To see the other types of publications on this topic, follow the link: (CH3)2NH2Co(HCOO)3.

Journal articles on the topic '(CH3)2NH2Co(HCOO)3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic '(CH3)2NH2Co(HCOO)3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yadav, Ruchika, Diptikanta Swain, H. L. Bhat, and Suja Elizabeth. "Order-disorder phase transition and multiferroic behaviour in a metal organic framework compound (CH3)2NH2Co(HCOO)3." Journal of Applied Physics 119, no. 6 (February 14, 2016): 064103. http://dx.doi.org/10.1063/1.4941544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Zhiying, Hongliang Yu, Xin Shen, Lei Sun, Shumin Yue, and Hao Tang. "Elastic Properties and Energy Loss Related to the Disorder–Order Ferroelectric Transitions in Multiferroic Metal–Organic Frameworks [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3]." Materials 14, no. 11 (June 7, 2021): 3125. http://dx.doi.org/10.3390/ma14113125.

Full text
Abstract:
Elastic properties are important mechanical properties which are dependent on the structure, and the coupling of ferroelasticity with ferroelectricity and ferromagnetism is vital for the development of multiferroic metal–organic frameworks (MOFs). The elastic properties and energy loss related to the disorder–order ferroelectric transition in [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] were investigated using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The DSC curves of [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] exhibited anomalies near 256 K and 264 K, respectively. The DMA results illustrated the minimum in the storage modulus and normalized storage modulus, and the maximum in the loss modulus, normalized loss modulus and loss factor near the ferroelectric transition temperatures of 256 K and 264 K, respectively. Much narrower peaks of loss modulus, normalized loss modulus and loss factor were observed in [(CH3)2NH2][Mg(HCOO)3] with the peak temperature independent of frequency, and the peak height was smaller at a higher frequency, indicating the features of first-order transition. Elastic anomalies and energy loss in [NH4][Mg(HCOO)3] near 256 K are due to the second-order paraelectric to ferroelectric phase transition triggered by the disorder–order transition of the ammonium cations and their displacement within the framework channels, accompanied by the structural phase transition from the non-polar hexagonal P6322 to polar hexagonal P63. Elastic anomalies and energy loss in [(CH3)2NH2][Mg(HCOO)3] near 264 K are due to the first-order paraelectric to ferroelectric phase transitions triggered by the disorder–order transitions of alkylammonium cations located in the framework cavities, accompanied by the structural phase transition from rhombohedral R3¯c to monoclinic Cc. The elastic anomalies in [NH4][Mg(HCOO)3] and [(CH3)2NH2][Mg(HCOO)3] showed strong coupling of ferroelasticity with ferroelectricity.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Haitao, Desheng Pan, Yong Li, Da Li, C. J. Choi, and Zhidong Zhang. "Magnetic transitions in metal-organic frameworks of [(CH3)2NH2]FeII(HCOO)3, [(CH3)2NH2]CoII(HCOO)3 and [(CH3)2NH2]FeIIIFeII(HCOO)6." Journal of Magnetism and Magnetic Materials 493 (January 2020): 165715. http://dx.doi.org/10.1016/j.jmmm.2019.165715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mączka, M., T. Almeida da Silva, W. Paraguassu, and K. Pereira da Silva. "Raman scattering studies of pressure-induced phase transitions in perovskite formates [(CH3)2NH2][Mg(HCOO)3] and [(CH3)2NH2][Cd(HCOO)3]." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 156 (March 2016): 112–17. http://dx.doi.org/10.1016/j.saa.2015.11.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vinod, K., C. S. Deepak, Shilpam Sharma, D. Sornadurai, A. T. Satya, T. R. Ravindran, C. S. Sundar, and A. Bharathi. "Magnetic behavior of the metal organic framework [(CH3)2NH2]Co(HCOO)3." RSC Advances 5, no. 47 (2015): 37818–22. http://dx.doi.org/10.1039/c5ra01417d.

Full text
Abstract:
In this study we examine the phase transitions in single crystals of [(CH3)2NH2]Co(HCOO)3, using magnetization and specific heat measurements as a function of temperature and magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
6

Mączka, Mirosław, Anna Gągor, Bogusław Macalik, Adam Pikul, Maciej Ptak, and Jerzy Hanuza. "Order–Disorder Transition and Weak Ferromagnetism in the Perovskite Metal Formate Frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M = Ni, Mn)." Inorganic Chemistry 53, no. 1 (December 9, 2013): 457–67. http://dx.doi.org/10.1021/ic402425n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scatena, Rebecca, Roger D. Johnson, Pascal Manuel, and Piero Macchi. "Formate-mediated magnetic superexchange in the model hybrid perovskite [(CH3)2NH2]Cu(HCOO)3." Journal of Materials Chemistry C 8, no. 37 (2020): 12840–47. http://dx.doi.org/10.1039/d0tc03913f.

Full text
Abstract:
The hybrid-perovskite [(CH3)2NH2]Cu(HCOO)3 shows antiferromagnetic and ferromagnetic interactions, as predicted by the GKA rules, proven applicable by experimental charge-density analysis.
APA, Harvard, Vancouver, ISO, and other styles
8

Peksa, Paulina, Justyna Trzmiel, Maciej Ptak, Aneta Ciupa-Litwa, and Adam Sieradzki. "Metal-Formate Framework Stiffening and Its Relevance to Phase Transition Mechanism." Materials 14, no. 20 (October 16, 2021): 6150. http://dx.doi.org/10.3390/ma14206150.

Full text
Abstract:
In the last decade, one of the most widely examined compounds of motal-organic frameworks was undoubtedly ((CH3)2NH2)(Zn(HCOO)3), but the problem of the importance of framework dynamics in the order–disorder phase change of the mechanism has not been fully clarified. In this study, a combination of temperature-dependent dielectric, calorimetric, IR, and Raman measurements was used to study the impact of ((CH3)2NH2)(Zn(DCOO)3) formate deuteration on the phase transition mechanism in this compound. This deuteration led to the stiffening of the metal-formate framework, which in turn caused an increase in the phase transition temperature by about 5 K. Interestingly, the energetic ordering of DMA+ cations remained unchanged compared to the non-deuterated compound.
APA, Harvard, Vancouver, ISO, and other styles
9

Thirunavukkuarasu, Komalavalli, Rachael Richardson, Zhengguang Lu, Dmitry Smirnov, Nan Huang, Nicholas Combs, Ganesh Pokharel, and David Mandrus. "Magneto-elastic coupling in multiferroic metal-organic framework [(CH3)2NH2]Co(HCOO)3." AIP Advances 11, no. 1 (January 1, 2021): 015040. http://dx.doi.org/10.1063/9.0000147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

López-Beceiro, J., C. Gracia-Fernández, S. Gómez-Barreiro, S. Castro-García, M. Sánchez-Andújar, and R. Artiaga. "Kinetic Study of the Low Temperature Transformation of Co(HCOO)3[(CH3)2NH2]." Journal of Physical Chemistry C 116, no. 1 (December 14, 2011): 1219–24. http://dx.doi.org/10.1021/jp208070d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chakraborty, Tirthankar, and Suja Elizabeth. "Magnetic and electric characterization of multiferroic organometallic compound [(CH3)2NH2]Mn0.5Ni0.5(HCOO)3." Solid State Communications 261 (August 2017): 1–5. http://dx.doi.org/10.1016/j.ssc.2017.05.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hughey, Kendall D., Amanda J. Clune, Michael O. Yokosuk, Jing Li, Nandita Abhyankar, Xiaxin Ding, Naresh S. Dalal, et al. "Structure–Property Relations in Multiferroic [(CH3)2NH2]M(HCOO)3 (M = Mn, Co, Ni)." Inorganic Chemistry 57, no. 18 (August 24, 2018): 11569–77. http://dx.doi.org/10.1021/acs.inorgchem.8b01609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Šimėnas, Mantas, Maciej Ptak, Arafat Hossain Khan, Laurynas Dagys, Vytautas Balevičius, Marko Bertmer, Georg Völkel, Mirosław Ma̧czka, Andreas Pöppl, and Ju̅ras Banys. "Spectroscopic Study of [(CH3)2NH2][Zn(HCOO)3] Hybrid Perovskite Containing Different Nitrogen Isotopes." Journal of Physical Chemistry C 122, no. 18 (April 23, 2018): 10284–92. http://dx.doi.org/10.1021/acs.jpcc.8b02734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sieradzki, Adam, Justyna Trzmiel, Maciej Ptak, and Mirosław Mączka. "Unusual electronic behavior in the polycrystalline metal organic framework [(CH3)2NH2][Na0.5Fe0.5(HCOO)3]." Electronic Materials Letters 11, no. 6 (October 28, 2015): 1033–39. http://dx.doi.org/10.1007/s13391-015-5105-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhao, Hongyang, Zhideng Huang, Zhibin Ma, Tingting Jia, Hideo Kimura, Qiuming Fu, Geming Wang, Hong Tao, Kang Cai, and Ziran Fan. "Structural, Magnetic and Dielectric Properties of [(CH3)2NH2]Fe x Mn1−x (HCOO)3." Journal of Electronic Materials 46, no. 10 (May 30, 2017): 5540–45. http://dx.doi.org/10.1007/s11664-017-5595-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mączka, Mirosław, Adam Pietraszko, Lucyna Macalik, Adam Sieradzki, Justyna Trzmiel, and Adam Pikul. "Synthesis and order–disorder transition in a novel metal formate framework of [(CH3)2NH2]Na0.5Fe0.5(HCOO)3]." Dalton Trans. 43, no. 45 (2014): 17075–84. http://dx.doi.org/10.1039/c4dt02586e.

