Academic literature on the topic 'Chain Shuttling Polymerization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Chain Shuttling Polymerization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Chain Shuttling Polymerization"

1

Martins, Roberto, Letícia Quinello, Giuliana Souza, and Maria Marques. "Polymerization of Ethylene with Catalyst Mixture in the Presence of Chain Shuttling Agent." Chemistry & Chemical Technology 6, no. 2 (June 20, 2012): 153–62. http://dx.doi.org/10.23939/chcht06.02.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zintl, Manuela, and Bernhard Rieger. "Novel Olefin Block Copolymers through Chain-Shuttling Polymerization." Angewandte Chemie International Edition 46, no. 3 (January 8, 2007): 333–35. http://dx.doi.org/10.1002/anie.200602889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuhlman, Roger L., and Timothy T. Wenzel. "Investigations of Chain Shuttling Olefin Polymerization Using Deuterium Labeling." Macromolecules 41, no. 12 (June 2008): 4090–94. http://dx.doi.org/10.1021/ma8004313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arriola, D. J. "Catalytic Production of Olefin Block Copolymers via Chain Shuttling Polymerization." Science 312, no. 5774 (May 5, 2006): 714–19. http://dx.doi.org/10.1126/science.1125268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mohammadi, Yousef, Mohammad Saeb, Alexander Penlidis, Esmaiel Jabbari, Florian J. Stadler, Philippe Zinck, and Krzysztof Matyjaszewski. "Intelligent Machine Learning: Tailor-Making Macromolecules." Polymers 11, no. 4 (April 1, 2019): 579. http://dx.doi.org/10.3390/polym11040579.

Full text
Abstract:
Nowadays, polymer reaction engineers seek robust and effective tools to synthesize complex macromolecules with well-defined and desirable microstructural and architectural characteristics. Over the past few decades, several promising approaches, such as controlled living (co)polymerization systems and chain-shuttling reactions have been proposed and widely applied to synthesize rather complex macromolecules with controlled monomer sequences. Despite the unique potential of the newly developed techniques, tailor-making the microstructure of macromolecules by suggesting the most appropriate polymerization recipe still remains a very challenging task. In the current work, two versatile and powerful tools capable of effectively addressing the aforementioned questions have been proposed and successfully put into practice. The two tools are established through the amalgamation of the Kinetic Monte Carlo simulation approach and machine learning techniques. The former, an intelligent modeling tool, is able to model and visualize the intricate inter-relationships of polymerization recipes/conditions (as input variables) and microstructural features of the produced macromolecules (as responses). The latter is capable of precisely predicting optimal copolymerization conditions to simultaneously satisfy all predefined microstructural features. The effectiveness of the proposed intelligent modeling and optimization techniques for solving this extremely important ‘inverse’ engineering problem was successfully examined by investigating the possibility of tailor-making the microstructure of Olefin Block Copolymers via chain-shuttling coordination polymerization.
APA, Harvard, Vancouver, ISO, and other styles
6

Urciuoli, Gaia, Antonio Vittoria, Giovanni Talarico, Davide Luise, Claudio De Rosa, Vincenzo Busico, Roberta Cipullo, Odda Ruiz de Ballesteros, and Finizia Auriemma. "In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization." Macromolecules 54, no. 23 (November 18, 2021): 10891–902. http://dx.doi.org/10.1021/acs.macromol.1c01824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Qinwen, Rong Gao, and Dongbing Liu. "Studies on chain shuttling polymerization reaction of nonbridged half-titanocene and bis(phenoxy-imine) Zr binary catalyst system." Royal Society Open Science 6, no. 4 (April 2019): 182007. http://dx.doi.org/10.1098/rsos.182007.

Full text
Abstract:
In this contribution, olefin block copolymers were produced via chain shuttling polymerization (CSP), using a new combination of catalysts and a chain shuttling agent (CSA) diethylzinc (ZnEt 2 ). The binary catalyst system included nonbridged half-titanocene catalyst, Cp*TiCl 2 (O-2,6- i Pr 2 C 6 H 3 ) (Cat A ) and bis(phenoxy-imine) zirconium, { η 2 -1-[C(H)=NC 6 H 11 ]-2-O-3- t Bu-C 6 H 3 } 2 ZrCl 2 (Cat B ), as well as co-catalyst methylaluminoxane (MAO). In contrast to dual-catalyst system in the absence of CSA, the blocky structure was obtained in the presence of CSA and rationalized from rheological studies. The binary catalyst system could cause the CSP reaction to occur in the presence of CSA ZnEt 2 , which yielded broad distribution ethylene/1-octene copolymers ( M w / M n : 35.86) containing block polymer chains with high M w . The presented dual-catalytic system was applied for the first time in CSP and has a potential to be extended to produce a library of olefin block copolymers that can be used as advanced additives for thermoplastics.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Lei, Haojie Yu, Li Wang, Yusheng Xing, and Bilal Ul Amin. "Advances in the Synthesis of Polyolefin Elastomers with “Chain-walking” Catalysts and Electron Spin Resonance Research of Related Catalytic Systems." Current Organic Chemistry 25, no. 8 (April 28, 2021): 935–49. http://dx.doi.org/10.2174/1385272825666210126100641.

Full text
Abstract:
In recent years, polyolefin elastomers play an increasingly important role in industry. The late transition metal complex catalysts, especially α-diimine Ni(II) and α-diimine Pd(II) complex catalysts, are popular “chain-walking” catalysts. They can prepare polyolefin with various structures, ranging from linear configuration to highly branched configuration. Combining the “chain-walking” characteristic with different polymerization strategies, polyolefins with good elasticity can be obtained. Among them, olefin copolymer is a common way to produce polyolefin elastomers. For instance, strictly defined diblock or triblock copolymers with excellent elastic properties were synthesized by adding ethylene and α-olefin in sequence. As well as the incorporation of polar monomers may lead to some unexpected improvement. Chain shuttling polymerization can generate multiblock copolymers in one pot due to the interaction of the catalysts with chain shuttling agent. Furthermore, when regarding ethylene as the sole feedstock, owing to the “oscillation” of the ligands of the asymmetric catalysts, polymers with stereo-block structures can be generated. Generally, the elasticity of these polyolefins mainly comes from the alternately crystallineamorphous block structures, which is closely related to the characteristic of the catalytic system. To improve performance of the catalysts and develop excellent polyolefin elastomers, research on the catalytic mechanism is of great significance. Electron spin resonance (ESR), as a precise method to detect unpaired electron, can be applied to study transition metal active center. Therefore, the progress on the exploration of the valence and the proposed configuration of catalyst active center in the catalytic process by ESR is also reviewed.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Anguo, Shibiao Zhou, and Qingquan Liu. "A Novel Branched–Hyperbranched Block Polyolefin Produced via Chain Shuttling Polymerization from Ethylene Alone." Polymer-Plastics Technology and Engineering 53, no. 17 (November 14, 2014): 1832–37. http://dx.doi.org/10.1080/03602559.2014.935409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xiao, Anguo, Li Wang, Qingquan Liu, Haojie Yu, Jianjun Wang, Jia Huo, Qiaohua Tan, Jianhua Ding, Wenbing Ding, and Abid Muhammad Amin. "A Novel Linear−Hyperbranched Multiblock Polyethylene Produced from Ethylene Monomer Alone via Chain Walking and Chain Shuttling Polymerization." Macromolecules 42, no. 6 (March 24, 2009): 1834–37. http://dx.doi.org/10.1021/ma802352t.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Chain Shuttling Polymerization"

1

SIDARI, DIEGO. "Cyclolefin copolymers via chain shuttling." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/77608.

Full text
Abstract:
L’introduzione di co- e ter-monomeri nella catena di polietilene, ottenuta con catalizzatori Ziegler-Natta permette di modularne le proprietà fisiche e chimiche come la temperatura di transizione vetrosa (Tg) e di incrementare le proprietà meccaniche e termiche del materiale. In particolare, i copolimeri etilene-norbornene (E-N) ottenuti per sintesi metallocenica hanno alta resistenza termica, elevata resistenza all’azione di solventi, elevate proprietà barriera ai gas e alta trasparenza ottica (I. Tritto, L. Boggioni, D.R. Ferro, Coordination Chemistry Reviews, 250, 212-241, (2006)). Copolimeri ad alto contenuto di norbornene mantengono queste ottime caratteristiche ma sviluppano una componente fragile. Per sopperire a questo svantaggio, si è deciso di esplorare una nuova strategia di sintesi, introdotta nel 2006 dalla Dow Chemical Company (D.J. Arriola, E.M. Carnahan, P.D. Hustad, R.L. Kuhlman, T.T. Wenzel, Science, 312, 714 (2006)), chiamata “Chain Shuttling polymerization” (CSP). CSP permette di ottenere copolimeri con microstruttura multiblocco in cui differenti microstrutture sono legate insieme in una sequenza alternata all’interno della stessa catena polimerica. Il sistema catalitico della CSP è composto da tre componenti fondamentali: due catalizzatori con differente affinità alle unità monomeriche e un trasferitore di catena (CTA) che scambia le catene crescenti da un centro catalitico ad un altro. A questo proposito abbiamo selezionato: i) un catalizzatore con alta affinità al norbornene, ii) un catalizzatore con bassa incorporazione di norbornene, iii) dietilzinco come agente di chain shuttling (CSA) e studiato due diversi sistemi catalitici: i) due zirconoceni con differenti leganti, per valutare l'influenza del legante sulle proprietà finali del polimero; ii) due metalloceni con diverso metallo centrale e gli stessi leganti. L'attivazione del catalizzatore è stata effettuata con dimetilanilinio tetrakis(pentafluorofenil)borato per entrambi i sistemi (M. Bochmann, Organometallics, 29, 4711-4770 (2010)). Tutte le sintesi sono state eseguite in autoclave ad alta pressione (4-19 bar) a diversi rapporti molari N/E pari a 1.3,4.8 e 26.0. Tutti i copolimeri E-N sono stati caratterizzati con 1H e 13C NMR, cromatografia di esclusione (GPC) e analisi termica DSC. Un primo screening è stato effettuato per identificare le migliori condizioni di copolimerizzazione per mantenere la conversione di N inferiore al 15%. Successivamente sono state eseguite sintesi di copolimeri E-N con un singolo metallocene in presenza di dietilzinco a tre diverse concentrazioni di Zn in soluzione per valutare effetto del CSA sulle proprietà finali dei copolimeri. Infine, è stata sintetizzata una serie di copolimeri E-N via CSP con entrambi i sistemi catalitici in presenza di dietilzinco. L'analisi termica dei copolimeri E-N ottenuti tramite CS ha mostrato per tutti i copolimeri un unico evento Tg con valori intermedi tra quelli dei copolimeri ottenuti senza CSA. Inoltre le Tg non sono influenzate dalla concentrazione di Zn in soluzione. Viceversa, i pesi molecolari dei copolimeri E-N ottenuti tramite CS diminuiscono all’aumentare della concentrazione di dietilzinco in soluzione per tutti i catalizzatori selezionati. Sono state ottenute strette distribuzioni dei pesi molecolari (PDI=1,9 – 2,2) mentre i prodotti delle reazioni di terminazione sono presenti in quantità trascurabile. Queste caratteristiche ci permettono di concludere che la polimerizzazione procede tramite il meccanismo CS ed è quindi possibile ottenere copolimeri E-N con struttura multiblocco.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography