://dx.doi.org/10.5772/32143.
Full textPant, R., and B. J. Eggleton. "Chalcogenide glass waveguide devices for all-optical signal processing." In Chalcogenide Glasses, 438–70. Elsevier, 2014. http://dx.doi.org/10.1533/9780857093561.2.438.
Full textVu, Khu, and Steve Madden. "Fabrication of Passive and Active Tellurite Thin Films and Waveguides for Integrated Optics." In Amorphous Chalcogenides, 271–303. Pan Stanford Publishing, 2014. http://dx.doi.org/10.1201/b15599-9.
Full textConference papers on the topic "Chalcogenide Waveguides"
Viens, J. F., A. Villeneuve, T. Galstian, M. A. Duguay, K. A. Cerqua-Richardson, and S. Schwartz. "Photoinduced integrated optical devices in sulfide chalcogenide glasses." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jmh.2.
Full textCroitoru, N., E. Goldenberg, D. Mendleovic, S, Ruschin, and N. Shamir. "Infrared Chalcogenide Tube Waveguides." In O-E/LASE'86 Symp (January 1986, Los Angeles), edited by Paul Klocek. SPIE, 1986. http://dx.doi.org/10.1117/12.961107.
Full textMadsen, Christi K., Mehmet Solmaz, and Robert Atkins. "High-index-contrast chalcogenide waveguides." In Integrated Optoelectronic Devices 2008, edited by Louay A. Eldada and El-Hang Lee. SPIE, 2008. http://dx.doi.org/10.1117/12.768583.
Full textMadsen, C., W. Tan, X. Xia, W. Snider, and I. Zhou. "Hybrid Chalcogenide/Lithium Niobate Waveguides." In Frontiers in Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/fio.2010.ftup5.
Full textAhmad, Raja, Chams Baker, and Martin Rochette. "Demonstration of chalcogenide optical parametric oscillator." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/bgpp.2012.jw4d.3.
Full textChoi, Duk-Yong. "Chalcogenide Planar Waveguides for Infrared Applications." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.w4c.1.
Full textLezal, D., B. Petrovska, G. Kuncova, M. Pospisilova, and J. Gotz. "Chalcogenide - Halide Glasses For Optical Waveguides." In Hague International Symposium, edited by Jacques Lucas. SPIE, 1987. http://dx.doi.org/10.1117/12.941147.
Full textKien Phan Huy, Mathieu Chauvet, Gil Fanjoux, Virginie Nazabal, Frederic Charpentier, Thierry Billeton, Georges Boudebs, Michel Cathelinaud, and Simon-Pierre Gorza. "Kerr spatial solitons in chalcogenide waveguides." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5191488.
Full textMadden, Steve, Duk Choi, Andrei Rode, and Barry Luther-Davies. "Low loss etched Ge33As12Se55 chalcogenide waveguides." In 2006 Australian Conference on Optical Fibre Technology (ACOFT). IEEE, 2006. http://dx.doi.org/10.1109/acoft.2006.4519311.
Full textZha, Yunlai, and Craig B. Arnold. "Solution-processed 3D Chalcogenide Glass Waveguides." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jwa54.
Full textReports on the topic "Chalcogenide Waveguides"
Burger, A., and S. A. Payne. Growth of thin film for waveguide laser: Development of chromium doped Zn chalcogenides as efficient, widely tunable mid-infrared lasers. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/666135.
Full text