Full text
Abstract:
We report the synthesis and characterization of a novel metal formate templated by dimethylammonium cations, [(CH3)2NH2][Na0.5Fe0.5(HCOO)3], exhibiting phase transition at 167 K.
APA, Harvard, Vancouver, ISO, and other styles
17

Pato-Doldán, B., M. Sánchez-Andújar, L. C. Gómez-Aguirre, S. Yáñez-Vilar, J. López-Beceiro, C. Gracia-Fernández, A. A. Haghighirad, F. Ritter, S. Castro-García, and M. A. Señarís-Rodríguez. "Near room temperature dielectric transition in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]." Physical Chemistry Chemical Physics 14, no. 24 (2012): 8498. http://dx.doi.org/10.1039/c2cp40564d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sánchez-Andújar, M., L. C. Gómez-Aguirre, B. Pato Doldán, S. Yáñez-Vilar, R. Artiaga, A. L. Llamas-Saiz, R. S. Manna, et al. "First-order structural transition in the multiferroic perovskite-like formate [(CH3)2NH2][Mn(HCOO)3]." CrystEngComm 16, no. 17 (2014): 3558. http://dx.doi.org/10.1039/c3ce42411a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Asaji, Tetsuo. "Glassy behavior in a metal-organic perovskite, dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3]." Solid State Communications 284-286 (December 2018): 31–34. http://dx.doi.org/10.1016/j.ssc.2018.08.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Clune, Amanda, Nathan Harms, Kenneth R. O’Neal, Kendall Hughey, Kevin A. Smith, Dimuthu Obeysekera, John Haddock, et al. "Developing the Pressure–Temperature–Magnetic Field Phase Diagram of Multiferroic [(CH3)2NH2]Mn(HCOO)3." Inorganic Chemistry 59, no. 14 (July 7, 2020): 10083–90. http://dx.doi.org/10.1021/acs.inorgchem.0c01225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Asaji, Tetsuo, Sho Yoshitake, Yoshiharu Ito, and Hiroki Fujimori. "Phase transition and cationic motion in the perovskite formate framework [(CH3)2NH2][Mg(HCOO)3]." Journal of Molecular Structure 1076 (November 2014): 719–23. http://dx.doi.org/10.1016/j.molstruc.2014.08.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

LoCicero, Steven A., Carolyn M. Averback, Ulyana Shumnyk, Eun Sang Choi, and Daniel R. Talham. "Particle Size Effects on the Order–Disorder Phase Transition in [(CH3)2NH2]Mg(HCOO)3." Journal of Physical Chemistry C 124, no. 38 (August 25, 2020): 21113–22. http://dx.doi.org/10.1021/acs.jpcc.0c04505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Šimėnas, Mantas, Aneta Ciupa, Gediminas Usevičius, Kęstutis Aidas, Daniel Klose, Gunnar Jeschke, Mirosław Mączka, Georg Völkel, Andreas Pöppl, and Jūras Banys. "Electron paramagnetic resonance of a copper doped [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite framework." Physical Chemistry Chemical Physics 20, no. 17 (2018): 12097–105. http://dx.doi.org/10.1039/c8cp01426d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Usevičius, Gediminas, Andrea Eggeling, Ignas Pocius, Vidmantas Kalendra, Daniel Klose, Mirosław Mączka, Andreas Pöppl, Jūras Banys, Gunnar Jeschke, and Mantas Šimėnas. "Probing Methyl Group Tunneling in [(CH3)2NH2][Zn(HCOO)3] Hybrid Perovskite Using Co2+ EPR." Molecules 28, no. 3 (January 18, 2023): 979. http://dx.doi.org/10.3390/molecules28030979.

Full text
Abstract:
At low temperature, methyl groups act as hindered quantum rotors exhibiting rotational quantum tunneling, which is highly sensitive to a local methyl group environment. Recently, we observed this effect using pulsed electron paramagnetic resonance (EPR) in two dimethylammonium-containing hybrid perovskites doped with paramagnetic Mn2+ ions. Here, we investigate the feasibility of using an alternative fast-relaxing Co2+ paramagnetic center to study the methyl group tunneling, and, as a model compound, we use dimethylammonium zinc formate [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite. Our multifrequency (X-, Q- and W-band) EPR experiments reveal a high-spin state of the incorporated Co2+ center, which exhibits fast spin-lattice relaxation and electron spin decoherence. Our pulsed EPR experiments reveal magnetic field independent electron spin echo envelope modulation (ESEEM) signals, which are assigned to the methyl group tunneling. We use density operator simulations to extract the tunnel frequency of 1.84 MHz from the experimental data, which is then used to calculate the rotational barrier of the methyl groups. We compare our results with the previously reported Mn2+ case showing that our approach can detect very small changes in the local methyl group environment in hybrid perovskites and related materials.
APA, Harvard, Vancouver, ISO, and other styles
25

Sornadurai, D., R. M. Sarguna, and V. Sridharan. "Variation of structural parameters in dimethylammonium manganese formate [(CH3)2NH2]Mn(HCOO)3 by substitution of transition metals (M = Zn, Co and Ni): by powder XRD method." Powder Diffraction 34, no. 2 (May 22, 2019): 124–29. http://dx.doi.org/10.1017/s0885715619000307.

Full text
Abstract:
Variation of structural parameters of dimethylammonium manganese formate [(CH3)2NH2]Mn[(HCOO)3] upon substitution by the transition elements Zn, Co, and Ni is studied by powder X-ray diffraction (PXRD) technique. These metal–organic framework (MOF) crystals were grown by solvothermal method. The PXRD patterns of all MOFs exhibited rhombohedral structure. PXRD patterns of MOFs were analyzed using Rietveld refinement method. While the parent Mn-MOF and Mn0.9Zn0.1MOF are found to have similar structural parameters, Co and Ni substituted Mn-MOFs have smaller structural parameters than that of parent Mn-MOF. The reason for this variation in the lattice parameters is explained based on the Shannon ionic radii.
APA, Harvard, Vancouver, ISO, and other styles
26

Šimėnas, Mantas, Sergejus Balčiūnas, Aneta Ciupa, Linas Vilčiauskas, Džiugas Jablonskas, Martynas Kinka, Adam Sieradzki, Vytautas Samulionis, Mirosław Ma̧czka, and Jūras Banys. "Elucidation of dipolar dynamics and the nature of structural phases in the [(CH3)2NH2][Zn(HCOO)3] hybrid perovskite framework." Journal of Materials Chemistry C 7, no. 22 (2019): 6779–85. http://dx.doi.org/10.1039/c9tc01275c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ma, Yinina, Junzhuang Cong, Yisheng Chai, Liqin Yan, Dashan Shang, and Young Sun. "Large pyroelectric and thermal expansion coefficients in the [(CH3)2NH2]Mn (HCOO)3 metal-organic framework." Applied Physics Letters 111, no. 4 (July 24, 2017): 042901. http://dx.doi.org/10.1063/1.4989783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Šimėnas, Mantas, Lucyna Macalik, Kȩstutis Aidas, Vidmantas Kalendra, Daniel Klose, Gunnar Jeschke, Mirosław Ma̧czka, Georg Völkel, Ju̅ras Banys, and Andreas Pöppl. "Pulse EPR and ENDOR Study of Manganese Doped [(CH3)2NH2][Zn(HCOO)3] Hybrid Perovskite Framework." Journal of Physical Chemistry C 121, no. 48 (November 27, 2017): 27225–32. http://dx.doi.org/10.1021/acs.jpcc.7b09990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Malik, Vikas, Sarmistha Maity, and Ratnamala Chatterjee. "Negative differential resistance behaviour with high PVR value in (CH3)2NH2Fe(HCOO)3 – A multiferroic MOF." Materials Science and Engineering: B 294 (August 2023): 116534. http://dx.doi.org/10.1016/j.mseb.2023.116534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Malik, Vikas, Sarmistha Maity, and Ratnamala Chatterjee. "Temperature dependent negative differential resistance behavior in multiferroic metal organic framework (CH3)2NH2 Mn (HCOO)3 crystals." Organic Electronics 56 (May 2018): 5–10. http://dx.doi.org/10.1016/j.orgel.2018.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Šimėnas, Mantas, Aneta Ciupa, Mirosław Ma̧czka, Andreas Pöppl, and Ju̅ras Banys. "EPR Study of Structural Phase Transition in Manganese-Doped [(CH3)2NH2][Zn(HCOO)3] Metal–Organic Framework." Journal of Physical Chemistry C 119, no. 43 (October 15, 2015): 24522–28. http://dx.doi.org/10.1021/acs.jpcc.5b08680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Collings, Ines, Maxim Bykov, Elena Bykova, Michael Hanfland, Sander van Smaalen, Leonid Dubrovinsky, and Natalia Dubrovinskaia. "Disorder–order transitions in the perovskite metal–organic frameworks [(CH3)2NH2][M(HCOO)3] at high pressure." Acta Crystallographica Section A Foundations and Advances 74, a2 (August 22, 2018): e59-e59. http://dx.doi.org/10.1107/s2053273318094305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Collings, Ines E., Maxim Bykov, Elena Bykova, Michael Hanfland, Sander van Smaalen, Leonid Dubrovinsky, and Natalia Dubrovinskaia. "Disorder–order transitions in the perovskite metal–organic frameworks [(CH3)2NH2][M(HCOO)3] at high pressure." CrystEngComm 20, no. 25 (2018): 3512–21. http://dx.doi.org/10.1039/c8ce00617b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mączka, Mirosław, Bartosz Bondzior, Przemysław Dereń, Adam Sieradzki, Justyna Trzmiel, Adam Pietraszko, and J. Hanuza. "Synthesis and characterization of [(CH3)2NH2][Na0.5Cr0.5(HCOO)3]: a rare example of luminescent metal–organic frameworks based on Cr(iii) ions." Dalton Transactions 44, no. 15 (2015): 6871–79. http://dx.doi.org/10.1039/c5dt00060b.

Full text
Abstract:
A novel chromium(iii)-based luminescent metal–organic framework with perovskite architecture, [(CH3)2NH2][Na0.5Cr0.5(HCOO)3], was synthesized.
APA, Harvard, Vancouver, ISO, and other styles
35

Nagabhushana, G. P., Radha Shivaramaiah, and Alexandra Navrotsky. "Thermochemistry of Multiferroic Organic–Inorganic Hybrid Perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn)." Journal of the American Chemical Society 137, no. 32 (August 6, 2015): 10351–56. http://dx.doi.org/10.1021/jacs.5b06146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ma, Yinina, Junzhuang Cong, and Young Sun. "Multiferroicity and magnetoelectric coupling in the paramagnetic state of the metal-organic framework [(CH3)2NH2]Ni(HCOO)3." Journal of Physics: Condensed Matter 31, no. 20 (March 14, 2019): 205701. http://dx.doi.org/10.1088/1361-648x/ab03ef.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zhang, Zhiying, Hao Tang, Dongpeng Cheng, Jikang Zhang, Yatao Chen, Xin Shen, and Hongliang Yu. "Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure." Results in Physics 12 (March 2019): 2183–88. http://dx.doi.org/10.1016/j.rinp.2019.01.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mączka, Mirosław, Anna Gągor, Krzysztof Hermanowicz, Adam Sieradzki, Lucyna Macalik, and Adam Pikul. "Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3]." Journal of Solid State Chemistry 237 (May 2016): 150–58. http://dx.doi.org/10.1016/j.jssc.2016.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Asaji, Tetsuo, and Kayo Ashitomi. "Phase Transition and Cationic Motion in a Metal–Organic Perovskite, Dimethylammonium Zinc Formate [(CH3)2NH2][Zn(HCOO)3]." Journal of Physical Chemistry C 117, no. 19 (May 2013): 10185–90. http://dx.doi.org/10.1021/jp402148y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rodriguez-Velamazan, J. Alberto, Laura Cañadillas-Delgado, and Oscar Fabelo. "Spin Density Distribution in a MOF presenting electric and magnetic order." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1551. http://dx.doi.org/10.1107/s2053273314084484.

Full text
Abstract:
One of the main features of molecular compounds is the possibility of combining different properties in a synergic way giving a multifunctional material. Here we will discuss the case of a compound combining electric and magnetic order, thus giving a "multiferroic" molecular material. The disorder-order of the dimethylammnoium molecule in the Iron(II)-Iron(III) system [NH2(CH3)2]n[FeIIIFeII(HCOO)6]n is in the origin of the observed electric transition from paraelectric to antiferroelectric. In combination with the mentioned electric properties, this compound shows also magnetic order in the form of Nel N-Type ferrimagnetism [1]. The structure of [NH2(CH3)2]n[FeIIIFeII(HCOO)6]n has been characterized by means of neutron diffraction at VIVALDI and D19 instruments at Institut Laue-Langevin (ILL, Grenoble, France), where a crystallographic phase transition was observed from the high temperature structure [P-31c; a =b=8.2550(12) and c=13.891(3) at room temperature] to a lower symmetry one [R-3c; a = b=14.2600(17) and c=41.443(8) at low temperature]. On the other hand, the magnetic behaviour of this compound can be described as a result of two sublattices anti-ferromagnetically coupled, containing different spin carriers FeIII and FeII, respectively, with an ordering temperature of 37 K, and which are responsible of the different magnetic behaviours at low temperature.[2] The different spins of the neighbouring ions [S=5/2 and S=2] result in a ferrimagnetic state. Polarized neutron diffraction measurements aimed at clarifying the spin density map in order to understand the influence of the counter ion in the magnetic properties were carried out at D3 instrument (ILL). Measurements of the flipping ratios were performed with magnetic field of 9 Tesla at 45K, over the magnetic ordering temperature. The results point to an unusual weak spin density located around the counterions which suggests a non-negligible role in the magnetic behavior for the amine group.
APA, Harvard, Vancouver, ISO, and other styles
41

Szymborska-Małek, K., M. Trzebiatowska-Gusowska, M. Mączka, and A. Gągor. "Temperature-dependent IR and Raman studies of metal–organic frameworks [(CH3)2NH2][M(HCOO)3], M=Mg and Cd." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 159 (April 2016): 35–41. http://dx.doi.org/10.1016/j.saa.2016.01.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bertaina, Sylvain, Nandita Abhyankar, Maylis Orio, and Naresh S. Dalal. "Measuring Motional Dynamics of [(CH3)2NH2]+ in the Perovskite-Like Metal–Organic Framework [(CH3)2NH2][Zn(HCOO)3]: The Value of Low-Frequency Electron Paramagnetic Resonance." Journal of Physical Chemistry C 122, no. 28 (June 14, 2018): 16431–36. http://dx.doi.org/10.1021/acs.jpcc.8b04698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Zhiying, Xin Shen, Hongliang Yu, Xiaoming Wang, Lei Sun, Shumin Yue, Dongpeng Cheng, and Hao Tang. "Elastic Properties and Energy Dissipation Related to the Disorder-Order Ferroelectric Transition in a Multiferroic Metal-Organic Framework [(CH3)2NH2][Fe(HCOO)3] with a Perovskite-Like Structure." Materials 14, no. 9 (May 5, 2021): 2403. http://dx.doi.org/10.3390/ma14092403.

Full text
Abstract:
The elastic properties and the coupling of ferroelasticity with ferromagnetism and ferroelectricy are crucial for the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling. Elastic properties and energy dissipation related to the disorder-order ferroelectric transition in [(CH3)2NH2][Fe(HCOO)3] were studied by differential scanning calorimetry (DSC), low temperature X-ray diffraction (XRD) and dynamic mechanical analysis (DMA). DSC result indicated the transition near 164 K. XRD showed the first-order structural transition from rhombohedral R3−c to monoclinic Cc at ~145 K, accompanied by the disorder-order transition of proton ordering in the N–H…O hydrogen bonds in [(CH3)2NH2]+ as well as the distortion of the framework. For single crystals, the storage modulus was ~1.1 GPa and the loss modulus was ~0.02 GPa at 298 K. DMA of single crystals showed quick drop of storage modulus and peaks of loss modulus and loss factor near the ferroelectric transition temperature ~164 K. DMA of pellets showed the minimum of the normalized storage modulus and the peaks of loss factor at ~164 K with weak frequency dependences. The normalized loss modulus reached the maximum near 145 K, with higher peak temperature at higher frequency. The elastic anomalies and energy dissipation near the ferroelectric transition temperature are caused by the coupling of the movements of dimethylammonium cations and twin walls.
APA, Harvard, Vancouver, ISO, and other styles
44

Besara, T., P. Jain, N. S. Dalal, P. L. Kuhns, A. P. Reyes, H. W. Kroto, and A. K. Cheetham. "Mechanism of the order-disorder phase transition, and glassy behavior in the metal-organic framework [(CH3)2NH2]Zn(HCOO)3." Proceedings of the National Academy of Sciences 108, no. 17 (April 4, 2011): 6828–32. http://dx.doi.org/10.1073/pnas.1102079108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sánchez-Andújar, M., S. Presedo, S. Yáñez-Vilar, S. Castro-García, J. Shamir, and M. A. Señarís-Rodríguez. "Characterization of the Order−Disorder Dielectric Transition in the Hybrid Organic−Inorganic Perovskite-Like Formate Mn(HCOO)3[(CH3)2NH2]." Inorganic Chemistry 49, no. 4 (February 15, 2010): 1510–16. http://dx.doi.org/10.1021/ic901872g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ramakrishna, Sanath K., Krishnendu Kundu, Jasleen K. Bindra, Steven A. Locicero, Daniel R. Talham, Arneil P. Reyes, Riqiang Fu, and Naresh S. Dalal. "Probing the Dielectric Transition and Molecular Dynamics in the Metal–Organic Framework [(CH3)2NH2]Mg(HCOO)3 Using High Resolution NMR." Journal of Physical Chemistry C 125, no. 6 (February 5, 2021): 3441–50. http://dx.doi.org/10.1021/acs.jpcc.0c11149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mączka, M., M. Ptak, and L. Macalik. "Infrared and Raman studies of phase transitions in metal–organic frameworks of [(CH3)2NH2][M(HCOO)3] with M=Zn, Fe." Vibrational Spectroscopy 71 (March 2014): 98–104. http://dx.doi.org/10.1016/j.vibspec.2014.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yurtseven, H., and O. Tari. "Thermodynamic study on the magnetic transition and structural phase transition in [(CH3)2NH2][Na0.5Fe0.5(HCOO)3] by using the Landau phenomenological model." Journal of Applied Physics 128, no. 20 (November 28, 2020): 204101. http://dx.doi.org/10.1063/5.0027326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xin, Lipeng, Zhen Fan, Guanghui Li, Ming Zhang, Yonghao Han, John Wang, Khuong P. Ong, Lei Qin, Yanzhen Zheng, and Xiaojie Lou. "Growth of centimeter-sized [(CH3)2NH2][Mn(HCOO)3] hybrid formate perovskite single crystals and Raman evidence of pressure-induced phase transitions." New Journal of Chemistry 41, no. 1 (2017): 151–59. http://dx.doi.org/10.1039/c6nj02798a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Abhyankar, Nandita, Jin Jung Kweon, Maylis Orio, Sylvain Bertaina, Minseong Lee, Eun Sang Choi, Riqiang Fu, and Naresh S. Dalal. "Understanding Ferroelectricity in the Pb-Free Perovskite-Like Metal–Organic Framework [(CH3)2NH2]Zn(HCOO)3: Dielectric, 2D NMR, and Theoretical Studies." Journal of Physical Chemistry C 121, no. 11 (March 8, 2017): 6314–22. http://dx.doi.org/10.1021/acs.jpcc.7b00596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography