Academic literature on the topic 'Cerebral cortex'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cerebral cortex.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cerebral cortex"

1

Cowey, A. "Cerebral cortex, functional properties of the cerebral cortex." Neuroscience 17, no. 4 (April 1986): 1297–98. http://dx.doi.org/10.1016/0306-4522(86)90096-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kaufman, K. J. "The Cerebral Cortex: Visual Cortex." Archives of Ophthalmology 104, no. 8 (August 1, 1986): 1141. http://dx.doi.org/10.1001/archopht.1986.01050200047040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Innocenti, Giorgio M. "Cerebral Cortex, Vol. 7. Development and Maturation of Cerebral Cortex." Trends in Neurosciences 13, no. 1 (January 1990): 36–37. http://dx.doi.org/10.1016/0166-2236(90)90061-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cowey, A. "Cerebral cortex, vol. 1 cellular components of the cerebral cortex." Neuroscience 15, no. 1 (May 1985): 309. http://dx.doi.org/10.1016/0306-4522(85)90137-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cowey, A. "Cerebral Cortex, Vol. 3, Visual Cortex." Neuroscience 19, no. 3 (November 1986): 1023. http://dx.doi.org/10.1016/0306-4522(86)90314-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hughes, John R. "Cerebral cortex. Vol. 3. Visual cortex." Electroencephalography and Clinical Neurophysiology 63, no. 4 (April 1986): 392. http://dx.doi.org/10.1016/0013-4694(86)90029-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Molnár, Zoltán, and Gavin Clowry. "Human cerebral cortex development." Journal of Anatomy 235, no. 3 (August 21, 2019): 431. http://dx.doi.org/10.1111/joa.13000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anderson, Mark. "A more cerebral cortex." IEEE Spectrum 47, no. 1 (January 2010): 58–63. http://dx.doi.org/10.1109/mspec.2010.5372504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carlson, Chad, and Orrin Devinsky. "The excitable cerebral cortex." Epilepsy & Behavior 15, no. 2 (June 2009): 131–32. http://dx.doi.org/10.1016/j.yebeh.2009.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schneider, Julie A. "The cerebral cortex in cerebral amyloid angiopathy." Lancet Neurology 15, no. 8 (July 2016): 778–79. http://dx.doi.org/10.1016/s1474-4422(16)30100-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cerebral cortex"

1

Schulz, Simon R. "Information encoding in the mammalian cerebral cortex." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rabiei, Hamed. "Spectral analysis of the cerebral cortex complexity." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0289/document.

Full text
Abstract:
La complexité de la forme de la surface est une caractéristique morphologique des surfaces pliées. Dans cette thèse, nous visons à développer des méthodes spectrales pour quantifier cette caractéristique du cortex cérébral humain reconstruit à partir d'images MR structurales. Tout d'abord, nous suggérons certaines propriétés qu'une mesure standard de la complexité de surface devrait posséder. Ensuite, nous proposons deux définitions claires de la complexité de la surface en fonction des propriétés de flexion de surface. Pour quantifier ces définitions, nous avons étendu la transformée de Fourier à fenêtres illustrée récemment pour transformer en maillage des surfaces. Grâce à certaines expériences sur les surfaces synthétiques, nous montrons que nos mesures basées sur la courbure permettent de surmonter les surfaces classiques basées sur la surface, ce qui ne distingue pas les plis profonds des oscillants ayant une surface égale. La méthode proposée est appliquée à une base de données de 124 sujets adultes en bonne santé. Nous définissons également la complexité de la surface par la régularité de Hölder des mouvements browniens fractionnés définis sur les collecteurs. Ensuite, pour la première fois, nous développons un algorithme de régression spectrale pour quantifier la régularité de Hölder d'une surface brownienne fractionnée donnée en estimant son paramètre Hurst H. La méthode proposée est évaluée sur un ensemble de sphères browniennes fractionnées simulées. En outre, en supposant que le cortex cérébral est une surface brownienne fractionnée, l'algorithme proposé est appliqué pour estimer les paramètres Hurst d'un ensemble de 14 corticus cérébraux fœtaux
Surface shape complexity is a morphological characteristic of folded surfaces. In this thesis, we aim at developing some spectral methods to quantify this feature of the human cerebral cortex reconstructed from structural MR images. First, we suggest some properties that a standard measure of surface complexity should possess. Then, we propose two clear definitions of surface complexity based on surface bending properties. To quantify these definitions, we extended the recently introduced graph windowed Fourier transform to mesh model of surfaces. Through some experiments on synthetic surfaces, we show that our curvature-based measurements overcome the classic surface area-based ones which may not distinguish deep folds from oscillating ones with equal area. The proposed method is applied to a database of 124 healthy adult subjects. We also define the surface complexity by the Hölder regularity of fractional Brownian motions defined on manifolds. Then, for the first time, we develop a spectral-regression algorithm to quantify the Hölder regularity of a given fractional Brownian surface by estimating its Hurst parameter H. The proposed method is evaluated on a set of simulated fractional Brownian spheres. Moreover, assuming the cerebral cortex is a fractional Brownian surface, the proposed algorithm is applied to estimate the Hurst parameters of a set of 14 fetal cerebral cortices
APA, Harvard, Vancouver, ISO, and other styles
3

NEIDECKER, GUILLEMETTE. "Atrophies cerebrales corticales focalisees primaires : a propos d'une observation d'atrophie corticale posterieure." Lyon 1, 1993. http://www.theses.fr/1993LYO1M186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Striegel, Deborah A. "Modeling the folding pattern of the cerebral cortex." Tallahassee, Florida : Florida State University, 2009. http://etd.lib.fsu.edu/theses/available/etd-11092009-184905/.

Full text
Abstract:
Thesis (Ph. D.)--Florida State University, 2009.
Advisor: Monica K. Hurdal, Florida State University, College of Arts and Sciences, Dept. of Mathematics. Title and description from dissertation home page (viewed on May 12, 2010). Document formatted into pages; contains xii, 114 pages. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Scannell, Jack. "The connectional organization of the cat cerebral cortex." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldman, Jennifer Sarah. "Netrin-1 regulates early development of cerebral cortex." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=122967.

Full text
Abstract:
Netrin-1 is a ~75kDa secreted molecule as old as bilateral symmetry in animals, whose existence was initially postulated more than a century ago by Ramon y Cajal. Since the initial discovery of netrin-1 as a determinant of spinal commissural neuron axon guidance, netrin-1 has been attributed manifold roles in the histogenesis of embryonic tissues, functioning both cell and non-cell autonomously, at short and long ranges from the source of its secretion. During mammalian embryonic development, a laminated pallium - the cerebral cortex - blooms out of the neural tube. Cortical neurons born along the lateral ventricles establish polarized processes which connect into synaptic circuits capable of encoding, predicting, remembering, and even comprehending the complex statistics of the environment. Developmental defects in the formation of these circuits are associated with developmental cognitive disorders and the disintegration of cortical circuits leads to the devastating cognitive pathologies of dementia. In this thesis I present evidence that netrin-1 directs the development of cortex both during the proliferation of cortical neurons and later during the establishment of excitatory cortical synapses. These findings identify netrin-1 as a novel regulator of the development of excitatory circuits of the cerebral cortex during the generation of neurons and their connection into synaptic circuits.
Nétrine-1 est une molécule sécrétée de ~75kDa qui existe depuis le développement de la symétrie bilatérale chez les animaux, et dont l'existence a été postulé il'ya plus d'un siècle par Ramon y Cajal. Depuis la découverte initiale de la nétrine-1 comme un déterminant dans la guidance des axones commissure dans la moelle neurone, la nétrine-1 a été attribué à multiples rôles dans l'histogenèse des tissus embryonnaires, fonctionnant à la fois autonome cellulaire et non cellulaire, et à des distances courtes et longues de la source de sa sécrétion. Les neurones corticaux nées le long des ventricules latéraux mettent en place des processus polarisés qui relient des circuits synaptiques capables de codage, prévision, mémoire, et même la compréhensions des statistiques complexes de l'environnement. Des défauts de développement dans la formation de ces circuits sont associés à des troubles du développement cognitif et la désintégration des circuits corticaux conduisant à des pathologies cognitives dévastateurs de la démence. Dans cette thèse, je présente des preuves que la nétrine-1 dirige le développement du cortex à la fois au cours de la prolifération des neurones corticaux, et plus tard, lors de la mise en place des synapses corticales excitateurs. Ces résultats permettent d'identifier la nétrine-1 comme un nouveau régulateur dans le développement des circuits corticaux au cours de la génération de neurones corticaux et leur connexion à des circuits synaptiques.
APA, Harvard, Vancouver, ISO, and other styles
7

Gariel, Marie-Alice. "Connectivity and Processing in the Macaque Cerebral Cortex." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1005/document.

Full text
Abstract:
Pour comprendre comment le cortex cérébral extrait du sens et produit des actions à partir des informations sensorielles, il est nécessaire de comprendre à la fois son architecture et ses états dynamiques. Dans la présente thèse nous avons abordé cette relation structure-fonction au niveau des aires cérébrales, leurs connections et leurs interactions au sein du réseau cortical. Les aires sont connectées entre elles par deux grands types de projections axonales. D'une part, les connections « feedforward » (littéralement « antéroactives ») transmettent l'information des aires sensorielles aux aires de plus haut niveau dans la hiérarchie corticale et dont l'activité sous-tend des représentations plus abstraites. À l'inverse, les connections feedback (rétroactives) relient des aires dans la direction descendante de la hiérarchie corticale, vers les aires sensorielles primaires. Pour explorer les rôles respectifs des connections feedforward et feedback nous avons utilisé une triple approche. Premièrement, nous avons mis en évidence une asymétrie fonctionnelle très nette entre propagation feedforward et feedback grâce à des enregistrements et de la microstimulation électrique dans les aires V1 et V4 de macaques en comportement. D'autre part, nous avons étudié les propriétés globales du réseau cortical grâce à une riche base de données de connectivité basée sur des injections de traceurs fluorescents, et décrit une propriété générale et fondamentale de l'organisation corticale. Enfin, nous avons combiné des propriétés anatomiques des aires corticales et les données de connectivité dans un modèle dynamique à grande échelle du cortex
To understand how the cerebral cortex does what it does, it is necessary to elucidate both how its dynamic states are correlated with the functions it performs, and how it is organised. Many functional and anatomical gradients have been described that reflect the hierarchical abstraction at the heart of cortical computation. It was showed that two flavours of cortical connections exist, and that in the visual cortex they happen to transport information in opposite directions along this gradient. It was also hypothesised that other modalities exhibit the same type of gradient in their respective domains. However, studying requires knowledge of the architecture at different levels (such as the cortical column) and a causal understanding of the functional properties of these types of connections. First, we have studied the dynamics of both feedforward and feedback propagation in the visual system of awake, behaving macaque monkeys. Using the causal method of electrical microstimulation and recording, we have found a dynamic signature of each type of projections and an asymmetry in the way each type of input interacts with ongoing activity in a given visual area. Secondly, thanks to a rich and systematic data set in the macaque, we have found a fundamental organisational principle of the embedded and weighted cortical network that holds also in the more detailed level of neuronal connections inside an area. Finally, we have combined known anatomical gradients with actual inter-areal connectivity into a dynamic model, and here we show how it relates to both the ordering of areas along a hierarchical gradient and the wiring diagram of the cortical network
APA, Harvard, Vancouver, ISO, and other styles
8

Wells, Jason Eric. "Epileptiform bursting in the disinhibited neonatal cerebral cortex." Morgantown, W. Va. : [West Virginia University Libraries], 2003. http://etd.wvu.edu/templates/showETD.cfm?recnum=3005.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2003.
Title from document title page. Document formatted into pages; contains xii, 231 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
9

Popesco, Magdalena Cristina. "Gene expression in the mouse cerebellar cortex." Columbus, Ohio Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1072885001.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2003.
Title from first page of PDF file. Document formatted into pages; contains xiii, 184 p.; also includes graphics (some col.). Includes abstract and vita. Advisor: Andrej Rotter, Dept. of Biochemistry. Includes bibliographical references (p. 158-184).
APA, Harvard, Vancouver, ISO, and other styles
10

SUN, Xue-Zhi, Sentaro TAKAHASHI, Chun GUI, Rui ZHANG, Kazuo KOGA, Minoru NOUYE, and Yoshiharu MURATA. "Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex." Research Institute of Environmental Medicine, Nagoya University, 2002. http://hdl.handle.net/2237/2773.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cerebral cortex"

1

Jones, Edward G., and Alan Peters, eds. Cerebral Cortex. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-6616-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peters, Alan, and Edward G. Jones, eds. Cerebral Cortex. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-6619-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Edward G., and Alan Peters, eds. Cerebral Cortex. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3824-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, Alan, and John H. Morrison, eds. Cerebral Cortex. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4885-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulinski, Philip S., Edward G. Jones, and Alan Peters, eds. Cerebral Cortex. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4903-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

1929-, Peters Alan, and Jones Edward G. 1939-, eds. Cerebral cortex. New York: Plenum, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1929-, Peters Alan, and Jones Edward G. 1939-, eds. Cerebral cortex. New York: Plenum, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1929, Peters Alan, and Jones Edward G. 1939-, eds. Cerebral cortex. London: Plenum, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1939-, Jones Edward G., and Peters Alan 1929-, eds. Cerebral cortex. New York: Plenum, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1929-, Peters Alan, and Rockland Kathleen S, eds. Cerebral cortex. New York: Plenum Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cerebral cortex"

1

Fredrickson, John M., and Allan M. Rubin. "Vestibular Cortex." In Cerebral Cortex, 99–111. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2149-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacobs, Kimberle M. "Cerebral Cortex." In Encyclopedia of Clinical Neuropsychology, 731–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levesque, Roger J. R. "Cerebral Cortex." In Encyclopedia of Adolescence, 377. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-1695-2_519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jacobs, Kimberle M. "Cerebral Cortex." In Encyclopedia of Clinical Neuropsychology, 1–4. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_304-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noggle, Chad A., and John Joshua Hall. "Cerebral Cortex." In Encyclopedia of Child Behavior and Development, 323–24. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-79061-9_499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wyk, Brent Vander. "Cerebral Cortex." In Encyclopedia of Autism Spectrum Disorders, 560. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rothwell, John C. "Cerebral Cortex." In Control of Human Voluntary Movement, 180–234. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-7688-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Strominger, Norman L., Robert J. Demarest, and Lois B. Laemle. "Cerebral Cortex." In Noback's Human Nervous System, Seventh Edition, 429–51. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-779-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rothwell, John. "Cerebral cortex." In Control of Human Voluntary Movement, 293–386. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-6960-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wyk, Brent Vander. "Cerebral Cortex." In Encyclopedia of Autism Spectrum Disorders, 859–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-91280-6_552.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cerebral cortex"

1

Kuebler, Olaf, Gabor Szekely, Christian Brechbuehler, Robert Ogniewicz, Thomas F. Budinger, and Peter T. Sander. "Charting the human cerebral cortex." In San Diego '92, edited by David C. Wilson and Joseph N. Wilson. SPIE, 1992. http://dx.doi.org/10.1117/12.130903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davey, K., K. C. Kalaitzakis, and C. Epstein. "Transcranial magnetic stimulation of the cerebral cortex." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.95253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mishra, Amit Kumar, and Abhishek. "Cerebral cortex inspired cognitive architecture for robots." In 2011 International Conference on Energy, Automation, and Signal (ICEAS 2011). IEEE, 2011. http://dx.doi.org/10.1109/iceas.2011.6147198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weng, Tzu-Lun, and Yung-Nien Sun. "Visualization of human cerebral cortex by flatten algorithms." In Medical Imaging 2000, edited by Seong K. Mun. SPIE, 2000. http://dx.doi.org/10.1117/12.383079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Maps of chromatin conformation in the cerebral cortex." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/bgrs/sb-2022-056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Maps of chromatin conformation in the cerebral cortex." In Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gronchi, Giorgio, Andrea Guazzini, Franco Bagnoli, and Emanuele Massaro. "Evaluating Cerebral Cortex Connectivity with Local Information Algorithm." In 2013 International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, 2013. http://dx.doi.org/10.1109/sitis.2013.80.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kawase, Chiaki, Ichiro Kobayashi, Shinji Nishimoto, Satoshi Nishida, and Hideki Asoh. "Semantic representation in the cerebral cortex with sparse coding." In 2017 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2017. http://dx.doi.org/10.1109/smc.2017.8122673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Ying, Dong-Mei Hao, and Ming-Ai Li. "Computational Analysis of Connectivity in the Mammalian Cerebral Cortex." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yaping, Gang Li, Mihye Ahn, Jingxin Nie, Hongtu Zhu, and Lei Guo. "Mapping longitudinal cerebral cortex development using diffusion tensor imaging." In SPIE Medical Imaging, edited by Sebastien Ourselin and David R. Haynor. SPIE, 2013. http://dx.doi.org/10.1117/12.2007164.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cerebral cortex"

1

Chapline, G. Spontaneous origin of topological complexity in the cerebral cortex. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/82487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Qiaochu, Jin Zhou, Hai Huang, Jie Han, Biwei Cao, Dandan Xu, Yan Zhao, and Gang Chen. Risk factors associated with amyotrophic lateral sclerosis: a protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2022. http://dx.doi.org/10.37766/inplasy2022.9.0118.

Full text
Abstract:
Review question / Objective: To identify and list the risk factors associated with the onset and progression of ALS. Condition being studied: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting the upper and lower motor neurons in the spinal bulb, cerebral cortex, and spinal cord. The clinical processing symptoms accompany muscle atrophy, fasciculation, and fatigue of limbs, which can lead to general paralysis and death from respiratory failure within 3-5 years after the onset of this disease. Though the pathogenesis of ALS is still unclear, exploring the associations between risk factors and ALS can provide reliable evidence to find the pathogenesis in the future. This meta-analysis aims to synthesize all related risk factors on ALS, comprehensively understand this disease, and provide clues to mechanism research and clinicians.
APA, Harvard, Vancouver, ISO, and other styles
3

Valenzuela-Bonilla, Elsa Beatriz, and Wilson Miguel Salas-Picón. Unidades cerebrales de control interno: hipotálamo, sistema límbico y corteza cerebral (CW). Universidad Cooperativa de Colombia, December 2015. http://dx.doi.org/10.16925/greylit.1142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xu, Jiahao, Jiaqi Chen, and Kuiting Gao. A meta-analysis of the effects of core muscle group training on balance and motor function in children with cerebral palsy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2021. http://dx.doi.org/10.37766/inplasy2021.12.0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography