Dissertations / Theses on the topic 'Ceramic composite material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Ceramic composite material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Grosskopf, Paul P. "Mechanical behavior of a ceramic matrix composite material." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/42214.
Full textMonolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to sman material imperfections, reinforced ceramic materials have been developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure.
A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) has been studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen.
Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software has been written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material.
This paper will compare the measured AU parameters to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced X-ray radiography.
Master of Science
Trandel, Barbara Dawn. "Nondestructive evaluation of a high temperature ceramic matrix composite material." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01312009-063125/.
Full textDavies, C. M. A. "Failure mechanisms in glass-ceramic matrix composite laminates." Thesis, University of Bath, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387305.
Full textMoro, Marjan. "Nano-Characterization of Ceramic-Metallic Interpenetrating Phase Composite Material using Electron Crystallography." Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1340223324.
Full textPaiva, Denis Valony Martins. "Development of a magneto-dieletric composite based on Y3FE5O12/CATIO3 for microwaves devices." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15155.
Full textCom o desenvolvimento da tecnologia sem fio, muitos dispositivos eletrÃnicos exigem alta integraÃÃo e que possuam propriedades multifuncionais. Em tal caso, compÃsitos magneto-dielÃtricos tÃm atraÃdo muita atenÃÃo devido as suas propriedades. Nesse sentido, a pesquisa sobre compÃsitos à empregada para a busca de novos materiais. O titanato de cÃlcio (CaTiO3 - CTO) e a granada de Ãtrio e ferro (Y3Fe5O12 - YIG) possuem excelentes propriedades dielÃtricas e ferrimagnÃticas, respectivamente. Este trabalho apresenta a obtenÃÃo do compÃsito ferrimagnÃtico, constituÃdo pelas fases YIG e CTO, atravÃs da rota sintÃtica no estado sÃlido com a utilizaÃÃo de moagem mecÃnica de alta energia. As fases das cerÃmicas foram sinterizadas a 1200ÂC/5h. A DifraÃÃo de Raios-X, a Espectroscopia Raman e MÃssbauer foram essenciais para caracterizaÃÃo estrutural dos compÃsitos. A morfologia das amostras foi elucidada pela Microscopia EletrÃnica de Varredura e auxiliada pela Picnometria a fim de avaliar a densificaÃÃo do material. Adicionalmente, foram realizados experimentos para se avaliar o comportamento elÃtrico e magnÃtico dos compÃsitos na faixa de radiofrequÃncia e de micro-ondas, para depois sugerir uma aplicaÃÃo tecnolÃgica cabÃvel. Os resultados obtidos pela DifraÃÃo de Raio X e da Espectroscopia Raman confirmaram que a sÃntese das fases foi realizada de forma satisfatÃria. As anÃlises qualitativas dos espectros MÃssbauer mostraram boa concordÃncia com os resultados apresentados pela DifraÃÃo de raios-x. Os compÃsitos apresentaram permissividade dielÃtrica praticamente constante na faixa de 50 MHz a 1,5 GHz. Ao analisar o aumento e a diminuiÃÃo da concentraÃÃo em massa de CTO e YIG, respectivamente, foi percebido que os valores de εr aumentaram. A partir dos valores obtidos, pode-se sugerir que o compÃsito sintetizado possui potencial para ser utilizado em dispositivos de micro-ondas, tais como para antenas monopolo.
With the development of wireless technology, many electronic devices require high integration and materials with multifunctional properties. In such a case, magneto-dielectric composites have attracted much attention because they have both magnetic and dielectric properties. In this sense, research on composites is employed to search for new materials. The calcium titanate and yttrium iron garnet possess excellent dielectric properties and ferrimagnetic, respectively. This paper presents the preparation of ferrimagnetic composite, comprising the steps Y3Fe5O12 (YIG) and CaTiO3 (CTO) by the solid state synthetic route with the use of high energy mechanical grinding. The phases of the ceramics were sintered at 1200 Â C for 5 h. The X-ray diffraction, Raman and MÃssbauer Spectroscopy were used to elucidade structural properties of the composites. The morphological characteristics of the samples were elucidated by Scanning Electron Microscopy and supported by Pycnometry to analyze the densification of the material. Furthermore, experiments to evaluate the electrical and magnetic behavior of composites in the range of radiofrequency and microwave were performed and finally an appropriate technological application was suggested. The results obtained by X-Ray Diffraction and Raman spectroscopy confirm that the synthesis of YIG was successfully obtained. The structural characterization of pure and composite samples was performed successfully and the formation of ionic phase in composites YIG-CTO was found, being in the same family of oxide in which the CTO is inserted. Qualitative analysis of the MÃssbauer spectra showed good agreement with the results reported by x-ray diffraction. The dielectric permittivity composites showed almost constant in the range of 50 MHz to 1.5 GHz. Evaluating the increasing and decreasing in mass concentration of CTO and YIG, respectively and it was realized that the values of εr increased. Two profiles was noticed in the compositional series, it can be inferred that the possibility of the reaction of YIG and CTO products may be interfering with the proper measurements.
Pryce, A. W. "Matrix cracking and stress/strain behaviour of continuous fibre ceramic composite laminates." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843150/.
Full textGordon, Neal A. "Material Health Monitoring of SIC/SIC Laminated Ceramic Matrix Composites With Acoustic Emission And Electrical Resistance." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1414835900.
Full textRabih, Ali. "Élaboration et caractérisation de nanocomposites alumine - zircone à partir de poudres cosynthetisées par voie hydrothermale." Valenciennes, 1997. https://ged.uphf.fr/nuxeo/site/esupversions/337cf2fd-5f79-4072-932a-6fe51f860b1a.
Full textO'Sullivan, David. "Élaboration et caractérisation mécanique des nanocomposites alumine-carbure de silicium." Valenciennes, 1998. https://ged.uphf.fr/nuxeo/site/esupversions/fa8074c9-3bc2-47e1-a75e-41fa9c276467.
Full textJahani, Babak. "Development of an Advanced Composite Material Consisting of Iron Matrix Reinforced with Ultra High Temperature Ceramic Particulate (TiB2) with Optimum Properties." Thesis, North Dakota State University, 2016. https://hdl.handle.net/10365/28089.
Full textMathieu, Sylvain. "Modélisation du comportement mécanique lors du procédé de mise en forme et pyrolyse des interlocks CMC." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0115/document.
Full textManufacture processes modeling of woven fabrics composites is a major stake for state-of-the-art industrial parts, where their usage is intensifying. Control of all the manufacturing stages of ceramic matrix composites, particularly the forming and pyrolysis steps, is essential. Understanding and simulation of the mechanical behavior at each stage is required to optimize the final product performances. Two macroscopic modeling approaches of thick woven fabric reinforcements are detailed: a continuous classical one and a semi-discrete one. An initially orthotropic hyperelastic constitutive law is thus established. This law is based on a phenomenological observation of the main fabric deformation modes, from where physical invariants of the deformation are suggested. The required material parameters identification is explained. A modified version of this law, without any tensile energetic contribution, is implemented in a semi-discrete element where the tensile work is taken into account by bars that discretize the real weaving. Thick woven reinforcements are highly anisotropic materials due to the large ratio between the tensile rigidity and the others. Their numerical modeling highlights spurious phenomena and limitations related to this specificity. The tension locking is firstly tackled. A remedy based on an enhanced assumed strain finite element formulation is suggested for classical continuum and semi-discrete elements. Problems linked to bending-dominated numerical simulations are brought to attention : transverse hourglassing and lack of local bending stiffness. For the transverse hourglassing situation, two stiffening technics are proposed : averaging the dilatation through the whole element or adding a supplementary tangent material rigidity in a specific direction. The local bending stiffness problem is solved by calculating the curvature inside the element by using rotation free plates. The induced bending moment leads to supplementary internal loads. Finally, the elastic springback following the pyrolysis of the polymer matrix with ceramic precursors is modeled. The constitutive behavior is experimentally identified with a transverse isotropic hyperelastic law. Added to the initial reinforcements’ hyperelastic law, with the preformed fabric as reference configuration, the pyrolysis induced deformations can be visualized. This final model is compared with experimental results
Sláma, Martin. "Studium přípravy a vlastností biokeramických kompozitů na bázi Ca-fosfátů a ZrO2." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231718.
Full textNowacki, Brenna M. "Verification and Calibration of State-of-the-Art CMC Mechanistic Damage Model." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1461761780.
Full textNestler, Daisy Julia. "Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-134459.
Full textComplex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production
Nestler, Daisy Julia. "Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE: Status quo und Forschungsansätze." Doctoral thesis, Universitätsverlag Chemnitz, 2012. https://monarch.qucosa.de/id/qucosa%3A20009.
Full textComplex property profiles require increasingly advanced composite materials and material compounds, including the rapid deployment of new production technologies, because the monolithic material or a single material can no longer satisfy today's complex requirements. Future material systems are fundamentally important to growth markets, in which they have an economically key position. Tailor-made lightweight materials (tailor-made composites) with an adapted design are needed. These concepts have to be developed to design the optimum combination of components. This requires material-specific knowledge and the ability to make correlations, as well as the design of complex technologies. Continuous large-scale and mass production (in-line, in-situ), thus reducing the costs of previously expensive composite materials and material compounds, is also necessary. The present work spans the entire field of composite materials and material compounds in a comparable and comparative manner and abstract form. A summarizing publication on this still very new, but already broad-based scientific field is not yet available. The separation of the individual, firmly divided groups of the composite materials is the reason for this. Cross-connections are rarely made. The objective of this work is to compensate to some extent for this deficiency. Special consideration is given to definitions and classifications, manufacturing processes and the properties of the materials. Clear structures and overviews are presented. Mapping established and new technologies will contribute to the stability of the terms "mixed material compounds" and "hybrid material compounds". In addition, the problem of recycling and recycling technologies is discussed. In summary, areas for future research and development projects will be specified. Generalized concepts for tailor-made composite materials and material compounds are proposed ("adjusting screw scheme") with an eye toward various production routes, especially for semi-finished products and components, and the associated findings. These general material concepts are applied to own current research projects pertaining to metal-matrix and polymer-matrix composites and hybrid material compounds. Research fields for future projects are extrapolated. Particular attention is paid to hybrid material compounds as the mainstay of future developments in lightweight construction. In-line and in-situ processes play a key role for large-scale, cost- and resource-efficient production.
Vantomme, Pascal. "Contribution a l'etude des outillages et de leur lubrification dans le formage du verre creux : evolution vers une lubrification integree." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13112.
Full textVazquez, Calnacasco Daniel. "All-Oxide Ceramic Matrix Composites : Thermal Stability during Tribological Interactions with Superalloys." Thesis, Luleå tekniska universitet, Materialvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85513.
Full textOliveira, Cibele Aparecida de [UNESP]. "Otimização do processamento para obtenção de compósitos polímero/cerâmica com propriedades piezo e piroelétricas." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/92050.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Materiais eletrocerâmicos possuem diversas aplicações, tais como: capacitor de multicamadas, transdutores, sensor piroelétrico e dispositivos eletro-ópticos. Nos últimos anos, tem ocorrido uma crescente demanda por eletrocerâmicas de melhor desempenho e funcionalidade acelerando o desenvolvimento de técnicas de síntese e visando a produção de pós com partículas bem definidas em tamanho, forma e cristalinidade. O método dos precursores poliméricos e a síntese hidrotérmica, tem se destacado entre as demais técnicas, pois são consideradas ideais para a preparação destas partículas. Baseado neste contexto, este projeto teve como objetivo utilizar o método dos precursores poliméricos e a síntese hidrotérmica assistida por microondas para preparar pós com estrutura perovskitas, como o titanato zirconato de chumbo Pb(Zrx,Ti1-x)O3, com tamanho de partículas controlado, boa cristalinidade e estabilidade química. A cerâmica foi associada a um polímero para formar um compósito na forma de filmes. O polímero usado foi fluoreto de polivinideno, PVDF, já conhecido na literatura. Foram controlados o tamanho das partículas cerâmicas e a espessura dos filmes compósitos visando estabelecer um ótimo para as propriedades piezoelétricas e piroelétricas. A polarização tornou-se mais efetiva com a inclusão do polímero condutor a polianilina (PAni). A condutividade foi controlada pelos processos de protonação, desprotonação e reprotonação. Os resultados mostraram que é possível obter filmes compósitos e a melhor proporção foi de 30/70 v/v (cerâmica/polímero) garantindo boas propriedades eletrocerâmicas e ainda a flexibilidade proporcionada pelo polímero. Para a formação do compósito, PZT-PAni-rp/PVDF, a melhor condição encontrada foi para os filmes...
Electroceramic materials have many applications such as multilayer capacitor, transducer, pyroelectric sensor and electro-optical devices. In recent years, there has been a growing demand for electroceramics with better performance and functionality, accelerating the development of synthesis techniques and focusing on the production of powders with well-defined particle size, shape and crystallinity. The polymeric precursor method developed by Pechini and hydrothermal synthesis have stood out among the other techniques and they are considered ideal for the preparation of these particles. Based on this context, this project aimed to use the polymeric precursor method and hydrothermal synthesis assisted by microwave to prepare powders with perovskite structure, such as lead zirconate titanate Pb (Zrx, Ti1-x) O3, with controlled particle size, good crystallinity and chemical stability. The ceramic was associated with a polymer to form a composite in the form of films. The used polymer was polyvinylidene fluoride, PVDF, already known in the literature. We controlled the size of the ceramic particles and the thickness of the composite films to establish the best for the pyroelectric and piezoelectric properties. The polarization has become more effective with the inclusion of the conducting polymer polyaniline (PAni). The conductivity was controlled by the processes of protonation, deprotonation - reprotonation. The results showed that is possible to obtain composite films and the best ratio was 30/70 v / v (ceramic / polymer) electroceramics ensuring good properties and also the flexibility offered by the polymer. To formation the composite PZT-PAni-rp/PVDF, was the best condition found for the films that the PZT was obtained by the method of the polymeric precursor to larger particle sizes and rounded morphology... (Complete abstract click electronic access below)
Bras, François. "Étude et modélisation de l'endommagement des composites stratifiés SIC-SIC : exploitation d'essais statiques et de type Hopkinson." Cachan, Ecole normale supérieure, 1996. http://www.theses.fr/1996DENS0012.
Full textMatthews, Stephen John. "Cavitation erosion of aluminium alloys, aluminium alloy/ceramic composites and ceramics." Thesis, Coventry University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317927.
Full textBulsara, Vatsal N. "Effects of fiber spatial distribution and interphase on transverse damage in fiber-reinforced ceramic matrix composites." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/21429.
Full textEllerby, Donald Thomas. "Processing and mechanical properties of metal-ceramic composites with controlled microstructure formed by reactive metal penetration /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/10583.
Full textInghels, Eric. "Comportement mecanique de composites a fibres et matrices ceramiques : definition d'une methode d'analyse dans le cas de deux composites tisses a matrice de carbure de silicium." Paris, ENMP, 1987. http://www.theses.fr/1987ENMP0036.
Full textPoorteman, Marc. "Fabrication et caractérisation de composites céramiques renforcés par des plaquettes." Valenciennes, 1997. https://ged.uphf.fr/nuxeo/site/esupversions/078152fe-6c38-4759-a136-3513bbe27089.
Full textPemberton, Sonya Rachel. "Toughening ceramics : optimising the fracture behaviour of metallic fibre reinforced ceramic matrix composites (MFCs)." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607820.
Full textRocabois, Philippe. "Stabilité thermochimique des composites céramiques base SiC : approche thermodynamique et expérimentale du système Si-O-C-N." Grenoble INPG, 1993. http://www.theses.fr/1993INPG0085.
Full textGasser, Alain. "Sur la modélisation et l'identification du comportement mécanique des composites céramique-céramique à température ambiante." Cachan, Ecole normale supérieure, 1994. http://www.theses.fr/1994DENS0024.
Full textDeü, Jean-François. "Rupture des composites stratifiés sous chargement dynamique : apport des méso-modèles avec endommagement retardé." Cachan, Ecole normale supérieure, 1997. http://www.theses.fr/1997DENS0012.
Full textPreiss, Laura. "Nouvelles prothèses intervertébrales en composite céramique : Etude des matériaux, mise en place d'un test multiphysique in vitro et analyse de performances." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI041/document.
Full textThis work deals with the development of new intervertebral prostheses, made with ceramics. A whole European project, Longlife, was dedicated to the development of such implants. To achieve this goal, several axes have been followed: the synthesis of a new material, the development of new designs of intervertebral bodies, and the set-up of a new test aimed at reproducing in vitro the different solicitations undergone by an intervertebral implant in vivo. The new material developed is a triphasic composite composed of a matrix of ceria-doped zirconia (insensitive to ageing), a secondary globular phase of α-alumina (to reduce the grain size), and a third, elongated phase composed of strontium aluminates platelets (in order to improve fracture toughness). The first part of this work was to characterize this new material in order to forecast its behaviour under mechanical solicitation, thermal stability and resistance to sterilization. Secondly, the set-up of the new test is exposed. Different steps were chosen (axial fatigue, micro-separation, ageing and wear) in order to reproduce the “real-life” solicitations. To achieve this goal, Finite Elements simulations were performed, allowing the development of specific specimen holders that mimic the fixation of the implants in the vertebrae. The parameters of the test (duration, frequency, medium) were chosen after a details survey of the literature and of standards. At the end, we tested different prototypes trough this new multiphysic assessment set up. As a main result of this thesis, the chosen ceramic composite exhibits a pseudo-plastic behaviour, with a large deformation due to phase transformation before fracture, which is a positive result in the framework of the forecast applications. Moreover, the material doesn’t seem degraded by the sterilization processes. Concerning the multiphysic test, only a few implants resisted it. The design of the implants is a key-point, as well as the geometry (in particular, clearance seems to be critical)
Antti, Marta-Lena. "All-oxide ceramic matrix composites." Doctoral thesis, Luleå, 2001. http://epubl.luth.se/1402-1544/2001/34/index.html.
Full textPeng, Fei. "Pressureless sintering and oxidation resistance of zrb2 based ceramic composites." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28208.
Full textCommittee Chair: Robert F. Speyer; Committee Member: George Kardomateas; Committee Member: Preet Singh; Committee Member: Robert L. Snyder; Committee Member: Thomas H. Sanders, Jr.
Dunyak, Thomas John. "Properties and performance of a ceramic composite component." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134634/.
Full textMitre, Leonardo. "Desenvolvimento e avaliação de compósitos cerâmicos de alumina e matriz polimérica contendo adições de nanoestruturas de carbono e elementos antioxidantes." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2011. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=189.
Full textA presença do carbono em materiais refratários modifica a tensão superficial entre o sólido (refratário) e o líquido (metal-escória) diminuindo a penetração do líquido e, consequentemente, reduzindo o processo de corrosão das cerâmicas refratárias durante os processos siderúrgicos. Além deste efeito protetor, o carbono desempenha ainda papel importante quanto à resistência mecânica e ao choque térmico dos tijolos refratários. Nos anos recentes, têm sido desenvolvidos nanocompósitos refratários, incorporando-se na matriz cerâmica uma segunda fase de carbono com dimensões em escala nanométrica. Esta estratégia visa ao desenvolvimento de materiais com desempenhos aprimorados em relação aos materiais hoje utilizados, lançando mão das propriedades mecânicas, térmicas, elétricas e físico-químicas únicas dos nanomateriais de carbono. Duas barreiras tecnológicas, entretanto, devem ser contornadas para o efetivo uso de nanocompostos de carbono em refratários: i) o controle eficiente de sua dispersão na matriz cerâmica e resina polimérica; ii) a melhoria/otimização de sua resistência à oxidação em temperaturas elevadas. Este trabalho teve como objetivos a avaliação dos aspectos termodinâmicos e cinéticos do processo de oxidação de materiais de carbono nanoestruturados (nanotubos de múltiplas paredes, nanofibras e negro de fumo) em compósitos refratários de alumina contendo ligante polimérico. Vale ressaltar que o carbono amorfo proveniente da transformação da resina polimérica é simultaneamente analisado. A análise cinética foi realizada empregando-se a termogravimetria semi-isotérmica e isotérmica, nas quais a amostra é submetida a diferentes patamares de temperatura e aquecida até atingir massa constante. Os dados das diferentes composições foram tratados de forma a obter e ajustar modelos matemáticos que representam o processo de oxidação. Foi também investigado o efeito do acréscimo de elementos com elevada afinidade termodinâmica pelo oxigênio, especificamente boro, titânio e silício, com o objetivo de reduzir ou eliminar a oxidação dos carbonos nanoestruturados incorporados. Utilizando planejamento fatorial de experimentos foi possível avaliar, acompanhar e modelar o comportamento da oxidação dos diferentes compósitos e observar os efeitos de proteção de elementos antioxidantes selecionados sobre a perda de massa dos diferentes nanocarbonos. O modelo cinético básico obtido indica que o processo de oxidação segue o modelo de difusão por poros. As análises obtidas por microscopia eletrônica de varredura (MEV) demonstraram que, para algumas formulações contendo formas nanoestruturadas de carbono e aditivos antioxidantes, houve efeito protetor do carbono, em maior ou menor grau, como evidenciado pelas análises de espectroscopia de energia dispersiva (EDS) efetuadas sob os materiais pós queima. Em determinadas situações foi possível detectar até mesmo formas aparentemente íntegras de carbono nanoestruturado pouco ou nada afetadas pelo processo de oxidação pelo qual o material foi submetido. Estas técnicas permitiram também observar por microscopia eletrônica de varredura, a aparente presença de depósito formado sobre os nanotubos de carbono, sugerindo a presença de composto não determinado, possivelmente um carbeto, o que teria efeito protetor diante do processo oxidativo.
The presence of carbon in refractory materials increases the surface tension between the solid (refractory) and the liquid (metal-slug), decreases the liquid penetration and, consequently, reduces the corrosion of refractory ceramics used in steel-making processes. Besides this protecting effect, carbon also plays an important role in the mechanical strength and thermal shock of refractory bricks. In recent year, refractory nanocomposites have been developed by incorporating a second carbon phase of nanometric dimensions into the ceramic matrix. This strategy aims at the development of materials with improved performance in relation to the currently used materials by taking advantage of the singular mechanical, thermal, electrical, and physical and chemical properties of carbon nanomateriais. Nevertheness, two technological barriers must be overcome for the effective use of carbon nanocomposites in refractory materials: i) the efficient control of dispersion in the ceramic matrix and the polymer resin, ii) improvement of the resistance to oxidation at high temperatures. This study sought to evaluate the thermodynamic and kinectic aspects of the oxidation of nanostructured carbon materials (multi-walled nanotubes (MWNT), nonofibers, and carbon black) in alumina refractory composite using a polymeric ligand. It is worth pointing out that amorphous carbon obtained by the transformation of the polymer resin was analyzed simultaneously. The kinetic analysis was conducted using semi-thermal thermogravimetry. The sample was submitted to different temperature gradients and heated until the mass was constant. Different compositions were tested in order to obtain and adjust mathematical models that represented the oxidation process. The effect of the addition of elements with high thermodynamic affinity for oxygen, specifically boron, titanium, and silica, was investigated seeking to reduce or prevent the oxidation of the incorporated nanostructured carbons. The use of experimental factorial planning allowed the evaluation, follow-up, and modeling of the oxidation behavior of the planned formulations and the observation of the effects of the protection of the antioxidation elements selected on the mass loss of the different nanocarbons. The kinetic model obtained indicates that the oxidation process follows the pore diffusion model.
Lombardi, John Lang 1968. "Injection solid freeforming of polymer and ceramic composite materials." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282251.
Full textPetla, Harita. "Computational design of ultra-high temperature ceramic composite materials." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textStackpoole, Margaret Mary. "Reactive processing and mechanical properties of polymer derived silicon nitride matrix composites and their use in coating and joining ceramics and ceramic matrix composites /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10564.
Full textWhitney, Michael J. (Michael John). "Transformation-mismatch plasticity in zirconia ceramic composites." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43447.
Full textGraham, Samuel Jr. "Effective thermal condutivity of damaged composites." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16935.
Full textEvarts, Jonathan S. "Advanced Processing Techniques For Co-Continuous Ceramic Composites." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1218218162.
Full textRen, Guogang. "Fibre reinforced ceramic moulding composites manufacture and characterisation." Thesis, Queen Mary, University of London, 1999. http://qmro.qmul.ac.uk/xmlui/handle/123456789/1710.
Full textBischoff, Matthew Lee. "CHARACTERIZATION OF CERAMIC MATRIX COMPOSITE MATERIALS USING MILLIMETER-WAVE TECHNIQUES." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1362655198.
Full textMariappan, L. "In-Situ Synthesis Of A12O3_ZrO2_SiCw Ceramic Matrix Composites By Carbothermal Reduction Of Natural Silicates." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/215.
Full textNash, James Michael. "An orientation study of Al2IO3/AlCo-continuous ceramic composites." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1407408008.
Full textSaewong, Pakamard. "Erosion of glass and glass-ceramic matrix composites." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300838.
Full textOwens, Lindsay. "Characterization of Ceramic Composite Materials Using Terahertz Non-Destructive Evaluation Techniques." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1342668277.
Full textKraus, Zachary. "Computational tools for preliminary material design of metals and polymer-ceramic nano composites." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51795.
Full textDong, Biqin. "Cement-based piezoelectric ceramic composites for sensor applications in civil engineering /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20DONG.
Full textKokan, Julie Runyan. "Microstructure/electrical property correlations in ceramic matrix composites." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/19594.
Full textSchutz, James Branch. "Test methods and analysis for glass-ceramic matrix composites." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13711.
Full textLee, Woo Young. "Chemical vapor deposition of dispersed phase ceramic composites." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/11857.
Full text