To see the other types of publications on this topic, follow the link: Ceramic composite material.

Journal articles on the topic 'Ceramic composite material'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ceramic composite material.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kim, Jeongguk. "Investigation of Failure Mechanisms in Ceramic Composites as Potential Railway Brake Disc Materials." Materials 13, no. 22 (November 15, 2020): 5141. http://dx.doi.org/10.3390/ma13225141.

Full text
Abstract:
Ceramic composite materials have been efficiently used for high-temperature structural applications with improved toughness by complementing the shortcomings of monolithic ceramics. In this study, the fracture characteristics and fracture mechanisms of ceramic composite materials were studied. The ceramic composite material used in this study is Nicalon ceramic fiber reinforced ceramic matrix composites. The tensile failure behavior of two types of ceramic composites with different microstructures, namely, plain-weave and cross-ply composites, was studied. Tensile tests were performed on two types of ceramic composite material specimens. Microstructure analysis using SEM was performed to find out the relationship between tensile fracture characteristics and microstructure. It was found that there was a difference in the fracture mechanism according to the characteristics of each microstructure. In this study, the results of tensile tests, failure modes, failure characteristics, and failure mechanisms were analyzed in detail for two fabric structures, namely, plain-weave and cross-ply structures, which are representative of ceramic matrix composites. In order to help understanding of the fracture process and mechanism, the fracture initiation, crack propagation, and fracture mechanism of each composite material are schematically expressed in a two-dimensional figure. Through these results, it is intended to provide useful information for the design of ceramic composite materials based on the mechanistic understanding of the fracture process of ceramic composite materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Bao Feng, Jian Zheng, Xin Hua Ni, Lei Zhao, and Guo Hui Zhong. "Destruction Process Analysis of Laminated Ceramic Composites Based on APDL." Advanced Materials Research 168-170 (December 2010): 1107–10. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1107.

Full text
Abstract:
Laminated composites are the effective ways to toughen Al2O3 ceramics at present. The destruction process analysis of laminated ceramic composite is studied in this paper taking the Al2O3/ZrO2 ceramic composite as the example through the APDL programming. The micro model is established in ANSYS. And the failure stresses of each ply of the ceramic can be calculated by micromechanics method. Then the calculated failure stresses are compared to the simulated failure stresses. The micro model can visualize the destruction process of laminated ceramic composite. The failure criteria of composite material can be self-defining in ANSYS by using APDL. Some ideas of ANSYS application on composite material are given in this paper.
APA, Harvard, Vancouver, ISO, and other styles
3

Duarte, A. V., E. C. L. da Silva, E. A. O. Melo, F. M. M. Pereira, and A. S. B. Sombra. "Characterization of the BFO-BZN-based electroceramic composite for application as DRA." Cerâmica 66, no. 377 (March 2020): 1–6. http://dx.doi.org/10.1590/0366-69132020663772796.

Full text
Abstract:
Abstract The study and development of ceramic composites are important because of the properties that these materials can provide, such as high dielectric constant and low dielectric loss in the RF and microwave range. Such characteristics make this type of material appropriate to several segments, such as in the telecommunication sector, especially in dielectric resonator antenna (DRA). Ceramic composites provide new materials with a range of properties that can be controlled through the phases to meet the specifications of a given application. This study aimed to synthesize and characterize the composite based on hexaferrite (BFO) and ceramics based on bismuth (BZN), aiming application as DRA. The composites were characterized by FTIR, XRD, and SEM. The composites presented a compact and heterogeneous microstructure, indicating that the sintering at 1000 °C/150 min was adequate for obtaining the ceramic composites; besides, BFO-BZNβ composite was shown to be less porous than the composite BFO-BZNα.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Penghu, Haiyun Jin, Shichao Wei, Huaidong Liu, Naikui Gao, and Zhongqi Shi. "Ceramization Mechanism of Ceramizable Silicone Rubber Composites with Nano Silica at Low Temperature." Materials 13, no. 17 (August 21, 2020): 3708. http://dx.doi.org/10.3390/ma13173708.

Full text
Abstract:
Ceramizable composite is a kind of polymer matrix composite that can turn into ceramic material at a high temperature. It can be used for the ceramic insulation of a metal conductor because of its processability. However, poor low-temperature ceramization performance is a problem of ceramizable composites. In this paper, ceramizable composites were prepared by using silicone rubber as a matrix. Ceramic samples were sintered at different temperatures no more than 1000 °C, according to thermogravimetric analysis results of the composites. The linear contraction and flexural strength of the ceramics were measured. The microstructure and crystalline phase of ceramics were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). The results show that the composites turned into ceramics at 800 °C, and a new crystal and continuous microstructure formed in the samples. The flexural strength of ceramics was 46.76 MPa, which was more than twice that of similar materials reported in other research sintered at 1000 °C. The maximum flexural strength was 54.56 MPa, when the sintering temperature was no more than 1000 °C. Moreover, glass frit and nano silica played important roles in the formation of the ceramic phase in this research. A proper content of nano silica could increase the strength of the ceramic samples.
APA, Harvard, Vancouver, ISO, and other styles
5

Fényi, B., N. Hegman, F. Wéber, P. Arató, and Cs Balázsi. "DC conductivity of silicon nitride based carbon-ceramic composites." Processing and Application of Ceramics 1, no. 1-2 (2007): 57–61. http://dx.doi.org/10.2298/pac0702057f.

Full text
Abstract:
The silicon nitride ceramics are usually known as strongly refractory and enduring materials and have typical electrically insulating properties. If the reinforcing phase of ceramic composite (that is mainly put in the material to improve mechanical properties) is a good electrical conductor, it is worth to investigate the composite in electrical aspect. In this work carbon nanotubes, black-carbon and graphite were added to the basic silicon nitride ceramic and the electrical conductivity of the prepared carbon-ceramic composites was determined. The conductivity of the ceramic composites with different type and concentration of the carbon additives was observed by applying four point DC resistance measurements. Insulator and conductor composites in a wide conductivity range can be produced depending on the type and quantity of the additives. The additive types as well as the sintering parameters have influence on the basic electrical properties of the conductor composites.
APA, Harvard, Vancouver, ISO, and other styles
6

Acchar, Wilson, Marcus Diniz, Ygor Alexandre A. Fonseca, and F. C. C. Costa. "Effect of a LZSA Glass Infiltration on the Properties of a Porous Ceramic Composite Material Derived from Polysiloxane/Al/Nb." Materials Science Forum 591-593 (August 2008): 409–14. http://dx.doi.org/10.4028/www.scientific.net/msf.591-593.409.

Full text
Abstract:
By using the active filler controlled polymer pyrolysis, new and cost-effective composite materials can be obtained. In this work, ceramic matrix composites were prepared by using this precursor route, using a polysiloxane network filled with metallic niobium and aluminum powders as active fillers. The mixtures were blended, uniaxially warm pressed, and pyrolyzed in flowing argon at 1400 °C. Porous ceramic preforms were infiltrated with a LZSA glass material, in order to improve the density of a porous composite material. The properties of the pyrolyzed composite material and the effect of the LZSA infiltration on the Al2O3-NbC-SiOC ceramic composite material were investigated. The results have showed that the infiltration processes has improved the physical and mechanical properties of the composite material.
APA, Harvard, Vancouver, ISO, and other styles
7

Dobrzański, Leszek Adam, M. Kremzer, and Klaudiusz Gołombek. "Structure and Properties of Aluminum Matrix Composites Reinforced by Al2O3 Particles." Materials Science Forum 591-593 (August 2008): 188–92. http://dx.doi.org/10.4028/www.scientific.net/msf.591-593.188.

Full text
Abstract:
The work presents the research results of modern composite materials. The matrix material was EN AC AlSi12 alloy while the reinforcement ceramic preforms, obtained through sintering process of Al2O3 Alcoa CL 2500 powder with addition of carbon fibers as pore forming agent burned out during sintering. The composites were produced with use of porous material pressure infiltration method. The main limitation of base technology is a difficulty in obtaining composite materials with volumetric participation of ceramic phase in amount not less than 20%. Obtained on the base of ceramic preforms composite materials were tested with scanning electron microscopy. Additionally, hardness and tensile test was performed for acquired materials. Achieved results indicate the possibility of producing, with use of pressure infiltration method, porous preforms composed of Al2O3 particles, new composite material with desired microstructure and properties, being a cheaper alternative for materials with base of ceramic fibers.
APA, Harvard, Vancouver, ISO, and other styles
8

Dudek, Agata, and Renata Włodarczyk. "Composite 316L+Al2O3 for Application in Medicine." Materials Science Forum 706-709 (January 2012): 643–48. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.643.

Full text
Abstract:
The demand for new materials in medicine is on the increase today. Long-lasting implants (joint prostheses, dentistry implants), made typically of metals and their alloys, are characterized with high mechanical properties, however their corrosion resistance and biocompatibility are relatively low. One of the methods to ensure particular functional properties is to employ composite implants, combining improved mechanical properties of metallic material with biocompatibility of ceramic materials. The study aimed to develop and analyse properties of metallic/ceramic composites made of the mixture of powders: austenitic steel (316LHD) and ceramics (Al2O3).
APA, Harvard, Vancouver, ISO, and other styles
9

Korjakins, Aleksandrs, Liga Radina, and Diana Bajare. "Fabrication of porous ceramics as clay/glass composite." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 16, 2015): 72. http://dx.doi.org/10.17770/etr2015vol1.201.

Full text
Abstract:
<p>Nowadays porous ceramics are widely researched, becoming an increasingly marketable material in the world, mainly due to the wide possibilities of usage in different technical and technology industries. Porous ceramics are successfully used in the filtration and has a high potential of usage also in the production of heat insulation materials thus obtaining the material which combine high resistance that can compete with other heat insulation and constructive materials.</p><p class="R-AbstractKeywords">Article reports a study of porous ceramics, which are produced using foamglass pellets as melting fillers, despite the fact that these additives are not frequently used as filler in traditional ceramic materials. The basis of this method is mixing fire resistant material with hard and melting substance.</p><p class="R-AbstractKeywords">For the production of porous ceramics clay, hard filler, water and various sized foamglass pellets were used, thus allowing to determine optimal size of melting filler and thereby ensuring the necessary physical and mechanical properties of the obtained porous ceramic samples and required amount, size and division of pores. Compressive strength tests were performed, as well as density and water absorption of the samples was determined.</p><p class="R-AbstractKeywords">Obtained results of the study shows that ceramic materials, obtained within the research, have great potential of application for load-bearing constructions as constructive building materials, as well as insulation materials. Production of porous ceramics materials, where foamglass pellets are used as melting filler, allows to produce more effective ceramics, creating high added value for the final product. </p>
APA, Harvard, Vancouver, ISO, and other styles
10

Andriyani, Meita, Sonya Harwasih, and Eny Inayati. "Fabrication Technique of Dental Restoration Using Hybrid Ceramic With Cad Cam Method." Journal Of Vocational Health Studies 1, no. 1 (July 3, 2017): 32. http://dx.doi.org/10.20473/jvhs.v1.i1.2017.32-38.

Full text
Abstract:
Background : Ceramic is superior in aesthetic but fragile and breakable under bite pressure . Lack of understanding of material requirements for resistance in the oral cavity and minimal ceramic processing techniques is the initial cause of the failure. Hybrid ceramic dental restoration is a material that combines the good properties of ceramics and composites that have elasticity and ensures high strength and minimize the wall thickness of the restoration. Mechanical manufacture of dental restorations currently growing, CAD CAM systems are becoming popular in the field of dentistry. CAD CAM provides the advantage that the effectiveness of the time, does not require a lot of human resources, and produce a restoration with good quality. Purpose: To explain hybrid ceramic material and techniques of making hybrid ceramic dental restorations with CAD CAM system. Review: Hybrid ceramic is a material that combines the advantages of ceramics and composite elasticity. This material contains a hybrid structure with two networks, ceramic and polymer are linked to each other, known as double hybrid network. It added that the structure of the ceramic feldspathic network (86% wt) is reinforced by a polymer network (14% wt) are integrated as a polymer network filling cavities that exist in the network and make its structure ceramic hybrid ceramic material becomes denser. Conclusion: Hybrid ceramic having chewing load capacity and high elasticity, flexural strength 150-160 Mpa and fracture toughness 1.5 Mpa, higher than conventional ceramics. Mechanical manufacture of dental restorations using ceramic hybrid materials with CAD CAM method begins with scanning, selection of materials and tooth shade, designing, milling, followed by finishing, polishing, ends with staining and glazing.
APA, Harvard, Vancouver, ISO, and other styles
11

Chabera, P., A. Boczkowska, A. Morka, T. Niezgoda, A. Oziębło, and A. Witek. "Numerical and experimental study of armour system consisted of ceramic and ceramic- elastomer composites." Bulletin of the Polish Academy of Sciences Technical Sciences 62, no. 4 (December 1, 2014): 853–59. http://dx.doi.org/10.2478/bpasts-2014-0094.

Full text
Abstract:
Abstract The paper presents numerical and experimental results in the study of composite armour systems for ballistic protection. The modelling of protective structures and simulation methods of experiment as well as the finite elements method were implemented in LS DYNA software. Three armour systems with different thickness of layers were analyzed. Discretization for each option was built with three dimensional elements guaranteeing satisfactory accuracy of the calculations. Two selected armour configurations have been ballistically tested using the armour piercing (AP) 7.62 mm calibre. The composite armour systems were made of Al2O3 ceramics placed on the strike face and high strength steel as a backing material. In case of one ballistic structure system an intermediate ceramic- elastomer layer was applied. Ceramic- elastomer composites were obtained from porous ceramics with porosity gradient using pressure infiltration of porous ceramics by elastomer. The urea-urethane elastomer, as a reactive liquid was introduced into pores. As a result composites, in which two phases were interconnecting three-dimensionally and topologically throughout the microstructure, were obtained. Upon ballistic impact, kinetic energy was dissipated by ceramic body The residual energy was absorbed by intermediate composite layer. Effect of the composite shell application on crack propagation of ceramic body was observed.
APA, Harvard, Vancouver, ISO, and other styles
12

Belyakov, A. V., D. A. Ivanov, and G. A. Fomina. "A lanxide ceramic composite material." Glass and Ceramics 54, no. 7-8 (August 1997): 212–14. http://dx.doi.org/10.1007/bf02768120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Seng, De Wen. "Visualization of Composite Materials’ Microstructure with OpenGL." Applied Mechanics and Materials 189 (July 2012): 478–81. http://dx.doi.org/10.4028/www.scientific.net/amm.189.478.

Full text
Abstract:
The composite material is made by two or more of the same nature, substance or material combinations together new material. Through appropriate methods, different materials are to be combined with each other sets’ advantages of various materials into one, and to be available to the various properties of new materials. This is the fundamental reason for the rapid development of composite materials and composite technology. The fiber reinforced composite fibrous material in such materials as filler, in order to play an enhanced role. The fiber reinforced composite materials and fiber reinforced ceramic matrix composites are discussed in detailed. OpenGL is used to implement visualization of composites' material microstructure, which can specify fiber parameters to gain a basis of visualization.
APA, Harvard, Vancouver, ISO, and other styles
14

Ma, J., K. Zhao, B. Shi, Xing Dong Zhang, Yong Lie Chao, and Xu Dong Li. "Preparation of Nano-Ceramic Composite as Dental Prosthetic Material." Key Engineering Materials 342-343 (July 2007): 645–48. http://dx.doi.org/10.4028/www.scientific.net/kem.342-343.645.

Full text
Abstract:
Zirconia toughened alumina (ZTA) nano-ceramic composite has excellent mechanical properties. Preparation of ZTA was conducted in the present study with an attempt to use as dental ceramics. On the basis of the study on the effect of the die pressing forces on the density and Vickers hardness of the sintered ZTA, additive aids TiO2, MgO, SiO2 and CaO were introduced in order to reduce the sintering temperature of ZTA nano-ceramic composite with good densification. Scanning electron microscopy was employed to evaluate the microstructural morphology. Phase composition was confirmed by using X-ray diffraction. Thermal analysis was further used to study the structural change. The results indicated that the ZTA product sintered at 1450°C had dense and uniform microstructure due to the combinative effect of additive aids, including the formation of an intermediate compound. This study suggested that such ZTA nano-ceramics had potential applications as dental prosthetic materials.
APA, Harvard, Vancouver, ISO, and other styles
15

Leng, Sioh Ek. "Functional Graded Material with Nano Coating for Protection." Solid State Phenomena 136 (February 2008): 93–98. http://dx.doi.org/10.4028/www.scientific.net/ssp.136.93.

Full text
Abstract:
Ceramic composite armour in general utilises a front layer of dense ceramic, typically backed by a second layer of metal. Thereby creating a sharp interface that is the weakest link within the material system and would result in cracking of the ceramic prematurely and hence not able to provide the requisite protection. One promising possibility has been found is the use of functionally gradient materials as armour materials. In such materials, the high hardness of ceramics is combined with the ductility of metals. Laboratory scale experiments were being performed to exhibit the potential of this material in terms of physical and mechanical properties. A comparison was made with the current ceramic armour system and it was found that the new material system had better ballistic properties.
APA, Harvard, Vancouver, ISO, and other styles
16

Hampe, R., B. Theelke, N. Lümkemann, M. Eichberger, and B. Stawarczyk. "Fracture Toughness Analysis of Ceramic and Resin Composite CAD/CAM Material." Operative Dentistry 44, no. 4 (July 1, 2019): E190—E201. http://dx.doi.org/10.2341/18-161-l.

Full text
Abstract:
SUMMARY Objectives: To evaluate and compare the fracture toughness of dental CAD/CAM materials of different material classes intended for in-office milling (glass ceramics, hybrid, resin composites) and the influence of aging on this property. Methods and Materials: The fracture toughness (critical intensity factor, KIc) values of 9 CAD/CAM restorative materials (Ambarino High-Class, Brilliant Crios, Cerasmart, exp. CAD/CAM composite, Katana Avencia, Lava Ultimate, VITA Enamic, IPS Empress CAD, and IPS e.max CAD) were determined using the SEVNB method in a four-point bending setup. Twenty bending bars of each material with a 4 × 3 cross and a minimum length of 12 mm were cut out of CAD/CAM milling blocks. Notching was done starting with a pre-cut and consecutive polishing and v-shaping with a razor blade, resulting in a final depth of v-shaped notches of between 0.8 and 1.2 mm. Half of the specimens were selected for initial fracture toughness measurements. The others were thermocycled in distilled water for 30,000× (5/55°C; 30-second dwell time) before testing. Specimen fracture surfaces were analyzed using confocal laser scanning microscopy. Results: All specimens for each material fractured into two fragments and showed the typical compression curl and brittle failure markings. Comparing initial KIc values, lithium disilicate ceramic IPS e.max CAD showed significantly the highest and leucite-reinforced ceramic IPS Empress CAD significantly the lowest KIc values (p&lt;0.001). All tested CAD/CAM materials with a resin component ranged in the same KIc value group (p&gt;0.999-0.060). After thermal cycling, the highest KIc values were measured for lithium disilicate ceramic IPS e.max CAD, followed by resin composite materials Ambarino High-Class (p&lt;0.001-0.006) and hybrid material VITA Enamic (p&lt;0.001-0.016), while the significantly lowest values were reflected for the resin composite materials Cerasmart, LAVA Ultimate (p&lt;0.001-0.006), and Katana Avencia (p&lt;0.001-0.009). The roughness of the fracture surfaces varied depending on the microstructure of the respective material. The ceramic surfaces showed the smoothest surfaces. The fracture surface of VITA Enamic revealed microstructural inhomogeneities and microcracks. For CAD/CAM resin composite materials, crack paths through the matrix and interfaces of matrix and fillers could be observed at the microstructure level. Conclusions: The materials tested show differences in fracture toughness typical for the class they belong to. With one exception (Ambarino High-Class), thermocycling affected the fracture toughness of materials with a resin component negatively, whereas the leucite and lithium disilicate ceramic showed stability.
APA, Harvard, Vancouver, ISO, and other styles
17

Bergner, Anne, Tassilo Moritz, and Alexander Michaelis. "Interface Phenomena of Co-Sintered Steel-Zirconia Laminates." Materials Science Forum 825-826 (July 2015): 289–96. http://dx.doi.org/10.4028/www.scientific.net/msf.825-826.289.

Full text
Abstract:
The composite formation of steel and ceramics is especially for medical applications of great interest. By use of the multicomponent tape casting metal-ceramic composite components like bipolar scissors and other surgical instruments can be produced. A coating technology that comes from the paper industry, allows to apply a very thin insulating layer of a few microns between the electrodes consisting of stainless steel. Until now bipolar surgical instruments are produced by mechanical joining of steel and ceramic parts or by spraying a ceramic layer on the steel instruments. This joining steps can lead to stresses in the sensitive ceramic material and leave fine interstices or pores that are not only avoidable with a force and / or tight fit. Both factors are reasons for premature failure of the instrument, even if the materials are not yet at the limits of their resistance. Through the joint shaping by the tape casting and subsequent co-sintering of both materials, a material bond is achieved in addition to the previously existing mechanisms of force and form fit. This optimizes the composite properties and increases the usage time of metal-ceramic layered composites. Special focus is given to the formation of the interface and the associated changes in properties of the individual components of the laminate. These investigantions illustrate the influence of co-manufacturing on the texture of the laminate materials and the formed interface between them. By x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), x-ray fluorescence analysis (RFA) and thermodynamic calculations (FactSage) of the material bond at the metal-ceramic interface is investigated. In various application areas where steel and zirconia should occur as integral partners, this material combination may be established.
APA, Harvard, Vancouver, ISO, and other styles
18

Zou, Ping, Xu Lei Yang, Cong Yun Li, Wen Yuan Tian, and Li Jie Chen. "Development of Al2O3/TiCN Ceramic Composite Cutting Tool and Research on its Milling Performance." Advanced Materials Research 565 (September 2012): 460–65. http://dx.doi.org/10.4028/www.scientific.net/amr.565.460.

Full text
Abstract:
In this paper, ceramic composite materials for the milling tools have been developed by the hot pressing method. High performance Al2O3/TiCN ceramic composite materials were obtained successfully by adjusting the containing amount of Al2O3 and TiCN as the base material and the reinforcements in the ceramic composite materials, and optimizing the sintering process parameters. Moreover, the microstructure and mechanical property of this material was discussed. In addition, this new developed ceramic composite material was made into insert and its milling performance tests were carried out. The machining performance of the insert is better than carbide inserts when milling a hardened carbon steel.
APA, Harvard, Vancouver, ISO, and other styles
19

Náhlík, Luboš, Zdeněk Majer, Kateřina Štegnerová, and Pavel Hutař. "Lifetime Assessment of Particulate Ceramic Composite with Residual Stresses." Key Engineering Materials 754 (September 2017): 107–10. http://dx.doi.org/10.4028/www.scientific.net/kem.754.107.

Full text
Abstract:
A micro-crack propagation in particulate ceramic based composite was studied using finite element method (FEM). Subcritical crack growth (SCG) was numerically simulated under complex load conditions (mechanical loading and loading by internal residual stresses). The effect of residual stresses on the crack propagation was studied. Two-dimensional computational model of particulate ceramic composite with material properties corresponding to low temperature co-fired ceramics (LTCC) was developed. The results indicate that the presence of residual stresses significantly reduces values of stress intensity factor in the vicinity of composite surface and the direction of residual stresses around the particles contributes to the micro-crack deflection from the particles. The time to failure of the composite under mechanical loading was determined. Results obtained contribute to a better understanding of the role of residual stresses during micro-crack propagation in ceramic particulate composites.
APA, Harvard, Vancouver, ISO, and other styles
20

Yadav, Govind, R. S. Rana, R. K. Dwivedi, and Ankur Tiwari. "Development and Analysis of Automotive Component Using Aluminium Alloy Nano Silicon Carbide Composite." Applied Mechanics and Materials 813-814 (November 2015): 257–62. http://dx.doi.org/10.4028/www.scientific.net/amm.813-814.257.

Full text
Abstract:
Composite materials are important engineering materials due to their outstanding mechanical properties. Composites are materials in which the desirable properties of separate materials are combined by mechanically binding them together. Each of the components retains its structure and characteristic, but the composite generally possesses better properties. Composite materials offer superior properties to conventional alloys for various applications as they have high stiffness, strength and wear resistance. The development of these materials started with the production of continuous-fiber-reinforced composites. The high cost and difficulty of processing these composites restricted their application and led to the development of discontinuously reinforced composites. The aim involved in designing metal matrix composite materials is to combine the desirable attributes of metals and ceramics. The addition of high strength, high modulus refractory particles to a ductile metal matrix produce a material whose mechanical properties are intermediate between the matrix alloy and the ceramic reinforcement. Metal Matrix Composites with Aluminum as metal matrix is the burning area for research now a days.
APA, Harvard, Vancouver, ISO, and other styles
21

Markandan, Kalaimani, Jit Kai Chin, and Michelle T. T. Tan. "Study on Mechanical Properties of Zirconia-Alumina Based Ceramics." Applied Mechanics and Materials 625 (September 2014): 81–84. http://dx.doi.org/10.4028/www.scientific.net/amm.625.81.

Full text
Abstract:
This paper describes the characterisations of ceramic composites consisting of different compositions of alumina and zirconia. The material characterisations were performed from the aspects of densification, hardness and fracture toughness. The surface morphology and elemental composition of the composite were studied using SEM and EDX respectively. As for physical properties, the highest attainable hardness and fracture toughness were 11.35 GPa and 3.41 MPa m0.5respectively for ceramic composite consisted of 80 wt % Zr and 20 wt% Al. Sintering at 1150oC assisted in the densification of ceramics.
APA, Harvard, Vancouver, ISO, and other styles
22

Parks, W. P., R. R. Ramey, D. C. Rawlins, J. R. Price, and M. Van Roode. "Potential Applications of Structural Ceramic Composites in Gas Turbines." Journal of Engineering for Gas Turbines and Power 113, no. 4 (October 1, 1991): 628–34. http://dx.doi.org/10.1115/1.2906287.

Full text
Abstract:
A Babcock and Wilcox-Solar Turbines Team has completed a program to assess the potential for structural ceramic composites in turbines for direct coal-fired or coal gasification environments. A review is made of the existing processes in direct coal firing, pressurized fluid bed combustors, and coal gasification combined cycle systems. Material requirements in these areas were also discussed. The program examined state-of-the-art ceramic composite materials. Utilization of ceramic composites in the turbine rotor blades and nozzle vanes would provide the most benefit. A research program designed to introduce ceramic composite components to these turbines was recommended.
APA, Harvard, Vancouver, ISO, and other styles
23

Markandan, Kalaimani, Jit Kai Chin, and Michelle T. T. Tan. "Enhancing Electroconductivity of Yytria-Stabilised Zirconia Ceramic Using Graphene Platlets." Key Engineering Materials 690 (May 2016): 1–5. http://dx.doi.org/10.4028/www.scientific.net/kem.690.1.

Full text
Abstract:
A simple method to produce graphene-Yytria stabilised zirconia (YSZ) ceramic composite with significant improvement in electrical properties is reported here. The material was consolidated by annealing in presence of Argon gas that allowed densification of the ceramics. A detailed x-ray diffraction (XRD) analysis was used to study the phases and crystallinity of graphene-YSZ ceramic composite. XRD patterns of the sintered composite showed that graphene diffraction peaks were detected at 2θ≈27°. Furthermore, experimental results indicate that electrical conductivity of YSZ composites drastically increased with the addition of graphene platelets, and it reached a value of 2.8 S/cm at 2 wt.%.
APA, Harvard, Vancouver, ISO, and other styles
24

Rao, Yang, Jireh Yue, and C. P. Wong. "Material Characterization of High Dielectric Constant Polymer–Ceramic Composite for Embedded Capacitor to RF Application." Active and Passive Electronic Components 25, no. 1 (2002): 123–29. http://dx.doi.org/10.1080/08827510211279.

Full text
Abstract:
Embedded capacitor technology can improve electrical performance and reduce assembly cost compared with traditional discrete capacitor technology. Polymer–ceramic composites have been of great interest as embedded capacitor material because they combine the processability of polymers with the desired electrical properties of ceramics. A novel nano-structure polymer–ceramic composite with very high dielectric constant (εr∼150, a new record for the highest reportedεrvalue of nano-composite) has been developed in our previous work. RF application of embedded capacitors requires that insulating material have high dielectric constant at high frequency (GHz), low leakage current, high breakdown voltage and high reliability. A set of electrical tests have been conducted in this work to characterize the properties of the in house developed novel high dielectric constant polymer–ceramic nano-composite. Results show that this material has faily high dielectric constant in the RF range, low electrical leakage and high breakdown voltage. 85/85 TH aging test has been performed and it had shown this novel high K material has good reliability. An embedded capacitor prototype with capacitance density of35 nF/cm2has been manufactured using this nano-composite with spinning coating technology. This novel nano-composite can be used for the integral capacitors in the RF applications.
APA, Harvard, Vancouver, ISO, and other styles
25

Martin, R. B. "Bone as a Ceramic Composite Material." Materials Science Forum 293 (August 1998): 5–16. http://dx.doi.org/10.4028/www.scientific.net/msf.293.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marsavina, Liviu, Tomasz Sadowski, and Nicolae Faur. "Asymptotic Stress Field for a Crack Normal to a Ceramic–Metal Interface." Key Engineering Materials 417-418 (October 2009): 489–92. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.489.

Full text
Abstract:
Ceramic – metal interfaces are often present in composite materials. The presence of cracks has a major impact on the reliability of advanced materials, like fiber or particle reinforced ceramic composites, ceramic interfaces, laminated ceramics. The understanding of the failure mechanisms is very important, as much as the estimation of fracture parameters at a tip of the crack approaching an interface and crack propagation path. The asymptotic solution of the stress field at the tip of a crack normal to a bi-material interface is presented. A cracked sandwich plate loaded by uniform normal stress was numerically investigated using Finite Element Analysis. The numerical results of the circumferential stress distribution were compared with the analytical solutions. The results for the non-dimensional stress intensity factors show that at lower crack lengths the influence of material mismatch is lower but this influence increases with increasing the crack length.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Guo Jun, Hideki Kita, Naoki Kondo, and Tatsuki Ohji. "Strengthening Effect of In-Situ Dispersed Hexagonal Boron Nitride in Ceramic Composites." Key Engineering Materials 317-318 (August 2006): 163–66. http://dx.doi.org/10.4028/www.scientific.net/kem.317-318.163.

Full text
Abstract:
High strength particulate ceramic composites are in general reinforced by strong dispersoids, such as strong ceramic particles (SiC, TiB2, ZrO2, et al) and strong metallic particles (Mo, W, et al). In this work high strength ceramic composites with in-situ synthesized hexagonal boron nitride (h-BN) have been prepared and characterized. As an example, we manufactured mullite-BN composites by reactive hot pressing (RHP) using aluminum borates (9Al2O3·2B2O3 and 2Al2O3·B2O3) and silicon nitride as starting materials. The obtained material RHPed at 1800°C showed a strength of 540 MPa, which was 1.64 times higher than that of the monolithic mullite ceramics. TEM observation revealed that the composite had an isotropic microstructure with a fine mullite matrix grain size of less than 1 μm and a nano-sized h-BN platelets of about 200 nm in length and 60∼80 nm in thickness. The high strength was suggested to be from the reduced matrix grain size and the small toughening effect by the h-BN platelets. In addition, this kind of ceramic composite demonstrates low Young’s modulus that is beneficial to the thermal/mechanical shock resistance, and excellent machinability.
APA, Harvard, Vancouver, ISO, and other styles
28

Costa, César Edil da, Luana de Aguiar, and Vicente Amigó Borras. "Properties of AA6061 Aluminum Alloy Reinforced with Different Intermetallics and Ceramics Particles." Materials Science Forum 530-531 (November 2006): 255–60. http://dx.doi.org/10.4028/www.scientific.net/msf.530-531.255.

Full text
Abstract:
Aluminum alloys have been increasingly applied as a structural material in composite materials using metal matrix due to their excellent mechanical properties and low weight. The reinforcement are of fundamental importance in composite materials, owing to the their responsibility to support stresses acting on the metal matrix. Therefore, ceramic reinforcements can be replaced by intermetallic components with high mechanical properties and good thermal stability. The intermetallic components react chemically with the matrix, characterized by strong interactions, which makes possible the development of the new families of materials. The composite materials using aluminum reinforced with nickel aluminides and ceramic were developed using techniques based on a combination of powder metallurgy and extrusion processes, which makes possible to obtain more dense materials under lower processing temperatures. The powders of AA6061 and Ni3Al were manually mixed for 30 minutes, with different percentages of intermetallics and ceramics particles, 5 and 10% in weight. The composite powders were submitted to a hot extrusion process for 40 minutes at 540oC, and 385 MPa, with a reduction ratio of 25:1. This process insures extruded composites with a refined structure and a good distribution of the reinforcement particles. The material characterization were performed through structural analysis via scanning electron microscopy; mechanical behavior via tensile and hardening tests; and analysis of the fracture. The results show that the method used is effective to obtain composite materials with improved characteristics.
APA, Harvard, Vancouver, ISO, and other styles
29

kanzaoui, M. El, A. Hajjaji, A. Guenbour, and R. Boussen. "Development and study of mechanical behaviour reinforcing composites by waste BTP." MATEC Web of Conferences 149 (2018): 02012. http://dx.doi.org/10.1051/matecconf/201814902012.

Full text
Abstract:
Composite materials are used in many industrial applications for their excellent mechanical and electric properties and their low density compared to metal structures. Most countries are extremely rich waste materials such as white ceramic breakages which represents a potential to be developed. Ceramic breakages have exceptional properties and could be effectively exploited in the manufacture of composite materials for a wide variety of applications. The composite materials reinforced by construction waste materials, such as ceramic breaks which offer significant benefits and gains in strength and stiffness properties (Young's modulus E : a material whose modulus Young is very high is said rigid).This article covers the benefits of breakages as ceramic filler used for reinforcement in composites, as well as improve the mechanical response of these structural elements (test compression).
APA, Harvard, Vancouver, ISO, and other styles
30

Yi, Ming Dong, Chong Hai Xu, Jing Jie Zhang, and Zhen Yu Jiang. "Influences of Sintering Process on the Microstructure and Mechanical Behavior of ZrO2 Nano-Composite Ceramic Tool and Die Material." Advanced Materials Research 154-155 (October 2010): 1356–60. http://dx.doi.org/10.4028/www.scientific.net/amr.154-155.1356.

Full text
Abstract:
A new ZrO2 nano-composite ceramic tool and die material was prepared with vacuum hot pressing technique. The effects of sintering parameters on the nano-composite ceramic tool and die materials were studied. The results indicated that the mechanical properties of ZrO2 nano-composite ceramic tool and die material with the additions of TiB2 and Al2O3 are higher than that of the pure ZrO2 ceramic material. Sintering at 1100 for 120min could improve the density and mechanical properties of ZrO2 nano-composite ceramic material. The flexural strength, fracture toughness and hardness with the optimum sintering parameters can reach 878MPa, 9.54MPa•m1/2 and 13.48GPa, respectively, obviously higher than that with non-optimum sintering parameters.
APA, Harvard, Vancouver, ISO, and other styles
31

Semchenko, G. D., and E. S. Gevorkyan. "Consolidated Nanocomposite Materials with the Defined Properties." Advances in Science and Technology 91 (October 2014): 24–31. http://dx.doi.org/10.4028/www.scientific.net/ast.91.24.

Full text
Abstract:
Application of modern ways of ceramic materials’ consolidation and association of synthesis methods of organic and inorganic chemistry, sol-gel method and mechanochemistry, allowing to control processes of synthesis of the defined phases at molecular level, gives the chance to create highly effective composite materials. It is known that properties of composites on the basis of refractory compounds become dimensionally dependent at reduction of the particles’ size to several interatomic distances in one, two or three dimensions . Obtaining of durable nanostructural ceramics on the basis of ZrO2 with substantial increase of mechanical properties can be realized by creation of material with fine homogeneous structure, on the basis of powders of nonoxygen compounds when strength properties and crack resistance increase at creation of –intra and –inter nanostructures. In work results of creation of the consolidated nanomaterials and composite ceramics with usage of the peculiarities set forth above for synthesis of precursors of powders and the defined phases that self-reinforce ceramic matrixes have been presented.
APA, Harvard, Vancouver, ISO, and other styles
32

Spyrka, M., R. Atraszkiewicz, and L. Klimek. "A new ceramic composite based on spherical aluminium oxide for auxiliary panels in high-temperature firing processes." Archives of Materials Science and Engineering 1, no. 101 (January 1, 2020): 5–14. http://dx.doi.org/10.5604/01.3001.0013.9501.

Full text
Abstract:
based on a spherical form of aluminium oxide. It is intended to limit the occurrence of technological problems related to the appropriate selection of auxiliary refractory materials, such as cracking, high heat capacity and variable coefficient of thermal expansion. Design/methodology/approach: A composite ceramic material with the spherical form of aluminium oxide included allows to reduce mass and stabilize characteristics of dimensional changes as a function of temperature in auxiliary panels in high-temperature firing processes with typical manufacturing process of the ceramics, which is gravity casting, drying and high-temperature firing. Findings: The study showed that the quantitative share of the spherical form of Al2O3 in the volume of ceramic material has a major impact on its properties. An increased share of spheres translates into greater material porosity and lower matrix density but also, by reducing the cross-section, into decreased strength properties. In the case of the developed ceramic material, there is no visible trend of a decrease in the coefficient of thermal expansion with increasing temperature, which is the case with traditional ceramic materials. Research limitations/implications: The strength of presented composite isn’t good and constitutes a further direction of research and development of the material. Practical implications: Although decreased strength properties, the composite with no visible trend of a decrease in the coefficient of thermal expansion with increasing temperature could be used as panels in high-temperature firing processes. Originality/value: New ceramic foundry composite based on a spherical form of aluminium oxide for auxiliary panels in high temperature processes.
APA, Harvard, Vancouver, ISO, and other styles
33

Meng, Zeng-Dong, Cheng-Jian Wang, Yu-Qin Zhang, Chong Luo, Ze-Yu Wang, and Wei-Chao Li. "Porous Hydroxyapatite/Strontium Oxide Composite Ceramic Preparation and Properties of Biomaterials." Journal of Biomaterials and Tissue Engineering 9, no. 6 (June 1, 2019): 783–88. http://dx.doi.org/10.1166/jbt.2019.2056.

Full text
Abstract:
Objective: This study aims to added strontium to hydroxyapatite (HA) through physical means and prepare porous composite ceramic materials with good mechanical properties to further improve the osteogenesis-inducing effect of bone repairing materials. Methods: The composite powders of strontium oxide/hydroxyapatite (SrO/HA) was obtained by mechanical milling. Then, porous SrO/HA composite ceramics were prepared by spark plasma sintering. The composition, structure and morphology of these porous composite ceramic materials were characterized using X-ray diffraction and scanning electron microscope, and the porosity and mechanical properties were tested. Results: Porous composite ceramic materials with clear composition were prepared, and obvious porous structures were observed. Conclusion: After ball milling, a replacement reaction occurred in the prepared porous SrO/HA composite powder with different SrO contents, part of Ca2+ in HA (Ca10[PO4]6[OH]2was replaced by Sr2+, and merely a small amount of powder underwent decomposition during sintering at 1,100 °C. Under an electron microscope, the pore characteristics of the composite ceramic materials were obvious, the distribution was uniform, and the connectivity was good. The compressive strengths of these materials ranged within 2–8 MPa. This shows that the strontium element can also be doped by physical means, and that the obtained porous SrO/HA composite ceramic material has good pore characteristics and good application potential in bone repair.
APA, Harvard, Vancouver, ISO, and other styles
34

Hermansson, Leif, Lars Kraft, Karin Lindqvist, Nils Otto Ahnfelt, and Hakan Engqvist. "Flexural Strength Measurement of Ceramic Dental Restorative Materials." Key Engineering Materials 361-363 (November 2007): 873–76. http://dx.doi.org/10.4028/www.scientific.net/kem.361-363.873.

Full text
Abstract:
Flexural strength of a dental material reflects its ability to withstand tensile stresses and thus the fracture risk of a filling. The flexural strength of an experimental bioceramic Calcium aluminate-based (CA) dental restorative material was measured using three different methods with a composite (Tetric Ceram), a glass ionomer cement (Fuji II) and a phosphate cement (Harward) as references. The three test methods were: a) ISO 4049 for dental composites, 3-point bend test b) EN 843-1 for ceramic materials, 3-point bend test and c) ASTM F-394, biaxial ball-on-disc for ceramic materials. The strength of the CA-material, tested in the ball-on-disc method, is close to the theoretical strength based on the microstructure of the material (max. grain size of 15 μm). The composite material and the phosphate cement were rather insensitive to the test method, while the glass ionomer cement as the CA-material showed sensitivity towards the test method. A modified biaxial test method for evaluation of strength of dental materials in a close to real-life component is proposed.
APA, Harvard, Vancouver, ISO, and other styles
35

Guggenbühl, Simon, Abdulmonem Alshihri, Nadin Al-Haj Husain, and Mutlu Özcan. "Adhesion of Resin-Resin and Resin–Lithium Disilicate Ceramic: A Methodological Assessment." Materials 14, no. 14 (July 11, 2021): 3870. http://dx.doi.org/10.3390/ma14143870.

Full text
Abstract:
The aim of this study was to evaluate four test methods on the adhesion of resin composite to resin composite, and resin composite to glass ceramic. Resin composite specimens (N = 180, Quadrant Universal LC) were obtained and distributed randomly to test the adhesion of resin composite material and to ceramic materials (IPS e.max CAD) using one of the four following tests: (a) Macroshear SBT: (n = 30), (b) macrotensile TBT: (n = 30), (c) microshear µSBT: (n = 30) and (d) microtensile µTBT test (n = 6, composite-composite:216 sticks, ceramic-composite:216 sticks). Bonded specimens were stored for 24 h at 23 °C. Bond strength values were measured using a universal testing machine (1 mm/min), and failure types were analysed after debonding. Data were analysed using Univariate and Tukey’s, Bonneferroni post hoc test (α = 0.05). Two-parameter Weibull modulus, scale (m), and shape (0) were calculated. Test method and substrate type significantly affected the bond strength results, as well as their interaction term (p < 0.05). Resin composite to resin composite adhesion using SBT (24.4 ± 5)a, TBT (16.1 ± 4.4)b and µSBT (20.6 ± 7.4)a,b test methods presented significantly lower mean bond values (MPa), compared to µTBT (36.7 ± 8.9)b (p < 0.05). When testing adhesion of glass ceramics to resin composite, µSBT (6.6 ± 1)B showed the lowest and µTBT (24.8 ± 7)C,D the highest test values (MPa) (SBT (14.6 ± 5)A,D and TBT (19.9 ± 5)A,B) (p < 0.05). Resin composite adhesion to ceramic vs. resin composite did show significant difference for the test methods SBT and µTBT (resin composite (24.4 ± 5; 36.7 ± 9 MPa) vs. glass ceramic (14.6 ± 5; 25 ± 7 MPa)) (p > 0.05). Among substrate–test combinations, Weibull distribution presented the highest shape values for ceramic–resin in µSBT (7.6) and resin–resin in µSBT (5.7). Cohesive failures in resin–resin bond were most frequently observed in SBT (87%), followed by TBT (50%) and µSBT (50%), while mixed failures occurred mostly in ceramic–resin bonds in the SBT (100%), TBT (90%), and µSBT (90%) test types. According to Weibull modulus, failure types, and bond strength, µTBT tests might be more reliable for testing resin-based composites adhesion to resin, while µSBT might be more suitable for adhesion testing of resin-based composites to ceramic materials.
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Hee Seung, Mi Young Seo, and Ik Jin Kim. "Advanced Engineering Ceramics for Semiconductor Package Technology." Key Engineering Materials 336-338 (April 2007): 1155–58. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.1155.

Full text
Abstract:
Advanced engineering ceramic technology has very remarkable reputation in the high-tech fields such as semiconductor device manufacturing. ZTA (Zirconia Toughened Alumina), ruby and alumina is applied in the manufacturing of the capillaries that demonstrate high strength, fracture toughness and long life. The advantages of the new composite material over the standard ultra-fine grain high-density material have been proven in many applications especially for packages requiring less than 50μm capillary tip diameter. In this work, micro-structural evolution of ceramic composites and its correlation with important criteria in the selection of the suitable capillary material either ZTA composites or high-density ruby ceramics for a specific package applications will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
37

Shakhova, Valeria, Irina Vitkalova, Anastasiya Torlova, Evgeniy Pikalov, and Oleg Selivanov. "Development of composite ceramic material using cullet." MATEC Web of Conferences 193 (2018): 03032. http://dx.doi.org/10.1051/matecconf/201819303032.

Full text
Abstract:
The research presents the results of the charge development for producing ceramic composite material, where ceramic particles of the crystalline structure serve as filler, and vitreous amorphous phase obtained by the introduction of the cullet and the flux into the charge at different firing temperatures serve as a binder. Herewith the cullet is used as a flux-strengthening additive, which is a source of vitreous phase, and the flux reduces the amount of the formed vitreous phase. Boric acid, feldspar, and dolomite separately have been used as fluxes in the current research. In the conducted experiments, the charge basic component was low-plasticity clay, which can be used for producing high quality products only with the introduction of functional additives. Basing on the obtained data, it has been stated that higher values of strength and lower values of water absorption for the developed material can be achieved at the introduction of 30 wt. % of the cullet and 2.5 wt.% of boric acid as a flux at the highest firing temperature of 1050oC. The developed charge composition facilitates broadening the construction materials production resource base due to the usage of low-demand low-plasticity clay and glass works waste. The material produced on the basis of this charge corresponds to the requirements for the construction materials used for indoor and outdoor facing of facades, socles of the buildings and facilities.
APA, Harvard, Vancouver, ISO, and other styles
38

Ishikawa, Toshihiro. "SA-Tyrannohex-Based Composite for High Temperature Applications." Advances in Science and Technology 71 (October 2010): 118–26. http://dx.doi.org/10.4028/www.scientific.net/ast.71.118.

Full text
Abstract:
To modify the relatively low fracture toughness of monolithic ceramics, the incorporation of long ceramic fibre within a matrix material has been extensively performed. In this case, as cracks form in the matrix material and approach the fibres, they will be deflected at the interface between the fibre and the matrix. We developed another approach toward improving the toughness of ceramics involving the creation of a textured internal structure within the ceramic itself, similar in some respects to the fibrous structure of wood. Actually, we developed a tough ceramic, which consists of a highly ordered, close-packed structure of very fine hexagonal columnar fibres with a thin interfacial carbon layer between fibres. The interior of the fibre element was composed of sintered beta-silicon carbide crystal. This concept is fundamentally different from that described previously, in that it is extremely difficult to distinguish separate “fibre” and “matrix” phases in the traditional composite sense. The toughness of the material in this case derives from the tremendous amount of interface area created within the internal structure through the close packing of the hexagonal columnar fibres. Furthermore, this ceramic also achieved the excellent high temperature properties, high thermal conductivity and low density. These properties will make it very attractive for replacement of heavy metal super alloy components.
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Chong Hai, and H. Y. Wang. "Design of Ceramic Composite Based on the Impact Resistance and its Machining Application." Key Engineering Materials 336-338 (April 2007): 2487–89. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.2487.

Full text
Abstract:
An optimum model for the compositional design of advanced ceramic composites is built based on the impact resistance. The relative impact modulus IM0 is defined as an index for the characterization of impact resistance of brittle ceramics. Computer aided optimum technique is used to get the optimum compositions of the material. Results show that the material can be expected to have the highest impact resistance which is nearly 86% higher than that of the pure alumina when the volume fraction of Al2O3, SiC and Ti(C,N) is 72.3%, 14.8% and 12.9%, respectively. An advanced SiC/Ti(C,N)/Al2O3 ceramic composite is then fabricated according to the optimum results. When used as cutting tools, its impact fracture resistance is approximately 71%-76% higher than that of the pure alumina ceramic in the machining of hardened carbon steel. The increment coincides well with that predicted directly from the optimum model. It suggests that the method is feasible in the design and fabrication of ceramic composites especially for machining application.
APA, Harvard, Vancouver, ISO, and other styles
40

Holčapek, Ondřej, Jaroslava Kot'átková, and Pavel Reiterman. "Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers." Advances in Civil Engineering 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/3251523.

Full text
Abstract:
The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC), ceramic powder up to 25% by mass (by 5%) as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.
APA, Harvard, Vancouver, ISO, and other styles
41

Wang, Hui, Bang Cheng Yang, Qi Feng Yu, Dayi Wu, and Xing Dong Zhang. "In Vitro Bioactivity of Composite of Nanophase Titania/Bioactive Glass-Ceramic in Simulated Body Fluid." Key Engineering Materials 288-289 (June 2005): 171–74. http://dx.doi.org/10.4028/www.scientific.net/kem.288-289.171.

Full text
Abstract:
Titania ceramics is lack of bone-bonding ability even if it has excellent biocompatibility. Recently, it is even found that the nanophase titania ceramics could enhance the proliferation of osteoblasts. If the bone-bonding ability of this material is improved, it would be a potential bone replacement material. Bioactive glass-ceramic (BGC) is provided with the best bioactivity in biomaterials. In this study, the apatite formation ability and the mechanic properties of titania ceramic were investigated by the accession of BGC. Four samples: TiO2 ceramic, TiO2 +10%BGC, TiO2 +20%BGC and BGC were prepared respectively. These ceramics were exposed to a simulated body fluid (SBF) for 7, 14 and 21d. Scanning electron microscopy (SEM), energy dispersive X-ray detector (EDX) and thin film X-ray diffraction (TF-XRD) results showed that the apatite formation of the ceramics was improved by adding BGC into nanophase titania ceramic. The mechanical analysis showed the biomechanical compatibility was also improved by adding BGC into nanophase titania ceramic.
APA, Harvard, Vancouver, ISO, and other styles
42

Yi, Ming Dong, Chong Hai Xu, X. H. Wang, and Hui Fa Zhang. "Tribological Design of Zirconia Nanocomposite Ceramic Tool and Die Material." Materials Science Forum 697-698 (September 2011): 142–46. http://dx.doi.org/10.4028/www.scientific.net/msf.697-698.142.

Full text
Abstract:
A new ZrO2 nano-composite ceramic tool and die material was prepared with vacuum hot pressing technology. The friction and wear behaviors of ZrO2 nano-composite ceramic tool and die materials in sliding against 45 chilled steel rings under dry friction were investigated by using an MMW-1A abrasion wear tester. The mechanical properties and the friction and wear properties of the composites with various compositions and contents were studied. It is indicated that the changing trends of the wear rate and the mechanical properties of the composites with the change of TiB2 and Al2O3 contents are roughly the same, but the friction coefficient is not obviously. The friction and wear properties and the mechanical properties are finer when the TiB2 and Al2O3 content is both 10%.
APA, Harvard, Vancouver, ISO, and other styles
43

Lipowska, B., B. Psiuk, M. Cholewa, and Ł. Kozakiewicz. "Preliminary Tests of Cellular SiC/Iron Alloy Composite Produced by a Pressureless Infiltration Technique." Archives of Foundry Engineering 17, no. 1 (March 1, 2017): 115–20. http://dx.doi.org/10.1515/afe-2017-0021.

Full text
Abstract:
Abstract Preliminary tests aimed at obtaining a cellular SiC/iron alloy composite with a spatial structure of mutually intersecting skeletons, using a porous ceramic preform have been conducted. The possibility of obtaining such a composite joint using a SiC material with an oxynitride bonding and grey cast iron with flake graphite has been confirmed. Porous ceramic preforms were made by pouring the gelling ceramic suspension over a foamed polymer base which was next fired. The obtained samples of materials were subjected to macroscopic and microscopic observations as well as investigations into the chemical composition in microareas. It was found that the minimum width of a channel in the preform, which in the case of pressureless infiltration enables molten cast iron penetration, ranges from 0.10 to 0.17 mm. It was also found that the ceramic material applied was characterized by good metal wettability. The ceramics/metal contact area always has a transition zone (when the channel width is big enough), where mixing of the components of both composite elements takes place.
APA, Harvard, Vancouver, ISO, and other styles
44

Piat, Romana, Siddharta Roy, and Alexander Wanner. "Material Parameter Identification of Interpenetrating Metal-Ceramic Composites." Key Engineering Materials 417-418 (October 2009): 53–56. http://dx.doi.org/10.4028/www.scientific.net/kem.417-418.53.

Full text
Abstract:
A new class of metal/ceramic composites has recently been developed. A porous ceramic preform, the pore structure of which is created via a freeze-casting technique, is melt-infiltrated with metallic alloy via sqzeeze-casting. The microstructure of the composite has lamellar-like domains with geometrical characteristics which are dependent on the manufacturing parameters. The aim of our study is to find a good micromechanical model in order to deduce the mechanical properties of the single domains and of the whole material as a function of the microstructural geometry and the material parameters of the ceramics (alumina) and the alloy (Al-Si eutectic). Firstly, the statistical analysis of polarized light microscopic micrographs of the cross section of the specimen was performed. Domains with the same orientation of lamellae, so-called single domains were detected, selected and measured. The material modeling was performed by a two-step homogenisation procedure using a combination of different micromechanical models. Predicted material properties were compared with ultrasonic measurements for a single domain and for the whole microstructure.
APA, Harvard, Vancouver, ISO, and other styles
45

Maran, Bianca Medeiros, Fabiana Scarparo Naufel, Andréia Bolzan de Paula, Giovana Spagnolo Albamonte Araújo, and Regina Maria Puppin-Rontani. "Biological and mechanical degradation affecting the surface properties of aesthetic restorative." Brazilian Journal of Oral Sciences 16 (December 15, 2017): 1–10. http://dx.doi.org/10.20396/bjos.v16i0.8651058.

Full text
Abstract:
Aim: To evaluate the roughness (Ra), Knoop hardness (KHN) and change of color (∆E) of esthetic restorative materials (Filtek Z350-composite nanoparticle; Empress Direct-composite nanohybrid and IPS e.Max-ceramic) subjected to contact with the Streptococcus mutans biofilm (biological degradation) associated with abrasion generated by tooth brushing (mechanical degradation). Methods: Ten specimens of each material were prepared, and the surface properties initial were evaluated. All specimens were exposed to Streptococcus mutans inoculum; after 7 days, surface properties were evaluated. The specimens were submitted to a 30,000 toothbrushing cycles, using a toothpaste slurry, then, surface properties were evaluated again. Data were analyzed by Proc-Mixed, One-way ANOVA, Tukey-Kramer and Tukey’s tests (α = 0.05). Results: At the baseline, ceramic showed the highest Ra and KHN values; after the biological degradation the composites showed increased Ra, but KHN did not change; after the mechanical degradation, Empress showed decreased Ra and Z350 showed similar Ra, the KHN increased to both composites, and all materials had increased lightness after the mechanical degradation. Conclusions: The results suggest that, when exposed to Streptococcus mutans biofilm and toothbrush abrasion, the ceramics undergoes minimal degradation and the composites exhibited variable degradation, depending on the composition of the material.
APA, Harvard, Vancouver, ISO, and other styles
46

Batra, Pranshu. "A Comparative Shade Evaluation of Two Different All-Ceramic Materials over Three Core Build-up Materials: An in vitro Study." Journal of Contemporary Dentistry 2, no. 2 (2012): 15–21. http://dx.doi.org/10.5005/jp-journals-10031-1003.

Full text
Abstract:
ABSTRACT Aim To evaluate and compare the shade of zirconia and alumina crowns over composite, all-ceramic and metal core material. Objectives (1) To evaluate the influence of composite core build-up material on the shade of zirconia and alumina crowns. (2) To evaluate the influence of all-ceramic core material on the shade of zirconia and alumina crowns. (3) To evaluate the influence of metal core material on the shade of zirconia and alumina crowns. (4) To compare the influence of composite, all-ceramic and metal core material on the shade of zirconia and alumina crowns. Materials and Methods The all-ceramic materials used for fabrication of crowns were zirconia (LAVA) and alumina (PROCERA). They were evaluated spectrophotometrically for the change in shade when placed over three core build-up materials. Results The observations obtained were statistically analyzed by analysis of variance. Zirconia crowns when compared with alumina crowns showed the least shade change when placed on the three core materials. Among the three core materials used, composite core build-up material showed the least change in the shade. Conclusion Zirconia crowns showed least shade change when placed on the three core materials. How to cite this article Batra P, Ram SM. A Comparative Shade Evaluation of Two Different All-Ceramic Materials over Three Core Build-up Materials: An in vitro Study. J Contemp Dent 2012;2(2):15-21.
APA, Harvard, Vancouver, ISO, and other styles
47

Vasile, Bogdan Stefan, Alexandra Catalina Birca, Vasile Adrian Surdu, Ionela Andreea Neacsu, and Adrian Ionut Nicoară. "Ceramic Composite Materials Obtained by Electron-Beam Physical Vapor Deposition Used as Thermal Barriers in the Aerospace Industry." Nanomaterials 10, no. 2 (February 20, 2020): 370. http://dx.doi.org/10.3390/nano10020370.

Full text
Abstract:
This paper is focused on the basic properties of ceramic composite materials used as thermal barrier coatings in the aerospace industry like SiC, ZrC, ZrB2 etc., and summarizes some principal properties for thermal barrier coatings. Although the aerospace industry is mainly based on metallic materials, a more attractive approach is represented by ceramic materials that are often more resistant to corrosion, oxidation and wear having at the same time suitable thermal properties. It is known that the space environment presents extreme conditions that challenge aerospace scientists, but simultaneously, presents opportunities to produce materials that behave almost ideally in this environment. Used even today, metal-matrix composites (MMCs) have been developed since the beginning of the space era due to their high specific stiffness and low thermal expansion coefficient. These types of composites possess properties such as high-temperature resistance and high strength, and those potential benefits led to the use of MMCs for supreme space system requirements in the late 1980s. Electron beam physical vapor deposition (EB-PVD) is the technology that helps to obtain the composite materials that ultimately have optimal properties for the space environment, and ceramics that broadly meet the requirements for the space industry can be silicon carbide that has been developed as a standard material very quickly, possessing many advantages. One of the most promising ceramics for ultrahigh temperature applications could be zirconium carbide (ZrC) because of its remarkable properties and the competence to form unwilling oxide scales at high temperatures, but at the same time it is known that no material can have all the ideal properties. Another promising material in coating for components used for ultra-high temperature applications as thermal protection systems is zirconium diboride (ZrB2), due to its high melting point, high thermal conductivities, and relatively low density. Some composite ceramic materials like carbon–carbon fiber reinforced SiC, SiC-SiC, ZrC-SiC, ZrB2-SiC, etc., possessing low thermal conductivities have been used as thermal barrier coating (TBC) materials to increase turbine inlet temperatures since the 1960s. With increasing engine efficiency, they can reduce metal surface temperatures and prolong the lifetime of the hot sections of aero-engines and land-based turbines.
APA, Harvard, Vancouver, ISO, and other styles
48

Yi, Ming Dong, Chong Hai Xu, Zhao Qiang Chen, and Guang Yong Wu. "Preparation of Al2O3 Based Nano-Micro Composite Gradient Self-Lubricating Ceramic Tool Materials." Materials Science Forum 788 (April 2014): 613–16. http://dx.doi.org/10.4028/www.scientific.net/msf.788.613.

Full text
Abstract:
Aiming at the low mechanical property of existing self-lubricating ceramic cutting tool material, a new Al2O3 based nanomicro composite gradient self-lubricating ceramic tool material was developed by applying the design concept of nanomicro composite. The self-lubricating ceramics was composed of ceramic matrix and self-lubricating component, and was prepared by hot pressing technology at a hot-pressing temperature of 1650°C, pressure of 30MPa, and duration of 15min. The model of gradient ceramic tool material is symmetrical composition distribution, and the compositional distribution n and layer number are 1.8 and 7, respectively. The result shows that the interfaces between layers are bonded well and no cracks or defects can be observed. Compare with the homogeneous material, the flexural strength, hardness and fracture toughness of Al2O3 based graded material increase by 74%, 5.2% and 3.9%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
49

Yu, Y. D., I. L. Tangen, M. A. Einarsrud, R. Høier, T. Grande, and J. K. Solberg. "Microstructures in Pressureless Sintered AIN-SiC Ceramics." Microscopy and Microanalysis 7, S2 (August 2001): 1124–25. http://dx.doi.org/10.1017/s143192760003169x.

Full text
Abstract:
Aluminum nitride (AlN) is known to have a high thermal conductivity and is one of the valid candidates as substrate material for integrated circuits. The material also has a potential in metal production and handling. However, AlN has only a moderate flexural strength and fracture toughness. It has been reported that SiCA1N composites (SiC/AIN ratio ≥ 50%) can be manufactured by means of pressureless sintering. Furthermore, it is possible to fabricate self-reinforced SiC-based materials with whisker-like crystals in composite ceramics by choosing appropriate sintering additive and condition. in the present study, we investigated the possibility to prepare in-situ formed SiC-whisker reinforced AlN-materials and studied the microstructure of the composite.An AlN-SiC composite ceramic sample (20 vol% SiC) was prepared for the investigation. The AlN-SiC composite was processed from a mixture of the starting powders with 2.5 wt% Al2O3-Y2O3 as a sintering additive.
APA, Harvard, Vancouver, ISO, and other styles
50

Skulski, Ryszard, Dariusz Bochenek, Przemysław Niemiec, Dagmara Brzezinska, and Artur Chrobak. "Technology and Main Properties of PMN-PT-Ferrite Multiferroic Ceramic Composite Materials." Advances in Science and Technology 98 (October 2016): 3–8. http://dx.doi.org/10.4028/www.scientific.net/ast.98.3.

Full text
Abstract:
In the presented work composite ferroelectric/ferrimagnetic ceramics have been obtained and described. The investigated material is based on PMN-PT powders and Ni-Zn ferrite powder. The Powders of ferroelectric component (i.e. (1–x)PMN-(x)PT with x from 0.25 to 0.40 with step 0.03 were synthesized using the sol-gel method. The magnetic component i.e. nickel-zinc ferrite was obtained from oxides using the classic method of obtaining ceramics. The compositions of PMN–PT used by us have rhombohedral or tetragonal symmetries, or belong to morphotropic region. The final ceramic composite samples were obtained using the classic method of ceramic technology with calcination route and final pressureless densification using free sintering. In this paper, XRD, EDS dielectric and magnetic properties have been investigated and described for the obtained composite ceramic samples.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography