Journal articles on the topic 'Chalcogenide Glass Waveguide'

To see the other types of publications on this topic, follow the link: Chalcogenide Glass Waveguide.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Chalcogenide Glass Waveguide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mushahid, Husain, and Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication." Advanced Materials Research 679 (April 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Full text
Abstract:
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
APA, Harvard, Vancouver, ISO, and other styles
2

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li, et al. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics." Photonics 9, no. 2 (February 7, 2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Full text
Abstract:
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen Yu, 陈昱, 沈祥 Shen Xiang, 徐铁峰 Xu Tiefeng, 张巍 Zhang Wei, 陈芬 Chen Fen, 李军 Li Jun, 宋宝安 Song Bao′an, 戴世勋 Dai Shixun, 聂秋华 Nie Qiuhua, and 王占山 Wang Zhanshan. "Research Progress of Chalcogenide Glass Waveguide." Laser & Optoelectronics Progress 48, no. 11 (2011): 111301. http://dx.doi.org/10.3788/lop48.111301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Balan, V., C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. I. Alonso, and M. Garriga. "Chalcogenide glass-based rib ARROW waveguide." Journal of Non-Crystalline Solids 326-327 (October 2003): 455–59. http://dx.doi.org/10.1016/s0022-3093(03)00452-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mairaj, A. K., A. Fu, H. N. Rutt, and D. W. Hewak. "Optical channel waveguide in chalcogenide (Ga:La:S) glass." Electronics Letters 37, no. 19 (2001): 1160. http://dx.doi.org/10.1049/el:20010803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lin, Hongtao, Chul Soo Kim, Lan Li, Mijin Kim, William W. Bewley, Charles D. Merritt, Chadwick L. Canedy, et al. "Monolithic chalcogenide glass waveguide integrated interband cascaded laser." Optical Materials Express 11, no. 9 (August 5, 2021): 2869. http://dx.doi.org/10.1364/ome.435061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, Lixiao, Yao Zhou, Jianxing Zhao, Hongfei Song, and Jianhong Zhou. "Effect of Ag Doping on Photobleaching in Ge28Sb12Se60 Chalcogenide Films." Coatings 12, no. 11 (November 17, 2022): 1760. http://dx.doi.org/10.3390/coatings12111760.

Full text
Abstract:
Chalcogenide glass is an optical material with excellent mid-infrared and far-infrared penetration properties. The silver-doped Ge28Sb12Se60 (GSS) chalcogenide films in this paper were deposited on a glass substrate by the co-evaporation technique. A continuous laser with different power outputs was then used to scan the glass material at a constant speed, and the photobleaching (PB) effects were observed using optical microscopy. The results show that silver doping can speed up the PB of GSS film only under high-power laser irradiation. While silver doping helps to speed up the PB effect, it also increases the risk of film damage. This study is beneficial in the development of embedded optical waveguide structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Deckoff-Jones, Skylar, Hongtao Lin, Derek Kita, Hanyu Zheng, Duanhui Li, Wei Zhang, and Juejun Hu. "Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors." Journal of Optics 20, no. 4 (February 27, 2018): 044004. http://dx.doi.org/10.1088/2040-8986/aaadc5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang Xianwang, 王贤旺, 张巍 Zhang Wei, 章亮 Zhang Liang, 李军建 Li Junjian, and 徐铁峰 Xu Tiefeng. "Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide." Laser & Optoelectronics Progress 50, no. 12 (2013): 120001. http://dx.doi.org/10.3788/lop50.120001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Han, Z., V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li, et al. "On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors." Applied Physics Letters 109, no. 7 (August 15, 2016): 071111. http://dx.doi.org/10.1063/1.4961532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Han, Z., P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal, and D. T. H. Tan. "On-chip mid-infrared gas detection using chalcogenide glass waveguide." Applied Physics Letters 108, no. 14 (April 4, 2016): 141106. http://dx.doi.org/10.1063/1.4945667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Psaila, Nicholas D., Robert R. Thomson, Henry T. Bookey, Shaoxiong Shen, Nicola Chiodo, Roberto Osellame, Giulio Cerullo, Animesh Jha, and Ajoy K. Kar. "Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide." Optics Express 15, no. 24 (2007): 15776. http://dx.doi.org/10.1364/oe.15.015776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cai, Dawei, Yu Xie, Xin Guo, Pan Wang, and Limin Tong. "Chalcogenide Glass Microfibers for Mid-Infrared Optics." Photonics 8, no. 11 (November 5, 2021): 497. http://dx.doi.org/10.3390/photonics8110497.

Full text
Abstract:
With diameters close to the wavelength of the guided light, optical microfibers (MFs) can guide light with tight optical confinement, strong evanescent fields and manageable waveguide dispersion and have been widely investigated in the past decades for a variety of applications. Compared to silica MFs, which are ideal for working in visible and near-infrared regions, chalcogenide glass (ChG) MFs are promising for mid-infrared (mid-IR) optics, owing to their easy fabrication, broad-band transparency and high nonlinearity, and have been attracting increasing attention in applications ranging from near-field coupling and molecular sensing to nonlinear optics. Here, we review this emerging field, mainly based on its progress in the last decade. Starting from the high-temperature taper drawing technique for MF fabrication, we introduce basic mid-IR waveguiding properties of typical ChG MFs made of As2S3 and As2Se3. Then, we focus on ChG-MF-based passive optical devices, including optical couplers, resonators and gratings and active and nonlinear applications of ChG MFs for mid-IR Raman lasers, frequency combs and supercontinuum (SC) generation. MF-based spectroscopy and chemical/biological sensors are also introduced. Finally, we conclude the review with a brief summary and an outlook on future challenges and opportunities of ChG MFs.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang, and Yidong Huang. "Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide." Chinese Physics B 25, no. 11 (November 2016): 114211. http://dx.doi.org/10.1088/1674-1056/25/11/114211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yang, X. M., Yaping Zhang, and Ahad Syed. "Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film." Journal of Modern Optics 62, no. 7 (February 23, 2015): 548–55. http://dx.doi.org/10.1080/09500340.2014.992990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ayiriveetil, Arunbabu, G. Sreevidya Varma, Abhishek Chaturvedi, Tamilarasan Sabapathy, Upadrasta Ramamurty, and Sundarrajan Asokan. "Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide." Optical Materials 66 (April 2017): 386–91. http://dx.doi.org/10.1016/j.optmat.2017.02.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Junli, Borong He, Shixun Dai, Jiangfeng Zhu, and Zhiyi Wei. "Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing." IEEE Photonics Technology Letters 27, no. 3 (February 1, 2015): 237–40. http://dx.doi.org/10.1109/lpt.2014.2365619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhai, Yanfen, Chenzhi Yuan, Renduo Qi, Wei Zhang, and Yidong Huang. "Reverse Ridge/Slot Chalcogenide Glass Waveguide With Ultrabroadband Flat and Low Dispersion." IEEE Photonics Journal 7, no. 5 (October 2015): 1–9. http://dx.doi.org/10.1109/jphot.2015.2456062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Alizadeh, Mohammad Reza, and Mahmood Seifouri. "Design and Analysis of a Dispersion-engineered and Highly Nonlinear Rib Waveguide for Generation of Broadband Supercontinuum Spectra." Frequenz 74, no. 3-4 (March 26, 2020): 153–61. http://dx.doi.org/10.1515/freq-2019-0098.

Full text
Abstract:
AbstractIn this paper, a waveguide consisting of a core of As2Se3 chalcogenide glass and the upper and lower claddings of MgF2 with two zero-dispersion wavelengths (ZDW) has been proposed. By optimization of the dimensions of the core and the claddings, their effects on the dispersion curve have been investigated and a suitable structure with a flat dispersion curve, an effective mode area of ​​1.6 μm2 in a pump wavelength of 2.8 μm, and hence, a nonlinear coefficient greater than 34 w−1 m−1 has been obtained. A broadband supercontinuum in a wavelength range of 1.5 μm to 15 μm has been generated by applying an input pulse with duration of 100 fs and a maximum power of 2 kw to this waveguide. Due to the large width of the supercontinuum generated (SCG), the short length of the waveguide (maximum 5 mm), and a low input power, this structure is suitable for use in optical integrated circuits and its various applications.
APA, Harvard, Vancouver, ISO, and other styles
20

Sabapathy, Tamilarasan, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan, and Stephen J. Beecher. "Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass." Optical Materials Express 2, no. 11 (October 5, 2012): 1556. http://dx.doi.org/10.1364/ome.2.001556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Qiu, Feng, and Tadashi Narusawa. "Ion-implanted Ti-doped chalcogenide glass waveguide as a candidate for tunable lasers." Journal of the Optical Society of America B 28, no. 6 (May 19, 2011): 1490. http://dx.doi.org/10.1364/josab.28.001490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yu, Yi, Xin Gai, Pan Ma, Duk-Yong Choi, Zhiyong Yang, Rongping Wang, Sukanta Debbarma, Stephen J. Madden, and Barry Luther-Davies. "A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide." Laser & Photonics Reviews 8, no. 5 (May 19, 2014): 792–98. http://dx.doi.org/10.1002/lpor.201400034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang, and Yidong Huang. "High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling." Applied Physics Express 9, no. 5 (March 31, 2016): 052201. http://dx.doi.org/10.7567/apex.9.052201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hu, Juejun, Nathan Carlie, Ning-Ning Feng, Laeticia Petit, Anu Agarwal, Kathleen Richardson, and Lionel Kimerling. "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing." Optics Letters 33, no. 21 (October 24, 2008): 2500. http://dx.doi.org/10.1364/ol.33.002500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shi, Yuxiu, Peipeng Xu, Zenghui Yu, Xiang Shen, and Qiuhua Nie. "Rib chalcogenide glass waveguide with simultaneous dispersion flatting for both transverse electric and magnetic modes." Optik 138 (June 2017): 433–39. http://dx.doi.org/10.1016/j.ijleo.2017.03.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mairaj, Arshad K., Christos Riziotis, Alain M. Chardon, Peter G. R. Smith, David P. Shepherd, and Daniel W. Hewak. "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification." Applied Physics Letters 81, no. 20 (November 11, 2002): 3708–10. http://dx.doi.org/10.1063/1.1520698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

QI Renduo, 齐人铎, 翟彦芬 ZHAI Yanfen, 张巍 ZHANG Wei, and 黄翊东 HUANG Yidong. "热熔融自回流方法制备硫化物玻璃非线性集成光学波导(特邀)." ACTA PHOTONICA SINICA 51, no. 5 (2022): 0551303. http://dx.doi.org/10.3788/gzxb20225105.0551303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Du, Qingyang, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu, and Juejun Hu. "Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide." Photonics Research 6, no. 6 (April 26, 2018): 506. http://dx.doi.org/10.1364/prj.6.000506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lamont, M. R. E., V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies. "Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide." Electronics Letters 43, no. 17 (2007): 945. http://dx.doi.org/10.1049/el:20071470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Yuefeng, Weiwei Chen, Pengjun Wang, Shixun Dai, Jun Li, Yan Li, Qiang Fu, Tingge Dai, Hui Yu, and Jianyi Yang. "Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide." Sensors and Actuators B: Chemical 347 (November 2021): 130466. http://dx.doi.org/10.1016/j.snb.2021.130466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Saini, Than Singh, Umesh Kumar Tiwari, and Ravindra Kumar Sinha. "Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis." Journal of Applied Physics 122, no. 5 (August 7, 2017): 053104. http://dx.doi.org/10.1063/1.4997541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Chen, Zhi, Guande Wang, Xiong Wang, and Quanzhong Zhao. "Moving toward optoelectronic logic circuits for visible light: a chalcogenide glass single-mode single-polarization optical waveguide switch." Applied Optics 56, no. 5 (February 7, 2017): 1405. http://dx.doi.org/10.1364/ao.56.001405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Gonzalez, Guillermo Fernando Camacho, Marcin Malinowski, Amirmahdi Honardoost, and Sasan Fathpour. "Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities." Applied Optics 58, no. 13 (February 15, 2019): D1. http://dx.doi.org/10.1364/ao.58.0000d1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zou, L. E., P. P. He, B. X. Chen, and M. Iso. "Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation." AIP Advances 7, no. 2 (February 2017): 025003. http://dx.doi.org/10.1063/1.4976107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov, and Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing." Fibers 11, no. 6 (June 16, 2023): 54. http://dx.doi.org/10.3390/fib11060054.

Full text
Abstract:
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
APA, Harvard, Vancouver, ISO, and other styles
36

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite, et al. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing." Sensors 9, no. 9 (September 15, 2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak, and J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides." Journal of the American Ceramic Society 88, no. 9 (September 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong, and R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides." Optics Letters 27, no. 5 (March 1, 2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang, and Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass." Optics Letters 39, no. 12 (June 10, 2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer." IEEE Journal of Selected Topics in Quantum Electronics 11, no. 2 (March 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Suzuki, Keijiro, Yohei Hamachi, and Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides." Optics Express 17, no. 25 (November 23, 2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding, and C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors." Journal of Non-Crystalline Solids 352, no. 6-7 (May 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq, and Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding." Optics Express 29, no. 13 (June 17, 2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

McMillen, Ben, Botao Zhang, and Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass." MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl, and Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides." Optics Express 18, no. 15 (July 7, 2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Han, Ting, Steve Madden, Douglas Bulla, and Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography." Optics Express 18, no. 18 (August 26, 2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano, and A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation." Applied Surface Science 208-209 (March 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Almeida, J. M. P., E. C. Barbano, C. B. Arnold, L. Misoguti, and C. R. Mendonça. "Nonlinear optical waveguides in As_2S_3-Ag_2S chalcogenide glass thin films." Optical Materials Express 7, no. 1 (December 6, 2016): 93. http://dx.doi.org/10.1364/ome.7.000093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hughes, Mark A., Weijia Yang, and Daniel W. Hewak. "Spectral broadening in femtosecond laser written waveguides in chalcogenide glass." Journal of the Optical Society of America B 26, no. 7 (June 15, 2009): 1370. http://dx.doi.org/10.1364/josab.26.001370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tsay, Candice, Yunlai Zha, and Craig B. Arnold. "Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides." Optics Express 18, no. 25 (December 6, 2010): 26744. http://dx.doi.org/10.1364/oe.18.026744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography