Journal articles on the topic 'Cerebrovascular disease – Spectroscoping imaging'

To see the other types of publications on this topic, follow the link: Cerebrovascular disease – Spectroscoping imaging.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Cerebrovascular disease – Spectroscoping imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mihara, Futoshi, Yasuo Kuwabara, Tsuyoshi Yoshida, Takashi Yoshiura, Masayuki Sasaki, Kouji Masuda, Toshio Matsushima, and Masashi Fukui. "Correlation between proton magnetic resonance spectroscopic lactate measurements and vascular reactivity in chronic occlusive cerebrovascular disease: a comparison with positron emission tomography." Magnetic Resonance Imaging 18, no. 9 (November 2000): 1167–74. http://dx.doi.org/10.1016/s0730-725x(00)00216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murphy, Kieran. "Imaging cerebrovascular disease." Annals of Neurology 55, no. 3 (2004): 453. http://dx.doi.org/10.1002/ana.20023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Riordan-Eva, Paul. "Imaging Cerebrovascular Disease." Journal of Neuro-Ophthalmology 24, no. 3 (September 2004): 270. http://dx.doi.org/10.1097/00041327-200409000-00020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heiss, Wolf-Dieter, Michael Forsting, and Hans-Christoph Diener. "Imaging in cerebrovascular disease." Current Opinion in Neurology 14, no. 1 (February 2001): 67–75. http://dx.doi.org/10.1097/00019052-200102000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

&NA;. "Imaging for Cerebrovascular Disease." Journal of Neuroscience Nursing 33, no. 4 (August 2001): 220. http://dx.doi.org/10.1097/01376517-200108000-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trelles, Miguel. "“Imaging of Cerebrovascular Disease." Investigative Radiology 51, no. 7 (July 2016): e1. http://dx.doi.org/10.1097/rli.0000000000000302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Valotassiou, Varvara, Greta Wozniak, Nikolaos Sifakis, Charalambos Iliadis, and Panagiotis Georgoulias. "SPECT Imaging and Cerebrovascular Disease." Vascular Disease Prevention 4, no. 1 (December 1, 2008): 165–70. http://dx.doi.org/10.2174/1567270000704010017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valotassiou, Varvara, Greta Wozniak, Nikolaos Sifakis, Charalambos Iliadis, and Panagiotis Georgoulias. "SPECT Imaging and Cerebrovascular Disease." Vascular Disease Prevention 4, no. 2 (May 1, 2007): 165–70. http://dx.doi.org/10.2174/156727007780599421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bowler, J. V. "Noninvasive Imaging of cerebrovascular disease." Journal of Neurology, Neurosurgery & Psychiatry 52, no. 9 (September 1, 1989): 1118–19. http://dx.doi.org/10.1136/jnnp.52.9.1118-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gounis, Matthew J., Kajo van der Marel, Miklos Marosfoi, Mary L. Mazzanti, Frédéric Clarençon, Ju-Yu Chueh, Ajit S. Puri, and Alexei A. Bogdanov. "Imaging Inflammation in Cerebrovascular Disease." Stroke 46, no. 10 (October 2015): 2991–97. http://dx.doi.org/10.1161/strokeaha.115.008229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Welch, K. M. A., L. D'Olhaberriague, and V. Nagesh. "Imaging Examinations of Cerebrovascular Disease." Nosotchu 18, no. 6 (1996): 427–29. http://dx.doi.org/10.3995/jstroke.18.427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Martin, David S. "Noninvasive Imaging of Cerebrovascular Disease." Radiology 174, no. 2 (February 1990): 432. http://dx.doi.org/10.1148/radiology.174.2.432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

&NA;. "Noninvasive Imaging of Cerebrovascular Disease." Clinical Nuclear Medicine 15, no. 3 (March 1990): 207. http://dx.doi.org/10.1097/00003072-199003000-00022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hage, Ziad A., Ali Alaraj, Gregory D. Arnone, and Fady T. Charbel. "Novel imaging approaches to cerebrovascular disease." Translational Research 175 (September 2016): 54–75. http://dx.doi.org/10.1016/j.trsl.2016.03.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Seidel, Günter, and Karsten Meyer-Wiethe. "Ultrasound Perfusion Imaging of Cerebrovascular Disease." Seminars in Cerebrovascular Diseases and Stroke 5, no. 2 (June 2005): 132–40. http://dx.doi.org/10.1053/j.scds.2005.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

WU, CHRISTINE C., DAN MUNGAS, JAMIE L. EBERLING, BRUCE R. REED, and WILLIAM J. JAGUST. "Imaging Interactions between Alzheimer's Disease and Cerebrovascular Disease." Annals of the New York Academy of Sciences 977, no. 1 (November 2002): 403–10. http://dx.doi.org/10.1111/j.1749-6632.2002.tb04844.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Moritani, Toshio, Yuji Numaguchi, Norma B. Lemer, Martha K. Rozans, Avin E. Robinson, Akio Hiwatashi, and Per-Lennart Westesson. "Sickle cell cerebrovascular disease." Clinical Imaging 28, no. 3 (May 2004): 173–86. http://dx.doi.org/10.1016/s0899-7071(03)00121-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kricheff, I. I. "Arteriosclerotic ischemic cerebrovascular disease." Radiology 162, no. 1 (January 1987): 101–9. http://dx.doi.org/10.1148/radiology.162.1.3538142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Provenzale, James M., and Norman J. Beauchamp. "RECENT ADVANCES IN IMAGING OF CEREBROVASCULAR DISEASE." Radiologic Clinics of North America 37, no. 3 (May 1999): 467–88. http://dx.doi.org/10.1016/s0033-8389(05)70107-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Swan, J. Shannon, François Sainfort, William F. Lawrence, Vipat Kuruchittham, Thitima Kongnakorn, and Dennis M. Heisey. "Process Utility for Imaging in Cerebrovascular Disease." Academic Radiology 10, no. 3 (March 2003): 266–74. http://dx.doi.org/10.1016/s1076-6332(03)80100-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meling, Torstein R. "Imaging of cerebrovascular disease. A practical guide." Acta Neurochirurgica 158, no. 12 (October 1, 2016): 2429–30. http://dx.doi.org/10.1007/s00701-016-2974-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Finet, Patrice. "Imaging of cerebrovascular disease: a practical guide." Acta Chirurgica Belgica 117, no. 1 (November 17, 2016): 68. http://dx.doi.org/10.1080/00015458.2016.1248696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Martin, David S. "Cerebrovascular Disease: Imaging and Interventional Treatment Options." Radiology 198, no. 2 (February 1996): 546. http://dx.doi.org/10.1148/radiology.198.2.546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Moran, C. J., M. J. Siegel, and M. R. DeBaun. "Sickle cell disease: imaging of cerebrovascular complications." Radiology 206, no. 2 (February 1998): 311–21. http://dx.doi.org/10.1148/radiology.206.2.9457180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Endo, Shunro, and Jun Hatazawa. "Macro- and microscopic imaging of cerebrovascular disease." Nosotchu 29, no. 6 (2007): 816. http://dx.doi.org/10.3995/jstroke.29.816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

van der Grond, J., and W. P. T. M. Mali. "Multifunctional magnetic resonance imaging of cerebrovascular disease." European Radiology 8, no. 5 (June 2, 1998): 726–38. http://dx.doi.org/10.1007/s003300050464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

KNOPMAN, D. S. "Cerebrovascular disease and dementia." British Journal of Radiology 80, special_issue_2 (December 2007): S121—S127. http://dx.doi.org/10.1259/bjr/75681080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Powers, William J., and Allyson R. Zazulia. "PET in Cerebrovascular Disease." PET Clinics 5, no. 1 (January 2010): 83–106. http://dx.doi.org/10.1016/j.cpet.2009.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Shaikh, Arooj. "Ultrasound Diagnosis of Cerebrovascular Disease." Ultrasound Quarterly 12, no. 3 (1994): 185. http://dx.doi.org/10.1097/00013644-199412030-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kanetaka, Hidekazu, Haruo Hanyu, Nayuta Namioka, Hirokuni Hatanaka, Raita Fukasawa, Tomohiko Sato, Shunichi Koyama, Hirofumi Sakurai, and Toshihiko Iwamoto. "Central benzodiazepine receptor imaging in Alzheimer's disease with cerebrovascular disease." Geriatrics & Gerontology International 14, no. 3 (July 2014): 725–26. http://dx.doi.org/10.1111/ggi.12172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Pasarikovski, Christopher R., Jerry C. Ku, Stefano M. Priola, Leodante da Costa, and Victor X. D. Yang. "Endovascular optical coherence tomography imaging in cerebrovascular disease." Journal of Clinical Neuroscience 80 (October 2020): 30–37. http://dx.doi.org/10.1016/j.jocn.2020.07.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Graff-Radford, Jonathan, Jeremiah A. Aakre, David S. Knopman, Christopher G. Schwarz, Kelly D. Flemming, Alejandro A. Rabinstein, Jeffrey L. Gunter, et al. "Prevalence and Heterogeneity of Cerebrovascular Disease Imaging Lesions." Mayo Clinic Proceedings 95, no. 6 (June 2020): 1195–205. http://dx.doi.org/10.1016/j.mayocp.2020.01.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Salgado, Efrain D., Meredith Weinstein, Anthony J. Furlan, Michael T. Modic, Gerald J. Beck, Melinda Estes, Issam Awad, and John R. Little. "Proton magnetic resonance imaging in ischemic cerebrovascular disease." Annals of Neurology 20, no. 4 (October 1986): 502–7. http://dx.doi.org/10.1002/ana.410200410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stolz, Erwin P., and Manfred Kaps. "Ultrasound Contrast Agents and Imaging of Cerebrovascular Disease." Seminars in Cerebrovascular Diseases and Stroke 5, no. 2 (June 2005): 111–31. http://dx.doi.org/10.1053/j.scds.2005.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Heiss, W. D., K. Herholz, H. G. Böcher-Schwarz, G. Pawlik, K. Wienhard, W. Steinbrich, and G. Friedmann. "PET, CT, and MR Imaging in Cerebrovascular Disease." Journal of Computer Assisted Tomography 10, no. 6 (November 1986): 903–11. http://dx.doi.org/10.1097/00004728-198611000-00002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chou, Alan F. "Proton magnetic resonance imaging in ischemic cerebrovascular disease." Journal of Emergency Medicine 5, no. 4 (July 1987): 344. http://dx.doi.org/10.1016/0736-4679(87)90275-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kurz, Alexander, Matthias Riemenschneider, and Anders Wallin. "Potential Biological Markers for Cerebrovascular Disease." International Psychogeriatrics 15, S1 (July 2003): 89–97. http://dx.doi.org/10.1017/s1041610203009025.

Full text
Abstract:
Cerebrovascular diseases can causes cognitive impairment and dementia by loss of neurons and synaptic connections, destruction of axons, and demyelinization. Biological markers including genetic tests, brain imaging techniques, and biochemical assays in the CSF are valuable for the identification and quantification of cerebrovascular diseases. Genetic tests may be used to detect mutations that cause hereditary cerebral amyloid angiopathies or cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Structural CT and MR imaging is routinely used to visualize and quantify infarcts and white-matter changes. Functional SPET and PET imaging can demonstrate focal and remote effects of vascular lesions on cerebral blood flow and metabolism. Biochemical imaging using proton MRS is a nonspecific marker for neuronal and axonal damage. Among biochemical markers in the CSF, tau protein, phospho-tau, and beta amyloid protein are helpful to differentiate vascular dementia from Alzheimer's disease.
APA, Harvard, Vancouver, ISO, and other styles
38

Nakstad, P. "Ischemic Cerebrovascular Disease (Stroke)." Rivista di Neuroradiologia 9, no. 1_suppl (May 1996): 13–15. http://dx.doi.org/10.1177/19714009960090s103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lin, Amy, Sapna Rawal, Ronit Agid, and Daniel M. Mandell. "Cerebrovascular Imaging: Which Test is Best?" Neurosurgery 83, no. 1 (June 23, 2017): 5–18. http://dx.doi.org/10.1093/neuros/nyx325.

Full text
Abstract:
Abstract Optimal diagnosis and characterization of cerebrovascular disease requires selection of the appropriate imaging exam for each clinical situation. In this review, we focus on intracranial arterial disease and discuss the techniques in current clinical use for imaging the blood vessel lumen and blood vessel wall, and for mapping cerebral hemodynamic impairment at the tissue level. We then discuss specific strategies for imaging intracranial aneurysms, arteriovenous malformations, dural arterial venous fistulas, and arterial steno-occlusive disease.
APA, Harvard, Vancouver, ISO, and other styles
40

Goldberg, Michael F., Morton F. Goldberg, R. Cerejo, and A. H. Tayal. "Cerebrovascular Disease in COVID-19." American Journal of Neuroradiology 41, no. 7 (May 14, 2020): 1170–72. http://dx.doi.org/10.3174/ajnr.a6588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Summers, Paul E., J. M. Jarosz, and Hugh Markus. "MR Angiography in Cerebrovascular Disease." Clinical Radiology 56, no. 6 (June 2001): 437–56. http://dx.doi.org/10.1053/crad.2001.0618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hoffmann, Michael, Peter Corr, and John Robbs. "Cerebrovascular Findings in Takayasu Disease." Journal of Neuroimaging 10, no. 2 (April 2000): 84–90. http://dx.doi.org/10.1111/jon200010284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ni, Wendy W., Thomas Christen, Jarrett Rosenberg, Zungho Zun, Michael E. Moseley, and Greg Zaharchuk. "Imaging of cerebrovascular reserve and oxygenation in Moyamoya disease." Journal of Cerebral Blood Flow & Metabolism 37, no. 4 (July 20, 2016): 1213–22. http://dx.doi.org/10.1177/0271678x16651088.

Full text
Abstract:
This study aimed to determine whether measurements of cerebrovascular reserve and oxygenation, assessed with spin relaxation rate R2′, yield similar information about pathology in pre-operative Moyamoya disease patients, and to assess whether R2′ is a better measure of oxygenation than other proposed markers, such as R2* and R2. Twenty-five pre-operative Moyamoya disease patients were scanned at 3.0T with acetazolamide challenge. Cerebral blood flow mapping with multi-delay arterial spin labeling, and R2*, R2, and R2′ mapping with Gradient-Echo Sampling of Free Induction Decay and Echo were performed. No baseline cerebral blood flow difference was found between angiographically abnormal and normal regions (49 ± 12 vs. 48 ± 11 mL/100 g/min, p = 0.44). However, baseline R2′ differed between these regions (3.2 ± 0.7 vs. 2.9 ± 0.6 s−1, p < 0.001), indicating reduced oxygenation in abnormal regions. Cerebrovascular reserve was lower in angiographically abnormal regions (21 ± 38 vs. 41 ± 26%, p = 0.001). All regions showed trend toward significantly improved oxygenation post-acetazolamide. Regions with poorer cerebrovascular reserve had lower baseline oxygenation (Kendall's τ = −0.24, p = 0.003). A number of angiographically abnormal regions demonstrated preserved cerebrovascular reserve, likely due to the presence of collaterals. Finally, of the concurrently measured relaxation rates, R2′ was superior for oxygenation assessment.
APA, Harvard, Vancouver, ISO, and other styles
44

Hacein-Bey, Lotfi, Panayiotis N. Varelas, John L. Ulmer, Leighton P. Mark, Kesav Raghavan, and James M. Provenzale. "Imaging of Cerebrovascular Disease in Pregnancy and the Puerperium." American Journal of Roentgenology 206, no. 1 (January 2016): 26–38. http://dx.doi.org/10.2214/ajr.15.15059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Donahue, Manus J., and Megan K. Strother. "Novel Noninvasive Magnetic Resonance Imaging Methods in Cerebrovascular Disease." US Neurology 10, no. 01 (2014): 23. http://dx.doi.org/10.17925/usn.2014.10.01.23.

Full text
Abstract:
Neuroimaging is a critical component of patient care in multiple stages of cerebrovascular disease. Most imaging focuses on measurements of tissue or vascular structure, with comparatively less emphasis on function. Furthermore, imaging approaches that rely on exogenous contrast agents or ionizing radiation are common and provide crucial information regarding treatment decisions; however, they are suboptimal for monitoring patients longitudinally or in response to therapy due to dose restrictions and related health concerns. We review the state of noninvasive magnetic resonance imaging (MRI) approaches that have demonstrated clinical potential in patients with cerebrovascular disease, yet have not been incorporated into routine radiologic protocols at most hospitals. These approaches include blood oxygenation level-dependent (BOLD) for cerebrovascular reactivity, arterial spin labeling (ASL) for cerebral blood flow quantification, chemical exchange saturation transfer (CEST) for macromolecule, and pH determination and arterial vessel wall imaging for plaque visualization. The strengths and limitations of these approaches are presented, as well as a summary of their implementation in stroke.
APA, Harvard, Vancouver, ISO, and other styles
46

Evans, Nicholas R., Jason M. Tarkin, John R. Buscombe, Hugh S. Markus, James H. F. Rudd, and Elizabeth A. Warburton. "PET imaging of the neurovascular interface in cerebrovascular disease." Nature Reviews Neurology 13, no. 11 (October 6, 2017): 676–88. http://dx.doi.org/10.1038/nrneurol.2017.129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Scarmeas, Nikolaos, José A. Luchsinger, Yaakov Stern, Yian Gu, Jing He, Charlie DeCarli, Truman Brown, and Adam M. Brickman. "Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease." Annals of Neurology 69, no. 2 (February 2011): 257–68. http://dx.doi.org/10.1002/ana.22317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Corr, Peter D. "Imaging of Cerebrovascular and Cardiovascular Disease in AIDS Patients." American Journal of Roentgenology 187, no. 1 (July 2006): 236–41. http://dx.doi.org/10.2214/ajr.05.0190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Polonara, G., J. Bove, L. Regnicolo, N. Herber, E. Cesaroni, and N. Zamponi. "Paediatric Cerebrovascular Disease: Neuroradiological Diagnosis." Rivista di Neuroradiologia 18, no. 3 (June 2005): 304–14. http://dx.doi.org/10.1177/197140090501800306.

Full text
Abstract:
The low incidence (2.6 cases in 100,000) of cerebrovascular disease in paediatric patients compared with the adult population makes it a diagnostic challenge. Etiological factors have changed over time: whereas in the past bacterial meningitis was the most frequent cause, heart disease, haematological disorders, vasculopathy and viral infections have now become the most common. Haemorrhagic stroke is most frequently due to arteriovenous malformations (AVMs), cavernous angioma, haematological disorders and intracranial aneurysms. Traumatic or fibrodyplastic arterial thrombosis is extremely rare. Venous thrombosis most commonly affects the upper sagittal sinus. In two thirds of cases the cause of stroke remains unknown. For years, symptoms of acute CNS deficits have been studied with computed tomography (CT), especially to rule out haemorrhage. To avoid exposing paediatric patients to ionizing radiation, magnetic resonance imaging (MRI), more sensitive and specific for the identification of acute ischaemic stroke, is currently the first-line diagnostic technique. In particular, diffusion-weighted sequences are capable of early identification of ischaemic areas. Association with perfusion techniques will define the areas at high risk of further damage and to attempt to estimate the final volume of the lesion. MR spectroscopy contributes to the characterization of ischaemic lesions. MR angiography (MRA) has proved to be a noninvasive technique with the same diagnostic effectiveness as conventional angiography for dissections, transient cerebral arteriopathy and moyamoya. The cervical arteries are studied using contrast-enhanced sequences. Conventional angiography remains the technique of choice for the study of small vessels disease and AVMs.
APA, Harvard, Vancouver, ISO, and other styles
50

Cattin, F., and J. F. Bonneville. "Ultrasound Examination in Cerebrovascular Disease." Rivista di Neuroradiologia 6, no. 2_suppl (May 1993): 71–75. http://dx.doi.org/10.1177/19714009930060s211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography