Academic literature on the topic 'Cerebrovascular disease – Spectroscoping imaging'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cerebrovascular disease – Spectroscoping imaging.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cerebrovascular disease – Spectroscoping imaging"

1

Mihara, Futoshi, Yasuo Kuwabara, Tsuyoshi Yoshida, Takashi Yoshiura, Masayuki Sasaki, Kouji Masuda, Toshio Matsushima, and Masashi Fukui. "Correlation between proton magnetic resonance spectroscopic lactate measurements and vascular reactivity in chronic occlusive cerebrovascular disease: a comparison with positron emission tomography." Magnetic Resonance Imaging 18, no. 9 (November 2000): 1167–74. http://dx.doi.org/10.1016/s0730-725x(00)00216-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Murphy, Kieran. "Imaging cerebrovascular disease." Annals of Neurology 55, no. 3 (2004): 453. http://dx.doi.org/10.1002/ana.20023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Riordan-Eva, Paul. "Imaging Cerebrovascular Disease." Journal of Neuro-Ophthalmology 24, no. 3 (September 2004): 270. http://dx.doi.org/10.1097/00041327-200409000-00020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heiss, Wolf-Dieter, Michael Forsting, and Hans-Christoph Diener. "Imaging in cerebrovascular disease." Current Opinion in Neurology 14, no. 1 (February 2001): 67–75. http://dx.doi.org/10.1097/00019052-200102000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

&NA;. "Imaging for Cerebrovascular Disease." Journal of Neuroscience Nursing 33, no. 4 (August 2001): 220. http://dx.doi.org/10.1097/01376517-200108000-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Trelles, Miguel. "“Imaging of Cerebrovascular Disease." Investigative Radiology 51, no. 7 (July 2016): e1. http://dx.doi.org/10.1097/rli.0000000000000302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Valotassiou, Varvara, Greta Wozniak, Nikolaos Sifakis, Charalambos Iliadis, and Panagiotis Georgoulias. "SPECT Imaging and Cerebrovascular Disease." Vascular Disease Prevention 4, no. 1 (December 1, 2008): 165–70. http://dx.doi.org/10.2174/1567270000704010017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Valotassiou, Varvara, Greta Wozniak, Nikolaos Sifakis, Charalambos Iliadis, and Panagiotis Georgoulias. "SPECT Imaging and Cerebrovascular Disease." Vascular Disease Prevention 4, no. 2 (May 1, 2007): 165–70. http://dx.doi.org/10.2174/156727007780599421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bowler, J. V. "Noninvasive Imaging of cerebrovascular disease." Journal of Neurology, Neurosurgery & Psychiatry 52, no. 9 (September 1, 1989): 1118–19. http://dx.doi.org/10.1136/jnnp.52.9.1118-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gounis, Matthew J., Kajo van der Marel, Miklos Marosfoi, Mary L. Mazzanti, Frédéric Clarençon, Ju-Yu Chueh, Ajit S. Puri, and Alexei A. Bogdanov. "Imaging Inflammation in Cerebrovascular Disease." Stroke 46, no. 10 (October 2015): 2991–97. http://dx.doi.org/10.1161/strokeaha.115.008229.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cerebrovascular disease – Spectroscoping imaging"

1

Ross, Amy Psychiatry Faculty of Medicine UNSW. "Longitudinal study of cognitive and functional brain changes in ageing and cerebrovascular disease, using proton magnetic resonance spectroscopy." Awarded by:University of New South Wales. School of Psychiatry, 2005. http://handle.unsw.edu.au/1959.4/27329.

Full text
Abstract:
The neurophysiological basis of cognition changes with age is relatively unexplained, with most studies reporting weak relationships between cognition and measures of brain function, such as event related potentials, brain size and cerebral blood flow. Proton magnetic resonance spectroscopy (1H-MRS) is an in vivo method used to detect metabolites within the brain that are relevant to certain brain processes. Recent studies have shown that these metabolites, in particular N-acetyl aspartate (NAA), which is associated with neuronal viability, correlate with performance on neuropsychological tests or other measures of cognitive function in patients with a variety of cognitive disorders associated with ageing and in normal ageing subjects. We have studied the relationship between metabolites and cognitive function in elderly patients 3 months and 3 years after a stroke or transient ischemic attack (TIA) and in an ageing comparison group. Metabolites were no different between stroke/TIA patients and elderly controls, however, there were significant metabolite differences between stroke/TIA patients with cognitive impairment (Vascular Cognitive Impairment and Vascular Dementia) and those without. Frontal measures of NAA and NAA/Cr predicted cognitive decline over 12 months and 3 years in stroke/TIA patients and elderly controls, and these measures were superior predictors than structural MRI measures. Longitudinal stability of metabolites in ageing over 3 years was associated with stability of cognitive function. The results indicate that 1H-MRS is a useful tool in differentiating stroke/TIA patients with and without cognitive impairment, with possibly superior predictive ability than structural MRI for assessing future cognitive decline. The changes in 1H-MRS that occur with ageing and cognitive decline have implications for the neurophysiological mechanisms and processes that are occurring in the brain, as well as application to clinical diagnosis, the early detection of pathology and the examination of longitudinal change.
APA, Harvard, Vancouver, ISO, and other styles
2

Gan, Rui. "Robust multimodal medical image registration and statistical cerebrovascular segmentation /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?COMP%202006%20GAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evans, Nicholas Richard. "Multimodal imaging of inflammation at the neurovascular interface in cerebrovascular disease." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275947.

Full text
Abstract:
A carotid atherosclerotic plaque represents a nidus of inflammation mere centimetres below the blood-brain barrier. This inflammation, along with associated regions of microcalcification, are histopathological features of atheroma at risk of rupture (so-called “vulnerable plaques”) that trigger thromboembolic stroke. While conventional clinical imaging simply measures the degree of vessel stenosis, it is a crude measure that reveals little of the metabolic processes affecting plaque vulnerability. Our research demonstrates the utility of positron emission tomography (PET) using 18F-fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF), measuring inflammation and microcalcification respectively, to identify culprit carotid atheroma in vivo, and establish how these processes influence plaque vulnerability. Furthermore, for stroke care it is the downstream thromboembolic effects upon the brain that are key. While proinflammatory conditions may increase the risk of stroke, the relationship between atheroma inflammation and the peri-infarct inflammatory response following a stroke remains poorly defined. Our work demonstrates how inflammatory activity in symptomatic carotid atheroma, measured using PET, influences both chronic small vessel disease and the evolution of lesion volume in the post-stroke period. Using metabolic imaging we can both identify vulnerable atheroma in vivo and demonstrate how these processes affect infarct evolution. We show that whilst inflammation is a generalised process, microcalcification is a focal process that may represent a point of maximum vulnerability. These results also reveal the complexity of the atheroma-brain interaction that may simultaneously trigger events while also influencing stroke evolution in the early recovery period. This has important implications for understanding pathophysiology of both atherosclerosis and stroke evolution, advancing drug-discovery, and potential clinical applications to minimise the impact from this devastating disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Zolgharni, Massoud. "Magnetic induction tomography for imaging cerebral stroke." Thesis, Swansea University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mullins, Paul Gerald Mark. "Magnetic resonance imaging in the study of animal models of cerebral ischaemia /." [St. Lucia, Qld.], 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16186.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fernández-Andújar, Marina. "Neuroimaging correlates of cognitive functioning in cerebrovascular disease." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/290852.

Full text
Abstract:
Cerebrovascular diseases (CD) are the third most common cause of death and the leading cause of disability in adults in developed countries (Carmichael, 2012; World Health Organization, 2004). Specifically, ischemic stroke and white matter lesions (WML) often result in multiple neurological, cognitive impairment and behavioral and emotional disorders (Gorelick et al., 2011; Troncoso et al., 2008). Strokes are responsible for damage in the core of the ischemic lesion but may also cause alterations in remote areas from the primary ischemic lesion. The thalamus is a key structure in the cortico-subcortical circuits (Alexander et al., 1986; Byne et al., 2009) and is involved in multiple cognitive functions (Herrero et al., 2002; Sherman, 2005) especially in functions executive, one of the most affected cognitive domains after suffering a stroke. Although it is known that the cortico- subcortical circuits are involved in cognitive functions, to date their neuroimage correlates are unknown. The overall objective of this thesis was to study the effects of a disruption in the cortico-subcortical circuits, due to a direct or remote damage, in executive functions. For the study of remote thalamic abnormalities we use the technique of diffusion tensor image (DTI) for both ischemic stroke and WML. Moreover, due to attention and cognitive inhibition are one of the most important functions of executive domain, we studied the relationship between a specific white matter (WM) tract -called Front aslant Tract (FAT)- and these functions. The study results showed that remote thalamic microstructural abnormalities secondary to a cerebrovascular lesion can occur in both ipsilateral and contralateral thalamus, in healthy subjects with WML and in patients with cerebral ischemic stroke. These thalamic abnormalities may be related to a disruption in the cortico-subcortical circuits associated with executive dysfunction. In addition, the right FAT is involved in attention and response inhibition functions in community-dwelling subjects and participants with ischemic stroke. In conclusion, the results obtained in this thesis suggest that stroke can affect the cortico-subcortical circuits through thalamic microstructural abnormalities and these could be related to cognitive dysfunction. Finally, the novel technique of DTI can play an important role in understanding the cognitive functioning in both ischemic stroke and WML.
Los accidentes cerebrovasculares (ACV) son la tercera causa más común de muerte y la causa principal de discapacidad en adultos en los países desarrollados (Carmichael, 2012; Organización Mundial de la Salud, 2004). Concretamente, el ictus isquémico y las lesiones de sustancia blanca (LSB) frecuentemente dan lugar a múltiples secuelas neurológicas, deterioro cognitivo y alteraciones conductuales y emocionales (Gorelick et al., 2011; Troncoso et al., 2008). Los ACV son responsables de daño en la zona primaria de la lesión isquémica pero también pueden producir alteraciones en áreas remotas a ésta. El tálamo es una estructura clave en los circuitos cortico-subcorticales (Alexander et al., 1986; Byne et al., 2009) y está involucrado en múltiples funciones cognitivas (Herrero et al., 2002; Sherman, 2005) especialmente en las funciones ejecutivas, uno de los dominios cognitivos más afectados después de sufrir un ACV. Aunque se sabe que los circuitos cortico-subcorticales están implicados en las funciones cognitivas, hasta la fecha sus correlatos de neuroimagen se desconocen. El objetivo general de esta tesis ha sido estudiar los efectos de una interrupción en los circuitos cortico-subcorticales debido a una lesión directa o remota en las funciones ejecutivas. Para el estudio de las anomalías talámicas remotas usamos la técnica de la Imagen por Tensor de Difusión (ITD), tanto para el ictus isquémico como para las LSB. Además, dado que la atención y la inhibición cognitiva son una de las funciones más importantes de las funciones ejecutivas, estudiamos la relación entre un tracto de sustancia blanca (SB) -llamado Frontal Aslant Tract (FAT)- y estas funciones. Los resultados de los estudios mostraron que anomalías secundarias microestructurales talámicas remotas a la lesión cerebrovascular pueden ocurrir tanto en el tálamo ipsilateral como en el tálamo contralateral, en sujetos sanos con LSB y en pacientes con un ictus cerebral isquémico. Estas anomalías talámicas pueden estar relacionadas con una disrupción en los circuitos cortico-subcorticales asociado con disfunción ejecutiva. Además, en sujetos de la comunidad y con un ictus isquémico, el FAT derecho está implicado en atención e inhibición de respuesta. En conclusión, los resultados obtenidos en la presente tesis doctoral sugieren que los ACV puede afectar los circuitos cortico-subcortical a través de anomalías microstructurales talámicas y éstas podrían estar relacionadas con la disfunción cognitiva. Finalmente, la novedosa técnica de la ITD puede tener un papel relevante en el conocimiento del funcionamiento cognitivo tanto en el ictus isquémico como en las LSB.
APA, Harvard, Vancouver, ISO, and other styles
7

Madai, Vince István [Verfasser]. "Improvements of Magnetic Resonance Imaging techniques for clinical diagnosis in cerebrovascular disease / Vince Istvan Madai." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2017. http://d-nb.info/1148425284/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Madai, Vince Istvan [Verfasser]. "Improvements of Magnetic Resonance Imaging techniques for clinical diagnosis in cerebrovascular disease / Vince Istvan Madai." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2017. http://d-nb.info/1148425284/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brevard, Mathew E. "Developing compatible techniques for magnetic resonance imaging of stroke pathophysiology." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0107103-173954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fox, Timothy H. "Evaluation of a method for identifying finite resolution effects in single photon emission computed tomographic (SPECT) imaging of the cerebral cortex." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17067.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cerebrovascular disease – Spectroscoping imaging"

1

Alexandrov, Andrei V. Cerebrovascular ultrasound in stroke prevention and treatment. Elmsford, N.Y: Blackwell Pub./Futura, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stroke rehabilitation: Insights from neuroscience and imaging. New York: Oxford University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stirling, Meyer John, and World Federation of Neurology, eds. Cerebral vascular disease 5: Proceedings of the World Federation of Neurology 12th International Salzburg Conference, September 26-29, 1984. Amsterdam: Excerpta Medica, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsunehiko, Nishimura, and Sorensen A. Gregory, eds. Functional and molecular imaging of stroke and dementia: Updates in diagnosis, treatment, and monitoring : proceedings of the International Symposium on Functional and Molecular Imaging of Stroke and Dementia held in Kyoto, Japan on 14 and 15 October 2005. Amsterdam: Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ultrasound diagnosis of cerebrovascular disease: Doppler sonography of the extra- and intracranial arteries duplex scanning. Stuttgart: Georg Thieme Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rabinstein, Alejandro A. Practical neuroimaging in stroke: A case-based approach. Philadelphia, PA: Saunders/Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCartney, John P. Handbook of transcranial doppler. New York: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hemorrhagic and ischemic stroke: Surgical, interventional, imaging, and medical approaches. New York: Thieme Medical Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Magnetic resonance angiography of the head and neck: A teaching file. St. Louis: Mosby, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Clinical MR neuroimaging: Physiological and functional techniques. 2nd ed. New York: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cerebrovascular disease – Spectroscoping imaging"

1

Lim, Choie Choie Tchoyoson, and Francis Hui. "Cerebrovascular Disease." In Geriatric Imaging, 595–639. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35579-0_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Irimia, P., S. Asenbaum, M. Brainin, H. Chabriat, E. Martínez-Vila, K. Niederkorn, P. D. Schellinger, R. J. Seitz, and J. C. Masdeu. "Use of Imaging in Cerebrovascular Disease." In European Handbook of Neurological Management, 19–34. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444328394.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, Ronald, Lawrence Sweet, David F. Tate, and Marc Fisher. "Functional Brain Imaging of Cerebrovascular Disease." In Vascular Dementia, 181–209. Totowa, NJ: Humana Press, 2005. http://dx.doi.org/10.1385/1-59259-824-2:181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Griffith, Brent, Brendan P. Kelley, Suresh C. Patel, and Horia Marin. "Cerebrovascular Imaging (CT, MRI, CTA, MRA)." In Extracranial Carotid and Vertebral Artery Disease, 85–111. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91533-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Felber, S., G. Laub, P. Ruggieri, and F. Aichner. "MR Angiography of Cerebrovascular Disease." In Imaging of Brain Metabolism Spine and Cord Interventional Neuroradiology Free Communications, 479–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74337-5_136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lev, Michael H., George J. Hunter, Leena M. Hamberg, and R. Gilberto González. "Computed Tomography Angiography and Perfusion Imaging of Acute Stroke." In Current Review of Cerebrovascular Disease, 93–100. London: Current Medicine Group, 2001. http://dx.doi.org/10.1007/978-1-4684-0001-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Batnitzky, Solomon, John H. McMillan, Glendon G. Cox, and Stanton J. Rosenthal. "Atherosclerotic Extracranial Occlusive Cerebrovascular Disease." In Imaging of Non-Traumatic Ischemic and Hemorrhagic Disorders of the Central Nervous System, 147–74. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-1653-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heiss, Wolf-Dieter. "Imaging the Pathophysiology of Ischemic Cerebrovascular Disease." In Molecular Imaging in the Clinical Neurosciences, 323–43. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/7657_2012_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Giovannini, Elisabetta, Giampiero Giovacchini, and Andrea Ciarmiello. "Hybrid Imaging in Cerebrovascular Disease: Ischemic Stroke." In PET-CT and PET-MRI in Neurology, 251–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31614-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beaulieu, Christian, and Michael E. Moseley. "Diffusion-Weighted and Perfusion-Weighted Magnetic Resonance Imaging in Clinical Stroke." In Current Review of Cerebrovascular Disease, 57–69. London: Current Medicine Group, 2001. http://dx.doi.org/10.1007/978-1-4684-0001-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cerebrovascular disease – Spectroscoping imaging"

1

SOSSI, VESNA. "PET for cerebrovascular diseases: status and limitation." In Frontiers in Imaging Science: High Performance Nuclear Medicine Imagers for Vascular Disease Imaging (Brain and Heart). Trieste, Italy: Sissa Medialab, 2008. http://dx.doi.org/10.22323/1.039.0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Watton, Paul N., Alejandro Frangi, and Yiannis Ventikos. "An integrative approach to cerebrovascular disease healthcare: IT for cerebral aneurysms." In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI). IEEE, 2009. http://dx.doi.org/10.1109/isbi.2009.5193063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Joachimowicz, Nadine, Jorge Tobon Vasquez, Giovanna Turvani, Gianluca Dassano, Mario Roberto Casu, Francesca Vipiana, Bernard Duchene, Rosa Scapaticci, and Lorenzo Crocco. "Head Phantoms for a Microwave Imaging System Dedicated to Cerebrovascular Disease Monitoring." In 2018 IEEE Conference on Antenna Measurements & Applications (CAMA). IEEE, 2018. http://dx.doi.org/10.1109/cama.2018.8530484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DeLeo, Michael J., Matthew J. Gounis, Ajay K. Wakhloo, and Alexei A. Bogdanov. "Validation of Di-5-HT-Gd-DTPA, an Enzyme-Specific MR Contrast Agent for Myeloperoxidase, in the Rabbit Elastase Model of Cerebrovascular Aneurysm." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206346.

Full text
Abstract:
Characterization of molecular imaging probes in multiple animal models of disease is essential to increase their diagnostic potential. For example, we recently demonstrated visualization of active inflammation in a rabbit model saccular aneurysm using clinical field strength MRI and the paramagnetic MR contrast agent di-5-HT-GdDTPA, which has been shown in vitro to be sensitive and specific for the enzyme myeloperoxidase (MPO). While the use of transgenic mice (MPO−/−) has demonstrated specificity of di-5-HT-GdDTPA for MPO in a model of myocardial infarction [1], MPO-deficient rabbits are not available. Therefore, in this study, we sought to validate di-5-HT-GdDTPA MPO specificity in the New Zealand white rabbit by comparing serial enhancement ratios of di-5-HT-GdDTPA to a structurally similar MR contrast agent, di-Tyr-GdDTPA, which is activated by peroxidases but not by MPO. Structural diagrams of the synthesis of the two agents are demonstrated in Figure 1 [2].
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography