Dissertations / Theses on the topic 'CFD design'

To see the other types of publications on this topic, follow the link: CFD design.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'CFD design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Vangbo, Petter Olav. "CFD in conceptual ship design." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15480.

Full text
Abstract:
Computational Fluid Dynamics (CFD) has been around for many years. It is a computer tool that can be used to find the hydrodynamic fluid performances. In ship design it is used in a wide area from smoke propagation to resistance estimations. It is however in resistance estimations that CFD have had most focus and research. There are many tools a designer can make use of nowadays. Most of the tools are computer based. This is optimization algorithms, computer aided design (CAD) and computational fluid dynamics (CFD). Using the tools should shorten the time of ship design and make better solutions. I have used a computer tool that mixes optimization with model variation (CAD) and verification (CFD). My conclusion is that it is a powerful tool to use, but should be handled with care. Few variables in the optimization process are important. Conceptual design methodology could be broken down to two outer ranges; point based design and set based design. The methods are quite different when approaching a complex design problem. There seems to be some favor in set based design when coming to a global ‘optimized’ solution to the design problem. More knowledge is gathered in set based design before deciding the final requirements and parameters. This is especially in new developing design where little knowledge is produced in the past. CFD is a broad term. There is many different methods and area of use. In this thesis I will break it down to two terms; potential codes and RANSE codes. Potential codes are easy, robust and well developed. RANSE codes are difficult, takes a lot of time and not so well developed. Potential codes are used in areas where turbulent flows are not present, while RANSE codes are used when it is present and important to the result. If designing new innovative hulls CFD should be used earlier in the design process and with a simulation driven design approach. Simulation driven design could be used with potential codes or RANSE codes. To have a high value rate of the modeling potential codes should be used when many sets of variation I needed and turbulence is not important to the answers. RANSE code should be used when turbulent flow is important to the answer, but must be done with few sets of variations because of high computational effort. If designing a more standard ship, CFD should be used in a modeling design approach to verify the performance estimations that have been done earlier in the process.
APA, Harvard, Vancouver, ISO, and other styles
2

Graysmith, J. L. "Using CFD in engine design." Thesis, University of Warwick, 1995. http://wrap.warwick.ac.uk/4252/.

Full text
Abstract:
In this thesis the author presents two areas of work; exploring the integration of Computational Fluid Dynamics (CFD) into engine design for Jaguar Cars Ltd and developing a novel 'mesh construction' method for making mesh generation both easy and fast. It is concluded that Jaguar can use CFD in the evaluation stage of the engine design process, although not in the concept stage of design. The CFD predictions are shown to be useful for detecting flow related faults and determining the general flow trends, but they should not be used as an absolute measure of the flow variables. The author has determined an efficient method for obtaining good quality meshes using commercial modelling and mesh generation software which requires a skilled CFD analyst. Steady flow analysis of an engine port and cylinder design could currently be completed in about six weeks using a high-powered workstation. The author recommends dedicated workstations for CFD analysis and training Jaguar's draughtsmen to create CAD models with computer analysis requirements in mind. The author's mesh construction program automatically joins two overlapping meshes or cuts one mesh from another. Whilst the program works well on the test cases considered, it is not at a stage for commercial exploitation. Further development is therefore recommended.
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Peter Mark. "Computation of CAD-based design velocities for aerodynamic design optimisation with adjoint CFD data." Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675476.

Full text
Abstract:
This thesis describes the investigation and development of a novel CAD-based aerodynamic optimisation system, with the aim of allowing gradient-based optimisation of feature-based, parametric models within commercial CAD packages in timescales acceptable for industrial design processes. The process developed is based on linking parametric design velocities (geometric sensitivities computed from the CAD model representing the displacement of a point on the model boundary due to a perturbation of a CAD model parameter) with adjoint surface mesh sensitivities (which represent the derivative of a goal function with respect to surface mesh node position). A CAD-based design velocity computation method has been developed based on projection between discrete representations of perturbed geometries which can be linked to virtually any existing commercial CAD system. A key characteristic of the approach is that it can cope with the discontinuous changes in CAD model topology and face labelling that can occur under even small changes in CAD parameters. Use of the above approach allows computation of parametric sensitivities with respect to aerodynamic coefficients for native CAD parameters within feature-based commercial CAD modelling systems using adjoint data at a computational cost of just one adjoint analysis per objective function and one design velocity field evaluation per parameter. Gradient computation is demonstrated on test cases for an aerofoil model, a turbine blade model and a 3D wing model. Using these computed sensitivities enables the creation of a truly CAD-based aerodynamic optimisation system incorporating adjoint CFD data and using design velocities for computing geometric sensitivities and as input to a mesh deformation step. A prototype implementation of this system is presented and used to optimise a parametric CAD-based aerofoil model. In order to develop the approach further, future work should focus on resolving issues encountered when using design velocities for mesh deformation, extending the approach to more complex test cases, and potentially incorporating parametric effectiveness as a measure of the suitability of a given CAD parameterisation for optimisation purposes.
APA, Harvard, Vancouver, ISO, and other styles
4

Shi, Yijian. "Off-design waverider flowfield CFD simulation /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9717164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

King, Matthew Lee. "A CAD-centric Approach to CFD Analysis With Discrete Features." Diss., CLICK HERE for online access, 2004. http://contentdm.lib.byu.edu/ETD/image/etd570.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pulugundla, Gautam. "CFD design analysis of ventilated disc brakes." Thesis, Cranfield University, 2008. http://dspace.lib.cranfield.ac.uk/handle/1826/6578.

Full text
Abstract:
This thesis reports the numerical investigation of the automotive ventilated disc brake rotor. Disc brakes operate on the principle of friction by converting kinetic energy into heat energy. The main objective of a disc brake rotor is to store this heat energy and dissipate it as soon as possible. This work is carried out in a area where there is very limited understanding. Commercial CFD code FLUENT was used for carrying out the simulations with the rotor rotating in still air. Only one passage and blade were simulated as all the rotor passages were identical. Uniform temperatures were used on the rotor to simulate the braking condition. Sixteen different blade angle sets were simulated and the range of blade angles having the best aero-thermal performance were identified using mass flow rate, rate of heat dissipation and temperature uniformity as performance metrics. The effect of rotational speed and rotor temperature (corresponding to various braking conditions) on the aero-thermal performance was evaluated. The rotor speed and temperature were observed to have significant effect on the rotor performance. The number of blades in the ventilated disc brake rotor was also varied and was observed to have an impact on the aero-thermal performance of the disc brake rotor. Detailed design changes like inlet chamfer, blade leading edge rounding, and variable thickness blade and passage aspect ratio were incorporated. All these changes did have an effect on the aero-thermal performance of the disc brake rotor. The inlet chamfer and the leading edge rounding improved both the rate of heat transfer and the temperature uniformity. The variable thickness blade and the lower aspect ratio passage improved the temperature uniformity of the rotor.
APA, Harvard, Vancouver, ISO, and other styles
7

Macchion, Olivier. "CFD in the design of gas quenching furnace." Doctoral thesis, Stockholm : Department of Mechanics, Royal Institute of Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guiza, Ghalia. "Reliable and Adaptive CFD Framework for Airship Design." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM021.

Full text
Abstract:
Cette thèse porte sur la modélisation et la simulation numérique d'écoulements instationnaires et turbulents dans un contexte d'aérodynamique externe. L'étude proposée contribue au développement de méthodes adaptées aux écoulements incompressibles, monophasiques et multiphasiques, autour de divers corps profilés et non-profilés. Celles-ci reposent sur une méthode éléments finis stabilisés innovante de type Variational Multiscale (VMS), dans laquelle la solution est décomposée a priori en une grande échelle résolue et une petite échelle modélisé, dont l’effet sur la grande échelle est pris en compte au travers de termes sources proportionnels aux résidus des équations du problème grande échelle. Une procédure automatique est utilisée afin de générer des maillages hybrides combinant une région interne structurée en strates et conforme à la théorie des couches limites, et une région externe non structurée et adaptée via un estimateur d’erreur VMS sous la contrainte d’un nombre d’éléments fixé. Pour les cas mettant en jeu plusieurs phases immiscibles, une méthode level-set est utilisée afin de suivre précisément les interfaces tout en prenant en compte les effets de tension de surface. L'originalité et l'enjeu principal de cette thèse résident dans le couplage de ces différentes approches en une formulation unifiée, et leur mise en oeuvre dans un contexte de calcul massivement parallèle. Plusieurs cas-tests en deux et trois dimensions sont présentés afin de démontrer la précision et la robustesse des outils proposés. Le solveur est ensuite utilisé pour analyser l'aérodynamique du Stratobus, un dirigeable stratosphérique développé par Thalès Alenia Space et destiné à un large éventail d’applications civiles ou militaires. En régime permanent, une hypothèse d’enveloppe rigide permet de prédire les forces exercées sur la structure en bon accord avec l’expérience. L'effet du slosh d'un ballonet d'hélium placé à l'intérieur de l'enveloppe est également simulé afin de caractériser la dynamique du dirigeable durant la phase de décollage
This thesis is devoted to the modeling and the numerical simulation of unsteady, turbulent flows relevant to external aerodynamic applications. The proposed study aims at developing methods suited to incompressible, monophase and multiphase flows around various slender and non-slender bodies. The latter rely on the Variational Multiscale (VMS) stabilized finite element method, that introduces an a priori decomposition of the solution into coarse and fine scale components. The general idea is that only the large scales are fully represented and resolved at the discrete level, while the effect of the small unresolved scales is taken into account by means of consistently derived source terms proportional to the residual of the resolved scale solution. An automatic procedure is used to build complex meshes combining a multilayer inner region structured according to the boundary layer theory, and an external non-structured region refined using a VMS error estimator under the constraint of a fixed number of nodes. For cases involving several immiscible phases, an advanced level-set method is used to accurately follow the interfaces while accounting for surface tension effects. The coupling between these various components into a unified formulation, and their implementation in a context of high performance computing, make for the novelty and the main objective of this thesis. Several test-cases in two and three dimensions are presented to assess the accuracy and the robustness of the proposed methods. The solver is then used to analyze the aerodynamics of the Stratobus, a stratospheric airship designed by Thalès Alenia Space for a wide range of civilian and military operations. In the permanent regime, a rigid envelope assumption allows predicting the forces exerted on the structure in good agreement with the experiments. The effect of a lighter-than-air ballonet slosh located in the hull is also simulated to characterize the airship dynamics during take-off
APA, Harvard, Vancouver, ISO, and other styles
9

Lanchman, Troy J. "Using CFD to Improve Off-Design Throughflow Analysis." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1559828068015963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Poutiainen, Aaron. "Undertray Design and Development Procedure with CFD : An Optimization Study of Different UndertrayDesigns with CFD Computations." Thesis, KTH, Strömningsmekanik och Teknisk Akustik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301732.

Full text
Abstract:
Race car aerodynamics has played a vital part to improve lap times over the years of motor racing. Having good road adhesion with slick tires and aerodynamic downforce will increase the vehicles maximum lateral force and thus higher cornering speeds can be achieved. The undertray and diffuser is the most efficient aerodynamic component on most racing vehicles and is capable of producing six times more downforce than its contribution to drag plus, if optimized correctly, able to significantly reduce the vehicle's drag coefficient. The intent of this project is to optimize a completely unique undertray design for the KTH Formula Student teams racing vehicle DeV17. The undertray is inspired by the Aston Martin Valkyrie venturi tunnel design and is optimized by iterative change in CAD design parameters for three different chassis designs. The results are obtained with CFD RANS simulations using the k-ω (SST) turbulence model with the Siemens Star-CCM+software. The optimum design gave 530 N and 90 N of downforce and drag respectively at a velocity of 80km/h. The venturi tunnel design is proven to give a 29% downforce improvement over a conventional flat plate design with stronger longitudainal vortices and lower, more widespread, minimum pressure distribution. The most important aspects that affect downforce in undertray design is concluded to be a diffuser outlet height, upsweep and vehicle ground clearance. No specific aerodynamic advantages in having a convergent tapering of the tunnel cross-section is observed, meaning the undertray can be represented as only consisting of an expanding diffuser. The tunnel design is considered to give promising track testing results and be a spark for further innovative ideas with aerodynamic design for both the automotive and racing industry.
Tävlingsbilars aerodynamik has spelat en viktig roll för att förbättra varvtiderna under åren inom motorsport. Att ha god väghäftning med 'slicks' däck och aerodynamisk nedåtkraft kommer att öka fordonets maximala sidokraft förmåga och därmed kan högre hastigheter i kurvor uppnås. Underredet och diffusern är den mest effektiva aerodynamiska komponenten på de flesta racerfordon och kan producera sex gånger mer nedåtkraft än dess bidrag till luftmotståndet och, om den optimeras korrekt, kan den avsevärt minska fordonets luftmotståndskoefficient. Syftet med detta projekt är att optimera en helt unik underredes design för KTH Formula Student lagets racingfordon DeV17. Underredet är inspirerat av Aston MArtin Valkyrie venturitunnel design och optimeras av iterativ förändring av CAD designparametrar för tre olika chassidesigner. Resultaten erhålls med CFD RANS-simuleringar med turbulensmodellen k-ω (SST) och programvaran Siemens Star-CCM+. Den optimala designen gav 530 N och 90 N nedåtkraft respektive luftmotstånd under en hastighet på 80 km/h. Venturitunnel designen har visat sig ge en förbättring på 29% nedåtkraft jämfört med en konventionell platt design, med starkare längsgående virvlar och lägre, mer utbredd, minimitryckfördelning. De viktigaste aspekterna som påverkar nedåtkraft i underredes designen dras som slutsats till att vara diffuser utloppets höjd, upphöjning vinkeln och fordonets markfrigång. Inga specifika aerodynamiska fördelar med att ha en konvergerande avsmalning av tunnelns tvärsnitt obververades, vilket innebär att underredet kan antas endast bestå av en expanderande diffuser. Tunneldesignen anser ge lovande bantestresultat och vara en gnista för ytterliga innovativa idéer inom aerodynamisk design för både bil- och racingindustrin.
APA, Harvard, Vancouver, ISO, and other styles
11

McCormick, Daniel John. "An Analysis of Using CFD in Conceptual Aircraft Design." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33409.

Full text
Abstract:
The evaluation of how Computational Fluid Dynamics (CFD) package may be incorporated into a conceptual design method is performed. The repeatability of the CFD solution as well as the accuracy of the calculated aerodynamic coefficients and pressure distributions was also evaluated on two different wing-body models. The overall run times of three different mesh densities was also evaluated to investigate if the mesh density could be reduced enough so that the computational stage of the CFD cycle may become affordable to use in the conceptual design stage. A farfield method was derived and used in this analysis to calculate the lift and drag coefficients. The CFD solutions were also compared with two methods currently used in conceptual design - the vortex lattice based program Vorview and ACSYNT. The unstructured Euler based CFD package FELISA was used in this study.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
12

Alexakis, Thanos. "CFD modelling of Stirling engines with complex design topologies." Thesis, Northumbria University, 2013. http://nrl.northumbria.ac.uk/26308/.

Full text
Abstract:
This research is in the field of CFD modelling of heat engines, particularly the advanced CFD methodologies for the performance characterization of solar Stirling Engines with complex geometrical topologies. The research aims to investigate whether these methods can provide a more inclusive picture of the engine performance and how this information can be used for the design improvement of Stirling engines and the investigation of more complex engine topologies.
APA, Harvard, Vancouver, ISO, and other styles
13

Misra, John Satprim. "Considering value of information when using CFD in design." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1473234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ozden, Ender. "Detailed Design Of Shell-and-tube Heat Exchangers Using Cfd." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608752/index.pdf.

Full text
Abstract:
Traditionally Shell-and-tube heat exchangers are designed using correlation based approaches like Kern method and Bell-Delaware method. With the advances in Computational Fluid Dynamics (CFD) software, it is now possible to design small heat exchangers using CFD. In this thesis, shell-and-tube heat exchangers are modeled and numerically analyzed using a commercial finite volume package. The modeled heat exchangers are relatively small, have single shell and tube passes. The leakage effects are not taken into account in the design process. Therefore, there is no leakage from baffle orifices and no gap between baffles and the shell. This study is focused on shell side flow phenomena. First, only shell side is modeled and shell side heat transfer and flow characteristics are analyzed with a series of CFD simulations. Various turbulence models are tried for the first and second order discretization schemes using different mesh densities. CFD predictions of the shell side pressure drop and the heat transfer coefficient are obtained and compared with correlation based method results. After selecting the best modeling approach, the sensitivity of the results to the flow rate, the baffle spacing and baffle cut height are investigated. Then, a simple double pipe heat exchanger is modeled. For the double pipe heat exchanger, both the shell (annulus) side and the tube side are modeled. Last, analyses are performed for a full shell-and-tube heat exchanger model. For that last model, a small laminar educational heat exchanger setup is used. The results are compared with the available experimental results obtained from the setup. Overall, it is observed that the flow and temperature fields obtained from CFD simulations can provide valuable information about the parts of the heat exchanger design that need improvement. The correlation based approaches may indicate the existence of a weakness in design, but CFD simulations can also pin point the source and the location of the weakness.
APA, Harvard, Vancouver, ISO, and other styles
15

Baten, Jasper Martijn van. "CFD: a design and scale-up tool for multiphase reactors." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2000. http://dare.uva.nl/document/55357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

King, Philip Thomas. "CFD as a design tool for DLE gas turbine combustion." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kalua, Amos. "Framework for Integrated Multi-Scale CFD Simulations in Architectural Design." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/105013.

Full text
Abstract:
An important aspect in the process of architectural design is the testing of solution alternatives in order to evaluate them on their appropriateness within the context of the design problem. Computational Fluid Dynamics (CFD) analysis is one of the approaches that have gained popularity in the testing of architectural design solutions especially for purposes of evaluating the performance of natural ventilation strategies in buildings. Natural ventilation strategies can reduce the energy consumption in buildings while ensuring the good health and wellbeing of the occupants. In order for natural ventilation strategies to perform as intended, a number of factors interact and these factors must be carefully analysed. CFD simulations provide an affordable platform for such analyses to be undertaken. Traditionally, these simulations have largely followed the direction of Best Practice Guidelines (BPGs) for quality control. These guidelines are built around certain simplifications due to the high computational cost of CFD modelling. However, while the computational cost has increasingly fallen and is predicted to continue to drop, the BPGs have largely remained without significant updates. The need to develop a CFD simulation framework that leverages the contemporary and anticipates the future computational cost and capacity can, therefore, not be overemphasised. When conducting CFD simulations during the process of architectural design, the variability of the wind flow field including the wind direction and its velocity constitute an important input parameter. Presently, however, in many simulations, the wind direction is largely used in a steady state manner. It is assumed that the direction of flow downwind of a meteorological station remains constant. This assumption may potentially compromise the integrity of CFD modelling as in reality, the wind flow field is bound to be dynamic from place to place. In order to improve the accuracy of the CFD simulations for architectural design, it is therefore necessary to adequately account for this variability. This study was a two-pronged investigation with the ultimate objective of improving the accuracy of the CFD simulations that are used in the architectural design process, particularly for the design and analysis of natural ventilation strategies. Firstly, a framework for integrated meso-scale and building scale CFD simulations was developed. Secondly, the newly developed framework was then implemented by deploying it to study the variability of the wind flow field between a reference meteorological station, the Virginia Tech Airport, and a selected localized building scale site on the Virginia Tech campus. The findings confirmed that the wind flow field varies from place to place and showed that the newly developed framework was able to capture this variation, ultimately, generating a wind flow field characterization representative of the conditions prevalent at the localized building site. This framework can be particularly useful when undertaking de-coupled CFD simulations to design and analyse natural ventilation strategies in the building design process.
Doctor of Philosophy
The use of natural ventilation strategies in building design has been identified as one viable pathway toward minimizing energy consumption in buildings. Natural ventilation can also reduce the prevalence of the Sick Building Syndrome (SBS) and enhance the productivity of building occupants. This research study sought to develop a framework that can improve the usage of Computational Fluid Dynamics (CFD) analyses in the architectural design process for purposes of enhancing the efficiency of natural ventilation strategies in buildings. CFD is a branch of computational physics that studies the behaviour of fluids as they move from one point to another. The usage of CFD analyses in architectural design requires the input of wind environment data such as direction and velocity. Presently, this data is obtained from a weather station and there is an assumption that this data remains the same even for a building site located at a considerable distance away from the weather station. This potentially compromises the accuracy of the CFD analyses as studies have shown that due to a number of factors such the urban built form, vegetation, terrain and others, the wind environment is bound to vary from one point to another. This study sought to develop a framework that quantifies this variation and provides a way for translating the wind data obtained from a weather station to data that more accurately characterizes a local building site. With this accurate site wind data, the CFD analyses can then provide more meaningful insights into the use of natural ventilation in the process of architectural design. This newly developed framework was deployed on a study site at Virginia Tech. The findings showed that the framework was able to demonstrate that the wind flow field varies from one place to another and it also provided a way to capture this variation, ultimately, generating a wind flow field characterization that was more representative of the local conditions.
APA, Harvard, Vancouver, ISO, and other styles
18

Litchwark, James Oliver. "Baghouse design for milk powder collection." Thesis, University of Canterbury. Chemical and Process Engineering, 2015. http://hdl.handle.net/10092/10208.

Full text
Abstract:
This thesis aims to improve the understanding of the factors that determine the performance of baghouses used for milk powder collection. The research focuses specifically on the similarities and differences between milk powder collection and other common baghouse applications. The thesis also aims to demonstrate the value of recent developments in computational fluid dynamics in developing predictive models of baghouse performance. It is hoped that the findings of the thesis may find application in the New Zealand dairy industry, where such baghouses are commonly used to collect milk powder after spray drying. The effect of operating temperature and humidity on the performance of baghouses was investigated by examining both the forward filtration process and pulse cleaning process. Forward filtration was examined in a series of bench scale experiments, then scaled up to the pilot scale to confirm the findings. The effect of humidity on the pulsing performance was then investigated at the pilot scale. The importance of pulse system design was investigated at the pilot scale in a separate set of experiments. Pulse nozzle position, pulse pressure, and pulse duration were varied and the effect on the baghouse pressure differentials was measured. A computational fluid dynamics (CFD) filter model designed for membrane filtration was adapted with some success to simulate a milk powder baghouse. The model was successful in predicting the length of the low pressure zone at the top of the bag, and the general trends in overpressure associated with changes to the pulse system geometry. The model was not successful in predicting the acceleration of the filter bag during the pulse. The model was used to simulate both forward filtration and pulsing, to extend the results of the experimental investigation. The effects of changes in the pulse nozzle height, pulse nozzle diameter, and pulse pressure were simulated, as well as the effect of gravitational settling during forward filtration, to extend the results of the previous experiments. There is a clear opportunity remaining for further work to extend the basic model developed here and to adapt the model to simulate large industrial baghouses. Experiments on the bench scale and pilot scale indicated that increased cohesive forces between particles improve the performance of milk powder baghouses by lowering the resistance of the filter cake during forward filtration and aiding cake removal during pulse cleaning. Under the conditions typical of industrial milk powder baghouses, cohesive forces are governed primarily by liquid bridging between particles, due to melted fat (particularly at high temperatures) and softened lactose (at high humidity levels). As a range of milk powders with different compositions are produced commercially, the relative importance of lactose-based and fat-based cohesion differs between powder types. Cohesion promotes the formation of porous structures in the filter cake, improving the cake permeability. In skim milk powder (SMP), particle cohesion is dominated by softened lactose, and is highly moisture dependent. In the bench scale experiments conducted here, increasing the relative humidity from 6% to 17% decreased the specific cake resistance from 1.69x10⁹ m.kg¯¹ to 8.23X10⁸ m.kg¯¹, and decreased the proportion of powder adhering to the filter from 14% of the total supplied powder to 3%. The combination of these effects decreased the total resistance over the filter from 1.09X10⁹m¯¹ to 1.89X10⁸; m¯¹, an 83% reduction. The low deposition at high humidity suggested that the porous cake structure formed at high humidity levels was fragile, so that deposited particles were prone to subsequent dislodgement, especially in areas where the shear velocity near the filter surface was high. In pilot scale experiments, the porous cake structure formed at high humidity was more easily removed from the filter bag, resulting in more effective pulse cleaning. It was concluded that particle cohesion promoted cake filtration over depth filtration, as particles tended to adhere to the cake surface immediately upon contact. As depth filtered particles are more difficult to remove, the shift toward cake filtration at high humidity improved the pulse cleaning performance. A high-fat milk protein concentrate (MPC) powder was also filtered on the bench scale apparatus. Particle cohesion in the MPC powder was dominated by liquid fat, and showed a clear dependence on temperature but not on humidity. Increasing the temperature from 30°C to 90°C caused the specific cake resistance of the MPC to decrease from 1.06x10⁸ m⁻¹ to 3.94x10⁷m⁻¹, a 63% decrease. The deposition of MPC powder was unaffected by either temperature or humidity. Gravitational settling of particles in large baghouses was found to produce significant variations in the properties of the filter cake throughout the baghouse. Experimental results with the pilot scale baghouse found a strong decreasing trend in the particle size with increasing height in the baghouse, with the mean particle size decreasing from 117 μm at the bottom of the baghouse to only 31 μm near the top of the filter bag. The filter cake thickness also decreased sharply with height. Results from the CFD simulations indicated that in the pilot scale baghouse particles larger than 120 μm in diameter tend to fall out of the air flow and collect in the bottom of the baghouse, instead of depositing on the filter. While industrial baghouses tend to have a higher elutriation velocity than the pilot scale baghouse used in this study, the large size of industrial baghouses provides ample opportunity for particles to segregate on the basis of size. In addition, bench scale results indicated that high air velocities near the filter surface may cause particles to rebound from the filter. This may occur in industrial baghouses in the region near the inlet, where the air velocity is highest. The reverse pressure differential induced in the filter bag by a cleaning pulse was found to increase with distance from the cell plate. Positioning the nozzle too close to the bag opening created a low pressure zone just beneath the cell plate, where the pressure remained lower inside the bag than outside throughout the pulse. This may lead to poor cleaning at the top of the bag. In the pilot scale baghouse, positioning the nozzle at least 0.7 m from the bag opening eliminated the low pressure zone. The optimum distance of 0.7 m is is dependent on the nozzle type and bag diameter, but can be directly applied to recent industrial baghouse designs in the NZ dairy industry, which have the same nozzle type and bag diameter as the pilot scale baghouse. The design of the pulse cleaning system is important in achieving good baghouse performance. Increasing the pulse tank pressure on the pilot scale baghouse from 3.5 bar to 6.5 bar caused a 30% reduction in the forward pressure differential after the pulse, while decreasing the pulse pressure below 3.5 bar caused the pressure differentials to increase indefinitely. Altering the nozzle position had no effect on the overall pressure differentials, but did alter the local acceleration at different points on the filter bag during a pulse. CFD simulations indicated that decreasing the distance between the nozzle and the bag opening from 0.7 m to 0.1 m increased the overpressure at the bottom of the bag from 770 Pa to 3500 Pa, but this was offset by the appearance of the low pressure zone at the top of the bag as mentioned above. CFD simulations indicated that the diameter of the pulse nozzle altered both the mean bag overpressure generated by the pulse, and the distribution of the overpressure over the bag surface, with the low pressure zone at the top of the bag becoming longer at large nozzle diameters. The pulse duration was found to be unimportant, with experiments on the pilot scale baghouse finding that this had no effect on either the overall baghouse pressure differentials or the length of the low pressure zone at the top of the bag. The project has extended the understanding of milk powder baghouse performance by relating the moisture-dependent properties of lactose and the temperature-dependent melting of dairy fats to baghouse performance. The project has also provided a useful design tool in the form of the CFD model. The project demonstrates an opportunity for further CFD research into baghouse design, as the basic model developed here could now be modified to directly simulate large industrial baghouses. It is hoped that the results from this thesis will find application in the New Zealand Dairy Industry.
APA, Harvard, Vancouver, ISO, and other styles
19

Tomac, Maximilian. "Adaptive-fidelity CFD for predicting flying qualities in preliminary aircraft design." Licentiate thesis, KTH, Aerodynamik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-31400.

Full text
Abstract:
To reduce development cost and to avoid late design fixes in aircraft design, methods that are fast and economic in estimating the aerodynamic characteristics of complex flight vehicles at the preliminary design stage are desired. This work and thesis focus on the adaptive-fidelity CFD approach, with emphasis on the high end of the CFD tools available today. The core idea of the method is to use computationally cheap modeling in the part of the flight envelope where it is applicable. When the complexity in the flow field increases more details and realism is included in the mathematical model, at a computationally higher cost. A typical case where this would be required could be at the border of the flight envelope, where flow phenomena such as shocks, flow separation, and interacting vortex systems could occur. Since the number of cases needed to resolve the flight envelope could be in the order of ten thousands automation is required. The bottlenecks are the discretization of the fluid volume and evaluation of raw CFD data and post processing of the data. These issues are also discussed in this work. The method has been tested on two real flying aircraft, the X-31 delta-winged aircraft with vector thrust, and the Ranger 2000 Jet trainer, as well as on the SACCON preliminary wing-body UCAV design. The results provide improved understanding of the usefulness of this method as an analysis tool during the preliminary design phase all the way into the flight test diagnostic phase of a new aircraft.
QC 20110314
APA, Harvard, Vancouver, ISO, and other styles
20

Fischer, Charles H. "Investigating the potential of CFD in sieve tray design and optimisation." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Noor, Mohamed Sulfickerali. "Efficient CFD based aero-thermo-mechanical modelling for aircraft engine design." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/813497/.

Full text
Abstract:
In this thesis, improved and faster CFD based aero-thermo-mechanical methods that can be used to optimize engine configurations early in the design process are described. Axisymmetric models of 3D non-axisymmetric features such as protrusions, holes and honeycomb liners are developed for use in this context, and 3D unsteady CFD is used to investigate the flow physics. Initially, the research focussed on modelling of a rotor-stator disc cavity. Steady CFD validations for a plane disc and for a disc with protrusion were carried out and a simplified body force model was developed for including the 3D effects of rotating and stationary bolts into the axisymmetric CFD models. The simplified rotor bolt model was verified and validated by comparing the results with Sussex Windage rig test data and 3D CFD data. The simplified stator bolt model was verified using 3D CFD results. The simplified rotor bolt model was found to predict the drag and windage heat transfer with reasonable accuracy compared to 3D sector CFD results. However, 3D sector CFD under-predicts the high core flow swirl and the adiabatic disc surface temperature inboard of the bolt, compared to experimental data. In the second part of the study, unsteady Reynolds averaged Navier-Stokes (URANS) calculations of the rotating bolts cases were performed in order to better understand the flow physics. Although the rotor-stator cavity with bolts is geometrically steady in the rotating frame of reference, it was found that the rotor bolts generate unsteadiness which creates time-dependent rotating flow features within the cavity. A systematic parametric study is presented giving insight into the influence of the bolt number and the cavity geometric parameters on the time dependent flow within the cavity. The URANS calculations were extended to a high pressure turbine (HPT) rear cavity to show possible unsteady effects due to rotating bolts in an engine case. Following this, the body force model was adapted to model the rotating hole velocity changes and flow through honeycomb liners. The honeycomb and hole models were verified by comparing the results with available experimental data and 3D CFD calculations. In the final part of the study, coupled FE-CFD calculations for a preliminary design whole engine thermo-mechanical (WETM) model for a transient square cycle was performed including the effects of non-axisymmetric features. Six cavities around the HPT disc were modelled using CFD. The coupled approach provides more realistic physical convective heat transfer boundary conditions than the traditional approach. The unvalidated baseline thermo-mechanical model results were verified using the high fidelity coupled FE-CFD solution. It was demonstrated that the FE-CFD coupled calculations with axisymmetric modelling of 3D features can be achieved in a few days time scale suitable for preliminary engine design. The simplified CFD based methods described in this thesis could reduce the computational time of transient coupled FE-CFD calculations several orders of magnitude and may provide results as accurate as 2DFE-3DCFD coupled calculations.
APA, Harvard, Vancouver, ISO, and other styles
22

Kang, Guosheng. "Enhanced design for oxy-fuel fired batch tanks using CFD methods." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1551.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains x, 153 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 150-153).
APA, Harvard, Vancouver, ISO, and other styles
23

MARQUES, F. B. "INVESTIGAÇÃO DE DESIGN DE FILTRO MANGA ATRAVÉS DA TÉCNICA DE CFD." Universidade Federal do Espírito Santo, 2017. http://repositorio.ufes.br/handle/10/8448.

Full text
Abstract:
Made available in DSpace on 2018-08-01T23:29:10Z (GMT). No. of bitstreams: 1 tese_11312_Dissertação Felipe Bezerra Marques.pdf: 3116863 bytes, checksum: f8412103ca72f9046ff3a4746851f39b (MD5) Previous issue date: 2017-08-04
As técnicas de CFD foram aplicadas para o estudo de projeto de Filtro de Mangas. O intuito de utilizar essa ferramenta é devido ao seu baixo custo, em relação a testes experimen-tais, confiabilidade e tempo de respostas. Portanto, foi realizado um estudo para determinação da influência do design de entrada de ar, variação de velocidade de entrada e supressão de mangas para fazer uma análise de como essas variáveis influenciam na fluidodinâmica do filtro. Para avaliar o desempenho dos filtros de mangas foram simuladas três diferentes posições de alimentação, feita a variação da velocidade de entrada para avaliação do maior aproveitamento da área filtrante do meio e alteração na disposição das mangas do meio filtrante. Para tanto, utilizou-se o modelo de escoamento monofásico isotérmico e incompressível com a turbulência sendo tratada pelo modelo k-ε realizável. Pôde-se concluir que a alimentação Simples apresen-tou uma distribuição mais homogênea de velocidade, pressão e com um bom aproveitamento do meio filtrante, representando assim uma opção mais vantajosa de entrada quando comparada as demais propostas. No caso de supressão de mangas, a entrada Simples com configuração Alternada apresentou melhor desempenho, com uma redução de 43,9% da área originalmente proposta, proporcionando melhor aproveitamento do filtro, com menores velocidades de im-pactos e queda de pressão, e distribuição mais homogênea da velocidade no meio. Palavras-Chave: Filtro Manga, Filtração de Gás, CFD, Supressão.
APA, Harvard, Vancouver, ISO, and other styles
24

Abhay, Srinivas. "Novel Compressor Blade Design Study." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439279520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Seemann, Patrick. "Design of 120cc Single Cylinder Experimental Engine for Analysis of Intake Swirl and Multiple Ignition Sites." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/219.

Full text
Abstract:
The intent of this thesis is to design, build, and test a cylinder head with variable swirl and ignition sites. The design aspect used Solid Works Floworks to model airflow within the head and cylinder. Swirl rate and volumetric flow rate were calculated from the results. Many design iterations took place before a suitable design was accomplished. Once the suitable design was reached, it was built using the rapid prototyping method known as 3-D printing (Fused Deposition Modeling). Valve guides and seats were installed in the head. Then valves, springs, and retainers were installed to allow for testing. The inlet was created using stereo-lithography due to its smooth surface finish and thin walls. A pin wheel swirl measuring device was built to measure tangential rotation rate of gasses in the cylinder. The experimental head was tested on the University of Miami flow bench in the Internal Combustion Engines Laboratory. The results of the experimental work and theoretical modeling were compared. The results matched closely. The difference between experimental and theoretical values for high swirl flow rates were less than 3% error and the swirl ratio was less than 10%. For the low swirl scenario, error was less than 30%. The measured flow rate for the high swirl scenario was 28.87 CFM and the swirl ratio was measured as 2.87. SolidWorks Floworks created accurate results for the high swirl scenario and further experimentation should be conducted for different geometries.
APA, Harvard, Vancouver, ISO, and other styles
26

Okyay, Gizem. "Utilization Of Cfd Tools In The Design Process Of A Francis Turbine." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612452/index.pdf.

Full text
Abstract:
Francis type turbines are commonly used in hydropower generation. Main components of the turbine are spiral case, stay vanes, guide vanes, turbine runner and the draft tube. The dimensions of these parts are dependent mainly on the design discharge, head and the speed of the rotor of the generators. In this study, a methodology is developed for parametric optimization by incorporating Matlab codes developed and commercial Computational Fluid Dynamics (CFD) codes into the design process. The design process starts with the selection of initial dimensions from experience curves, iterates to improve the overall hydraulic efficiency and obtain the detailed description of the final geometry for manufacturing with complete visualization of the computed flow field. A Francis turbine designed by the procedure developed has been manufactured and installed for energy production.
APA, Harvard, Vancouver, ISO, and other styles
27

Erling, Fredrik. "Static CFD analysis of a novel valve design for internal combustion engines." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15521.

Full text
Abstract:
In this work CFD was used to simulate the flow through a novel valve design for internal combustion engines. CFD is numerical method for simulating the behaviour of systems involving flow processes. A FEM was used for solving the equations. Literature on the topic was studied to gain an understanding of the performance limiters on the Internal combustion engine. This understanding was used to set up models that better would mimic physical phenomena compared to previous studies. The models gave plausible results as to fluid velocities and in-cylinder flow patterns. Comsol Multiphysics 4.1 was used for the computations.
APA, Harvard, Vancouver, ISO, and other styles
28

Katea, Billy. "CFD Analysis of Air Flow Through a New Design For an Outlet Louver of a Cooling System : CFD Analys av luftflödet genom en ny design för utloppet i ett kylsystem." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62647.

Full text
Abstract:
In order to improve the performance of the outlet louver for the cooling system used in the Combat Vehicle CV90, the manufacturing company BAE System Hägglunds AB recently came out with a new design. This project deals with the possible modifications of the new design to achieve a higher performance in terms of air flow resistance without losing any protection capabilities. 18 versions of BAE Systems Hägglunds AB new design were modeled using Creo Parametric 3.0 3D CAD-software. These versions were modeled with respect to the requirement of protection, when several possible threat scenarios  were carefully reviewed and studied.    The air flow through each one of these designs was CFD-simulated using ABAQUS/CAE 6.14 CFD-code, the pressure drop received in each CFD-model was compared to the pressure drop over the currently used design of the outlet louver. The concept called concept Arrows RD shows the lowest pressure drop, which is nearly 50 % lower than the pressure drop over the original design, showing that the new design could be a reasonable replacement to the currently used design.
APA, Harvard, Vancouver, ISO, and other styles
29

Hunter, William. "Actuator disk methods for tidal turbine arrays." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:bf8e95df-9e67-4c89-8d9d-1a608a8be0f4.

Full text
Abstract:
Tidal stream energy presents challenges that will require the development of new engineering tools if designs are to harness this energy source effectively. At first glance one might imagine that tidal stream energy can be treated as wind with appropriate adjustment for fluid properties of water over air, and account taken of the harsher offshore environment; both waves and turbulence. However, it is now well accepted that the flow past turbines that are constrained by the local sea bed, sea surface, and possibly also neighbouring turbines and channel sides, will differ markedly from that of an ostensibly unblocked wind turbine. Garrett & Cummins (2007) were the first to demonstrate that operating a turbine in a non- negligibly blocked flow passage presents a different flow solution and importantly a significant opportunity to enhance the power that can be delivered by blocked turbines with the limit of power extraction exceeding the Lanchester-Betz limit for operation of unblocked wind turbines. Although it is impractical to array real turbines across the entire width of a channel it has been proposed to use short arrays of turbines making use of local constructive interference (blockage) effects; Nishino & Willden (2012) showed that although the phenomenal power limits of Garrett & Cummins are unobtainable in a real flow, a significant uplift in the limit of power extraction can be achieved for short fences of turbines arrayed normally to the flow in wide cross-section channels. However, it does not follow that rotors designed using unblocked wind turbine tools are capable of extracting any more power than they are designed for and hence the power uplift made available through blockage effects may be squandered. This thesis sets out to develop design tools to assist in the design of rotors in blocked environments that are designed to make use of the flow confinement effects and yield rotors capable of extracting some of the additional power on offer in blocked flow conditions. It is the pressure recovery condition used in wind turbine design that requires relaxation in blocked flow conditions and hence it is necessary to resort to a computational framework in which the free stream pressure drop can be properly accounted for. The tool of choice is a computational fluid dynamics embedded blade element method. As with all models with semi-empirical content it is necessary to select and test correction models that account for various simplifications inherent to the use of the blade element method over a fully blade resolved simulation. The thesis presents a rigorous comparison of the computational model with experimental data with the various correction methods employed. The tool is then used to design rotors, first for unblocked operation, with favourable comparison drawn to lifting line derived optimal Betz rotor solutions. The final objective of the study is to design rotors for operation in short fence configurations of four turbines arrayed normally to the flow. This is accomplished and it is shown that by using bespoke in situ rotor design it is possible to extract more power than possible with non-blockage designs. For the defined array layout and operating conditions, the bespoke rotor array design yields a power coefficient 26% greater than the implied Betz limit for an unblocked rotor and 4% greater than operating a rotor designed in isolation in the same array.
APA, Harvard, Vancouver, ISO, and other styles
30

Knill, Duane L. "Implementing Aerodynamic Predictions from Computational Fluid Dynamics in Multidisciplinary Design Optimization of a High-Speed Civil Transport." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29530.

Full text
Abstract:
A method to efficiently introduce supersonic drag predictions from computational fluid dynamics (CFD) calculations in a combined aerodynamic-structural optimization of a High-Speed Civil Transport (HSCT) is presented. To achieve this goal, the method must alleviate the large computational burden associated with performing CFD analyses and reduce the numerical noise present in the analyses. This is accomplished through the use of response surface (RS) methodologies, a variation of the variable-complexity modeling (VCM) technique, and coarse grained parallel computing. Variable-complexity modeling allows one to take advantage of the information gained from inexpensive lower fidelity models while maintaining the accuracy of the more expensive high fidelity methods. The utility of the method is demonstrated on HSCT design problems of five, ten, fifteen, and twenty design variables. Motivation for including CFD predictions into the HSCT optimization comes from studies detailing the differences in supersonic aerodynamic predictions from linear theory, Euler, and parabolized Navier-Stokes (PNS) calculations for HSCT configurations. The effects of these differences in integrated forces and distributed loads on the aircraft performance and structural weight are investigated. These studies indicate that CFD drag solutions are required for accurate HSCT performance and weight estimates. Response surface models are also used to provide useful information to the designer with minimal computational effort. Investigations into design trade-offs and sensitivities to certain design variables, available at the cost of evaluating a simple quadratic polynomial, are presented. In addition, a novel and effective approach to visualizing high dimensional, highly constrained design spaces is enabled through the use of RS models. NOTE: An updated copy of this ETD was added in July 2012 after there were patron reports of problems with the original file.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
31

Shelley, Jonathan Knighton. "Incorporating Computational Fluid Dynamics Into The Preliminary Design Cycle." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd979.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lee, Yeon-Seung. "Trend validation of CFD prediction results for ship design (based on series 60)." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=96947587X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Lapuh, Rok. "Mesh Morphing Technique used with Open-Source CFD Toolbox in Multidisciplinary Design Optimisation." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-348873.

Full text
Abstract:
Nowadays, the product design process relies on computer simulations more than ever. Compared to the experimental tests, they allow substantially more designs to be evaluated. Moreover, computer simulations allow a search for the optimum. That is why a fast and efficient transition from one design iteration to the next is necessary.  For design evaluation in the aerospace industry, Computational Fluid Dynamics tools are used, where finite volume meshes are computationally expensive to create. Instead of recreating them for each product design during an optimisation process, it is much faster to morphone design into the next one. Here an algorithm for mesh morphing based on radial basis functions is presented. Its implementation is evaluated for mesh quality and performance. Mesh morphing of NURBS surfaces, a continuous representation of a given model geometry, together with discrete meshes is proposed next. Lastly, the implementation of the morphing algorithm is linked with a fluid flow solverand an optimisation suite. All three programs are used together to optimise a product coming from the aerospace industry.
APA, Harvard, Vancouver, ISO, and other styles
34

Pettersson, Karl. "Scaling techniques using CFD and wind tunnel measurements for use in aircraft design." Licentiate thesis, Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Petrov, Todor P. "DEVELOPMENT OF INDUSTRY ORIENTED CFD CODE FOR ANALYSIS / DESIGN OF FACE VENTILATION SYSTEMS." UKnowledge, 2014. http://uknowledge.uky.edu/mng_etds/12.

Full text
Abstract:
Two of the main safety and health issues recognized during deep cut coal mining are methane and dust hazards. Advances in continuous miner technology have improved safety and productivity. However, these advances have created some environmental problems, notably more dust and methane being generated at the face during coal extraction. Results of studies performed in the last three decades concerning the face ventilation for deep cut mining showed very complicated airflow behavior. The specifics of flow patterns developed by the face ventilation systems presents significant challenge for analytical description even for equipment-free entry. Fortunately, there are methods, such as numerical simulations that could be used to provide an engineering solution to the problem. Computational Fluid Dynamics (CFD) codes have been successfully applied during the last decade using the power of Supercomputers. Although significant progress has been made, a benchmark industry oriented CFD code dedicated to face ventilation is still not available. The goal of this project is to provide the mining industry a software for CFD analysis and design of face ventilation systems. A commercial CFD system SC/Tetra Thermofluid Analysis System with Unstructured Mesh Generator, copyright © Cradle Co, was selected for a development platform. A number of CFD models were developed for the needs of this study including methane release, dust generation, 3D models of commonly used continuous mining machines, scrubbers and water spray systems. The developed models and the used CFD code were successfully validated in the part for methane dilution, using available data from small scale and full scale experiments. The developed models for simulation of dust control systems need to be validated in the future. The developed code automates all necessary steps needed for simulation of face ventilation systems, starting with the construction of a 3D model, generation of the computational mesh, solving and monitoring the calculations, to post-processing and graphical representation of the obtained results. This code shall allow mining engineers to design better and safer face ventilation systems while providing the Mine Safety and Health Administration (MSHA) a tool to check and approve the industry’ proposed ventilation plans.
APA, Harvard, Vancouver, ISO, and other styles
36

Varghese, Panthalookaran [Verfasser]. "CFD-assisted Characterization and Design of Hot Water Seasonal Heat Stores / Panthalookaran Varghese." Aachen : Shaker, 2007. http://d-nb.info/1166510077/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pierson, S. R. "Application of commercial CFD to improve gasoline port fuel injector design and targeting." Thesis, Cranfield University, 2002. http://dspace.lib.cranfield.ac.uk/handle/1826/11426.

Full text
Abstract:
The need to meet ever more stringent emission regulations and the desire to improve fuel economy has led to the significant development of the gasoline spark ignition combustion engine in recent years. One area of development has been mixture preparation, and PH (Port Fuel Injection) has been introduced to increase engine responsiveness whilst meeting emission regulations. Successful PH designs however depend upon good targeting of the fuel spray onto the back of the intake valve. Geometric predictions based on injector axis and spray bone angles have been used in the past, but require development to account for the momentum exchange between the spray and the charge air. Alternatively CFD (Computational Fluid Dynamics) can be used. In this study a validated methodology has been successfully developed using the commercial CFD code Fluent5.5, to simulate the spray behaviour from a multi-hole port fuel injector. The approach taken ignored the primary and secondary atomisation phases, and instead droplets were injected at the injector tip position. The droplets velocity and size were then tuned until the predicted spray profile matched the measurement data at 60rnm and 90mm downstream of the injector tip. Having developed a tuned injector model, CFD simulations assessing the injector targeting performance of the Jaguar AJV8 engine were then undertaken. Based upon these assessments some suggestions to improve the engine's injector targeting performance were made. Before this methodology could be developed, a series' of experiments were necessary to characterise a state of the art port fuel injector. A combination of Planar Mie and PDA laser techniques, were used to measure how the spray behaved under different operating and atmospheric conditions. As well as providing spray boundary and validation data, an in depth understanding of the spray structure was gained for both pulsed and continuous injector operations.
APA, Harvard, Vancouver, ISO, and other styles
38

Panthalookaran, Varghese [Verfasser]. "CFD-assisted Characterization and Design of Hot Water Seasonal Heat Stores / Panthalookaran Varghese." Aachen : Shaker, 2007. http://nbn-resolving.de/urn:nbn:de:101:1-2018090906162432057604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cogan, Donavan. "The aerodynamic design and development of an urban concept vehicle through CFD analysis." Thesis, Cape Peninsula University of Technology, 2016. http://hdl.handle.net/20.500.11838/2386.

Full text
Abstract:
Thesis (MTech (Mechanical Engineering))--Cape Peninsula University of Technology, 2016.
This work presents the computational uid dynamics (CFD) analysis of a light road vehicle. Simulations are conducted using the lattice Boltzmann method (LBM) with the wall adapting local eddy (WALE) turbulence model. Simulations include and compare the use of a rolling road, rotating wheels, adaptive re nement as well as showing comparison with a Reynolds-averaged Navier-Stokes (RANS) solver and the Spalart- Allmaras (SA) turbulence model. The lift coe cient of the vehicle for the most part was seen to show a much greater di erence and inconsistencies when compared to drag from the comparisons of solvers, turbulence models, re nement and the e ect of rolling road. Determining the drag of a road vehicle can be easily achieved and veri ed using multiple solvers and methods, however, the lift coe cient and its validation require a greater understanding of the vehicle ow eld as well as the solvers, turbulence models and re nement levels capable of correctly simulating the turbulent regions around a vehicle. Using the presented method, it was found that the optimisation of vehicle aerodynamics can easily be done alongside the design evolution from initial low-drag shapes to the nal detail design, ensuring aerodynamic characteristics are controlled with aesthetic change.
APA, Harvard, Vancouver, ISO, and other styles
40

Casoli, Paolo, Fabio Scolari, Carlo Rossi, and Manuel Rigosi. "A cfd design of engineered surface for tribological performance improvements in hydraulic pumps." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71104.

Full text
Abstract:
In the present paper the preliminary results of the potentialities that surface texturing has in improving the coupling of lubricated surfaces in relative motion is presented. This kind surface engineering requires careful design of the geometry to obtain relevant improvements; therefore, it is useful to study in detail the behavior of the fluid confined between the coupled surfaces by means of CFD analysis. The purpose of this research is to study the effect of dimples created on one of the two coupled surfaces and to observe the variation of tribological properties as their principal design parameters vary, such as dimple shape, size and spatial distribution. Furthermore, simulations have been carried out with different sliding velocities and fluid temperatures to analyze the effects that these variables have on the tribological performance of the textured surface. The simulations also consider the presence of cavitation and the influence of this phenomenon on the overall behavior of the textured surface is evaluated.
APA, Harvard, Vancouver, ISO, and other styles
41

Mora, Pérez Miguel. "Computational fluid dynamics (CFD) applied to buildings sustainable design: natural ventilation. Case study." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/86208.

Full text
Abstract:
Through the last decades, building designers should deal with reliable design strategies to take advantage of natural resources in order to increase energy efficiency in buildings, as well as to promote sustainable development and add value to the society. This thesis proposes a reliable building design strategy to improve buildings energy efficiency by means of natural ventilation (NV) use. The strategy consists in evaluating the most suitable architectural solution in a particular case study taking into account environmental conditions and building surroundings in order to maximize NV use since the early building design stage. Computational fluid dynamics (CFD) techniques are used to conduct the research. This is a powerful design tool that permits buildings NV behaviour simulation prior to building construction. Therefore, the aim of the thesis is to provide a real case study building in which the NV design strategy is applied to show a reliable example and support building design decisions since the design stage. The design strategy is based on the use of a commercial numerical code that solves the fluid mechanic equations. The CFD software simulates the features that influence NV and predicts its behaviour in the different building configurations prior to building construction. This numerical technique allows, on the one hand, the visualization of air flow paths in buildings. On the other hand, many quantifiable parameters are calculated by the software. Through the analysis and comparison of those parameters, the best architectural solutions are chosen. With regards to all possible architectural decisions, the research is focused on the façade configuration selection and the building location. First of all, the NV design strategy feasibility is analysed in a particular region: the Mediterranean Valencian Coastal area (Spain). The region is characterized by the uniform conditions of the prevailing wind during the warm season. Then, a validated CFD simulation is used to analyse qualitatively and quantitatively the building surrounding influence on wind paths through and around buildings. The objective is to compare different façade opening positions and select the alternative that takes more profit of the NV resources available. Additionally, a general quantification of the ventilated façade contribution to buildings energy efficiency is presented under the frame of the façade configuration selection. Secondly, two simulations are conducted to analyse two different building locations. The assessment of surrounding buildings influence on building NV behaviour is done through validated CFD models. Some parameters and visualizations are proposed to be used in the quantitative and qualitative assessment of each solution respectively. Then, the best location alternative with regards to NV performance is selected. Finally, the research is concluded with the case study building full-scale construction. The indoor CFD simulation used from the beginning is then successfully validated. The NV building behaviour is also successfully verified. Additionally, contrasted performance indexes are used to evaluate indoor comfort conditions: draught risk (DR), predicted mean vote (PMV) and predicted percentage of dissatisfied people (PPD). The results show that comfort conditions can be reached more energy efficiently by means of NV use. Afterwards, it is verified how the comfortable indoor environment conditions are ensured and optimized by the NV use. Although the design strategy is applied to a particular building design, the design strategy potential is that it could be applied to all buildings. Consequently, major potential energy savings could be achieved.
Durante las últimas décadas los agentes involucrados en el diseño de edificios deben de utilizar estrategias fiables de diseño que les permitan aprovechar los recursos naturales del entorno con el objetivo de aumentar la eficiencia energética de los edificios así como promover el desarrollo sostenible y generar valor añadido para la sociedad. Esta tesis propone una estrategia de diseño fiable de edificios para mejorar su eficiencia energética mediante el uso de la ventilación natural (NV por sus siglas en inglés "natural ventilation"). La estrategia consiste en evaluar la solución arquitectónica más adecuada teniendo en cuenta las condiciones ambientales y el entorno de los edificios con el objetivo de maximizar el uso de la ventilación natural desde la fase inicial de su diseño. En esta tesis se aplica la estrategia de diseño a un caso de estudio real y particular. La estrategia de diseño se basa en el uso de un código numérico comercial que resuelve las ecuaciones de la mecánica de fluidos (CFD por sus siglas en inglés "computational fluid dynamics"). El software CFD simula las características que influyen en la ventilación natural y predice su comportamiento en los edificios antes de su construcción. Esta técnica numérica permite la visualización del flujo de aire en los edificios. Además, el software permite calcular parámetros que son analizados y comparados posteriormente para elegir la solución arquitectónica que suponga un mejor comportamiento de la ventilación natural. Con respecto a todas las decisiones arquitectónicas posibles, la investigación se centra en la selección de la ubicación del edificio y de la configuración de los huecos de su fachada. En primer lugar, se analiza la viabilidad de la estrategia de diseño en una región determinada: la zona costera Mediterránea de la Comunidad Valenciana. La región se caracteriza por las condiciones uniformes del viento predominante durante la estación cálida. A continuación, se utiliza una simulación de CFD validada para analizar cualitativamente y cuantitativamente la influencia de los edificios circundantes en los flujos del viento a través y alrededor de los edificios circundantes. El objetivo es comparar distintas posiciones de los huecos de la fachada para seleccionar la alternativa que mejor aproveche los recursos de ventilación natural disponibles. Además, se presenta en el marco de la selección de la configuración de la fachada una cuantificación general de la contribución de la fachada ventilada a la eficiencia energética de los edificios. En segundo lugar, se realizan dos simulaciones para analizar dos ubicaciones diferentes del edificio caso de estudio. La evaluación de la influencia de los edificios circundantes en el comportamiento de la ventilación natural del edificio caso de estudio se realiza mediante la utilización de modelos CFD validados. Se proponen distintos parámetros y visualizaciones para la evaluación cuantitativa y cualitativa de cada solución. A continuación se selecciona la mejor ubicación con respecto al comportamiento de la ventilación natural en el edificio caso de estudio. Finalmente, la investigación concluye con la construcción a escala real del edificio caso de estudio. Se valida con éxito la simulación CFD del interior del edificio utilizada desde la etapa de diseño. También se verifica con éxito el comportamiento de la ventilación natural del edificio. Además, se analizan las condiciones de confort interiores mediante la evaluación de los siguientes índices: riesgo de corrientes de aire (DR por sus siglas en inglés "draught risk"), voto promedio previsto (PMV por sus siglas en inglés "predicted mean vote") y el porcentaje previsto de personas insatisfechas (PPD por sus siglas en inglés "predicted percentage of dissatisfied people"). Los resultados muestran que el uso de la ventilación natural permite alcanzar, de manera más energéticamente eficiente, las
Durant les últimes dècades els agents involucrats en el disseny d'edificis utilitzen estratègies fiables de disseny que els permeten aprofitar els recursos naturals de l'entorn amb l'objectiu d'augmentar l'eficiència energètica dels edificis així com promoure el desenvolupament sostenible i generar valor afegit per la societat. Aquesta tesi proposa una estratègia fiable de disseny d'edificis per a millorar la seva eficiència energètica mitjançant l'ús de la ventilació natural (NV per les sigles en anglès "natural ventilation"). L'estratègia consisteix a avaluar la solució arquitectònica més adequada tenint en compte les condicions ambientals i l'entorn dels edificis amb l'objectiu de maximitzar l'ús de la ventilació natural des de la fase inicial del seu disseny. En aquesta tesi s'aplica l'estratègia de disseny a un cas d'estudi real i particular. L'estratègia de disseny es basa en l'ús d'un codi numèric comercial que resol les equacions de la mecànica de fluids (CFD per les sigles en anglès "computational fluid dynamics"). El programari CFD simula les característiques que influeixen en la ventilació natural i prediu el seu comportament en els edificis abans de la seva construcció. Aquesta tècnica numèrica permet la visualització del flux d'aire en els edificis. A més, el programari permet calcular paràmetres que són analitzats i comparats posteriorment per triar la solució arquitectònica que supose un millor comportament de la ventilació natural. Pel que fa a totes les decisions arquitectòniques possibles, la investigació es centra en la selecció de la ubicació de l'edifici i de la configuració de les obertures de la façana. En primer lloc, s'analitza la viabilitat de l'estratègia de disseny en una regió determinada: la zona costanera Mediterrània de la Comunitat Valenciana. La regió es caracteritza per les condicions uniformes del vent predominant durant l'estació càlida. A continuació, s'utilitza una simulació de CFD validada per analitzar qualitativament i quantitativament la influència dels edificis circumdants en els fluxos del vent a través i al voltant dels edificis circumdants. L'objectiu és comparar diferents posicions dels buits de la façana per seleccionar l'alternativa que millor aprofite els recursos de ventilació natural disponibles. A més, en el marc de la selecció de la configuració de la façana es presenta una quantificació general de la contribució de la façana ventilada a l'eficiència energètica dels edificis. En segon lloc, es realitzen dues simulacions per analitzar dues ubicacions diferents de l'edifici cas d'estudi. L'avaluació de la influència dels edificis circumdants en el comportament de la ventilació natural de l'edifici cas d'estudi es realitza mitjançant la utilització de models CFD validats. Es proposen diferents paràmetres i visualitzacions per a l'avaluació quantitativa i qualitativa de cada solució. A continuació es selecciona la millor ubicació pel que fa al comportament de la ventilació natural a l'edifici cas d'estudi. Finalment, la investigació conclou amb la construcció a escala real de l'edifici cas d'estudi. Es valida amb èxit la simulació CFD de l'interior de l'edifici utilitzada des de l'etapa de disseny. També es verifica amb èxit el comportament de la ventilació natural de l'edifici. A més, s'analitzen les condicions de confort interiors mitjançant l'avaluació dels següents índexs: risc de corrents d'aire (DR per les sigles en anglès "draught risk"), mitjana de vots previstos (PMV per les sigles en anglès "predicted mean vote") i el percentatge previst de persones insatisfetes (PPD per les sigles en anglès "predicted percentage of dissatisfied people"). Els resultats mostren que l'ús de la ventilació natural permet assolir, de manera més energèticament eficient, les condicions de confort.
Mora Pérez, M. (2017). Computational fluid dynamics (CFD) applied to buildings sustainable design: natural ventilation. Case study [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86208
TESIS
APA, Harvard, Vancouver, ISO, and other styles
42

Vollmer, Thees, and Ludger Frerichs. "Development of hydraulic tanks by multi-phase CFD simulation." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199968.

Full text
Abstract:
Hydraulic tanks have a variety of different tasks. The have to store the volume of oil needed for asymmetric actors in the system as well as to supply the system with preconditioned oil. This includes the deaeration as air contamination is affecting the overall system performance. The separation of the air in the tank is being realized mainly by passive methods, improving the guidance of the air and oil flow. The use of CFD models to improve the design of hydraulic tank is recently often discussed. In this paper, a design method for hydraulic tanks using CFD is presented and discussed. First the different requirements on a hydraulic tank are described as well as the motivation changing the tank designs. Additionally, a quick overview on different calculation models for the behavior of air in oil as well as the capabilities of CFD to reproduce them is given. After this the methodology of tank design applying CFD is presented. The method is then used in an example.
APA, Harvard, Vancouver, ISO, and other styles
43

Bay, Raymond James. "Improved Design Method for Cambered Stepped Hulls with High Deadrise." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/90298.

Full text
Abstract:
Eugene Clement created a design method for swept-back cambered step hulls with deadrise. The cambered step is designed to carry 90% of the planing vessels weight with the remaining 10% being support by a stern mounted hydrofoil. The method requires multiple design iterations in order to achieve an optimal design. Clement stated that the method was not suitable for cambered planing surfaces with high deadrise angles greater than 15 degrees. The goal of this thesis is to create a design procedure for swept-back cambered planing surfaces with high deadrise angles that does not require multiple iterations to obtain an optimal design. Computational fluid dynamics (CFD) program STAR CCM+ is used to generate a database for performance characteristics for a wide range of designs varying deadrise angle, load requirements, trim angle, and different camber values. The simulations are first validated with experimental data for two different cambered steps designed by Stefano Brizzolara and tested in the tow tank at the United States Naval Academy. A series of validation studies utilizing fixed and overset meshes led to a final simulation set up with an overset mesh that allowed for accurate prediction of drag, trim moment, wetted keel length, and the wake profile aft of the cambered planing surface. The database is fitted such that the final equations for optimal design values such as camber, trim angle, drag (shear and pressure), wetted keel length, wetted surface area, and trim moment are in terms of deadrise angle and lift. The optimized design equations are validated with CFD simulation.
Master of Science
Eugene Clement developed a new design method to improve the performance of ultra-fast planing crafts. A planing craft uses the force generated from the flow of water over the bottom to lift the vessel without the use of the static buoyancy force that classic boat designs rely on. Clement wanted to improve the performance of the planing vessel by reducing the total drag force caused by the flow of water on the bottom of the vessel. ClementâĂŹs design method involves reducing the wetted surface area which reduces drag. Reducing the wetted surface area would normally cause the lifting force on the vessel to reduce, but with the addition of curvature in the smaller wetted surface area, the lifting force would remain the same. ClementâĂŹs new design method requires multiple iterations to obtain an optimal design. The method limits the angle of the vessels bottom relative to horizontal to under 15 degree. The goal of this thesis is to create a new design method for planing vessels with bottoms that have an incline of 15 degrees or more relative to horizontal. The design method is created using Computational Fluid Dynamics (CFD) solver to model the planing surface moving through water. The CFD solver is validated with experimental test performed at the United States Naval Academy. The improved design method uses equations that can predict the forces and other design characteristics based on the desired vessel weight and seakeeping requirements.
APA, Harvard, Vancouver, ISO, and other styles
44

Chadha, Raman. "Design of high efficiency blowers for future aerosol applications." Texas A&M University, 2005. http://hdl.handle.net/1969.1/5002.

Full text
Abstract:
High efficiency air blowers to meet future portable aerosol sampling applications were designed, fabricated, and evaluated. A Centrifugal blower was designed to achieve a flow rate of 100 L/min (1.67 x 10^-3 m^3/s) and a pressure rise of WC " 4 (1000 PA). Commercial computational fluid dynamics (CFD) software, FLUENT 6.1.22, was used extensively throughout the entire design cycle. The machine, Reynolds number (Re) , was around 10^5 suggesting a turbulent flow field. Renormalization Group (RNG) κ−ε turbulent model was used for FLUENT simulations. An existing design was scaled down to meet the design needs. Characteristic curves showing static pressure rise as a function of flow rate through the impeller were generated using FLUENT and these were validated through experiments. Experimentally measured efficiency (ηEXP) for the base-design was around 10%. This was attributed to the low efficiency of the D.C. motor used. CFD simulations, using the κ−ε turbulent model and standard wall function approach, over-predicted the pressure rise values and the percentage error was large. Enhanced wall function under-predicted the pressure rise but gave better agreement (less than 6% error) with experimental results. CFD predicted a blower scaled 70% in planar direction (XZ) and 28% in axial direction (Y) and running at 19200 rpm (70xz_28y@19.2k) as the most appropriate choice. The pressure rise is 1021 Pa at the design flow rate of 100 L/min. FLUENT predicts an efficiency value based on static head (ηFLU) as 53.3%. Efficiency value based on measured static pressure rise value and the electrical energy input to the motor (ηEXP) is 27.4%. This is almost a 2X improvement over the value that one gets with the hand held vacuum system blower.
APA, Harvard, Vancouver, ISO, and other styles
45

Diaconeasa, Mihai Aurelian. "CFD in support of development and optimization of the MIT LEU fuel element design." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95601.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 85).
The effect of lateral power distribution of the MITR LEU fuel design was analyzed using Computational Fluid Dynamics. Coupled conduction and convective heat transfer were modeled for uniform and non-uniform lateral power distributions. It was concluded that, due to conduction, the maximum heat flux ratio on the cladding surface is 1.16, compared to the maximum volumetric power generation ratio of 1.23. The maximum cladding temperature occurs roughly 0.5 inches from the edge of the support plate, while the peak volumetric power generation is located at the end of the fuel meat, about 0.1 inches from the edge of the support plate. Although the heat transfer coefficient is lower in the corner of the coolant channel, this has a negligible effect on the peak cladding temperature, i.e. the peak cladding temperature is related to heat flux only and a "channel average" heat transfer coefficient can be adopted. Moreover, coolant temperatures in the radial direction are reasonably uniform, which is indicative of good lateral mixing. Finally, a quasi-DNS study has been performed to analyze the effect of the fuel grooves on the local heat transfer coefficient. The quasi-DNS results bring useful insights, showing two main effects related to the existence of the grooves. First, the increased surface leads to an increase in the pressure drop and further, the flow aligned configuration of the grooves limits the ability of the near wall turbulent structures to create mixing, leading to a noticeable reduction in the local heat transfer coefficient at the base of the grooves. Overall, this leads to an effective decrease in the local heat transfer coefficient, but due to the increased heat transfer surface the global heat transfer is enhanced in comparison to the flat plate configuration. The improved understanding of the effects of grooves on the local heat transfer phenomena provides a useful contribution to future fuel design considerations. For example, the increase in pressure drop, together with the reduction in the local heat transfer coefficient indicated that the selection of a grooved wall channel instead of a smooth wall channel might not necessarily be optimal, particularly if fabrication issues are taken into account, together with the concern that grooved walls may promote oxide growth and crud formation during the life of the fuel.
by Mihai Aurelian Diaconeasa.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
46

Tan, Gang 1974. "Study of natural ventilation design by integrating the multi-zone model with CFD simulation." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/28747.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2005.
Includes bibliographical references (p. 150-154).
Natural ventilation is widely applied in sustainable building design because of its energy saving, indoor air qualify and indoor thermal environment improvement. It is important for architects and engineers to accurately predict the performance of natural ventilation, especially in the building design stage. Unfortunately, there is not any good public tool available to predict the natural ventilation design. The integration of the multi-zone model and the computational fluid dynamics (CFD) simulation provides a way to assess the performance of natural ventilation in whole buildings, as well as the detailed thermal environmental information in some particular space. This work has coupled the multi-zone airflow model with the thermal model. A new program, called MultiVent, has been developed with a web-server that can provide online calculation for the public. The MultiVent program can simultaneously simulate the indoor air temperature and airflow rate with known indoor heat sources for buoyancy dominated, buoyancy-wind combined and wind dominated cases. To properly apply the MultiVent program to the natural ventilation design, two configurations in naturally ventilated buildings should be carefully studied: the atrium and large openings between the zones. A criterion has been set up for dividing the large opening and the connected atrium space into at least two sub-openings and sub-zones. The results of the MultiVent calculation can provide boundary conditions to the CFD simulation for some particular zone. In order to correctly simulate the particular space with CFD, the location and conditions at the integrating surface (boundary surface) have been studied. This work suggested that the simulation zone should include part of the connected atrium space when
(cont.) the occupied room is simulated with CFD. There are two options to integrate the MultiVent and CFD simulation through different boundary conditions: velocity (mass) integration and pressure integration. The case studies of this work showed that both of them can generate good CFD simulation results.
by Gang Tan.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
47

Blanco, Mark Richard. "Design and Qualification of a Boundary-Layer Wind Tunnel for Modern CFD Validation Experiments." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1559237473563483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Narducci, Robert P. "Selected optimization procedures for CFD-based shape design involving shock waves or computational noise." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-152015/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chernysheva, Olga V. "Flutter in sectored turbine vanes." Doctoral thesis, KTH, Energy Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3737.

Full text
Abstract:

In order to eliminate or reduce vibration problems inturbomachines without a high increase in the complexity of thevibratory behavior, the adjacent airfoils around the wheel areoften mechanically connected together with lacing wires, tip orpart-span shrouds in a number of identical sectors. Although anaerodynamic stabilizing effect of tying airfoils together ingroups on the whole cascade is indicated by numerical andexperimental studies, for some operating conditions suchsectored vane cascade can still remain unstable.

The goal of the present work is to investigate thepossibilities of a sectored vane cascade to undergoself-excited vibrations or flutter. The presented method forpredicting the aerodynamic response of a sectored vane cascadeis based on the aerodynamic work influence coefficientrepresentation of freestanding blade cascade. The sectored vaneanalysis assumes that the vibration frequency is the same forall blades in the sectored vane, while the vibration amplitudesand mode shapes can be different for each individual blade inthe sector. Additionally, the vibration frequency as well asthe amplitudes and mode shapes are supposed to be known.

The aerodynamic analysis of freestanding blade cascade isperformed with twodimensional inviscid linearized flow model.As far as feasible the study is supported by non-linear flowmodel analysis as well as by performing comparisons againstavailable experimental data in order to minimize theuncertainties of the numerical modeling on the physicalconclusions of the study.

As has been shown for the freestanding low-pressure turbineblade, the blade mode shape gives an important contributioninto the aerodynamic stability of the cascade. During thepreliminary design, it has been recommended to take intoaccount the mode shape as well rather than only reducedfrequency. In the present work further investigation using foursignificantly different turbine geometries makes these findingsmore general, independent from the low-pressure turbine bladegeometry. The investigation also continues towards a sectoredvane cascade. A parametrical analysis summarizing the effect ofthe reduced frequency and real sector mode shape is carried outfor a low-pressure sectored vane cascade for differentvibration amplitude distributions between the airfoils in thesector as well as different numbers of the airfoils in thesector. Critical (towards flutter) reduced frequency maps areprovided for torsion- and bending-dominated sectored vane modeshapes. Utilizing such maps at the early design stages helps toimprove the aerodynamic stability of low-pressure sectoredvanes.

A special emphasis in the present work is put on theimportance for the chosen unsteady inviscid flow model to bewell-posed during numerical calculations. The necessity for thecorrect simulation of the far-field boundary conditions indefining the stability margin of the blade rows isdemonstrated. Existing and new-developed boundary conditionsare described. It is shown that the result of numerical flowcalculations is dependent more on the quality of boundaryconditions, and less on the physical extension of thecomputational domain. Keywords: Turbomachinery, Aerodynamics,Unsteady CFD, Design, Flutter, Low-Pressure Turbine, Blade ModeShape, Critical Reduced Frequency, Sectored Vane Mode Shape,Vibration Amplitude Distribution, Far-field 2D Non-ReflectingBoundary Conditions. omain.

Keywords:Turbomachinery, Aerodynamics, Unsteady CFD,Design, Flutter, Low-Pressure Turbine, Blade Mode Shape,Critical Reduced Frequency, Sectored Vane Mode Shape, VibrationAmplitude Distribution, Far-field 2D Non-Reflecting BoundaryConditions.

APA, Harvard, Vancouver, ISO, and other styles
50

Olimstad, Grunde. "Characteristics of reversible-pump turbines." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for energi- og prosessteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19750.

Full text
Abstract:
The primary goal for this PhD project has been to investigate instability of reversiblepump turbines (RPTs) as a phenomenon and to find remedies to solve it. The instability occurs for turbines with s-shaped characteristics, unfavourable waterways and limited rotating inertia. It is only observed for certain operation points at either high speed or low load. These correspond to either high values of Ned or low values of Qed. The work done in this PhD thesis can be divided into the three following categories. Investigate and understand the behaviour of a pump turbine: A model was designed in order to investigate the pump turbine behaviour related to its characteristics. This model was manufactured and measurements were performed in the laboratory. By using throttling valves or torque as input the full s-shaped characteristics was measured. When neither of these techniques is used, the laboratory system has unstable operation points which result in hysteresis behaviour. Global behaviour of the RPT in a power plant system was investigated through analytical stability analysis and dynamic system simulations. The latter included both rigid and elastic representation of the water column. Turbine internal flow: The flow inside the runner was investigated by computer simulations (CFD). Two-dimensional analysis was used to study the inlet part of the runner. This showed that a vortex forming at the inlet is one of the causes for the unstable characteristics. Three-dimensional analyses were performed and showed multiple complex flow structures in the unstable operation range. Measurements at different pressure levels showed that the characteristics were dependent on the Reynolds number at high Ned values in turbine mode. This means that the similarity of flows is not sufficiently described by constant Qed and Ned values at this part of the characteristics. Design modifications: The root of the stability problem was considered to be the runner’s geometric design at the inlet in turbine mode. Therefore different design parameters were investigated to find relations to the characteristics. Methods used were measurements, CFD modelling and analytical models. The leading edge profile was altered on the physical model and measurements were performed in the laboratory. Results showed that the profiles have significant influence on characteristics and therewith stability at high speed operation points. Other design parameters were investigated by CFD analysis with special focus on the inlet blade angle.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography