Academic literature on the topic 'Ceramic Additive Manufacturing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ceramic Additive Manufacturing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ceramic Additive Manufacturing"

1

He, Rujie, Niping Zhou, Keqiang Zhang, Xueqin Zhang, Lu Zhang, Wenqing Wang, and Daining Fang. "Progress and challenges towards additive manufacturing of SiC ceramic." Journal of Advanced Ceramics 10, no. 4 (July 18, 2021): 637–74. http://dx.doi.org/10.1007/s40145-021-0484-z.

Full text
Abstract:
AbstractSilicon carbide (SiC) ceramic and related materials are widely used in various military and engineering fields. The emergence of additive manufacturing (AM) technologies provides a new approach for the fabrication of SiC ceramic products. This article systematically reviews the additive manufacturing technologies of SiC ceramic developed in recent years, including Indirect Additive Manufacturing (Indirect AM) and Direct Additive Manufacturing (Direct AM) technologies. This review also summarizes the key scientific and technological challenges for the additive manufacturing of SiC ceramic, and also forecasts its possible future opportunities. This paper aims to provide a helpful guidance for the additive manufacturing of SiC ceramic and other structural ceramics.
APA, Harvard, Vancouver, ISO, and other styles
2

Halloran, John W. "Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization." Annual Review of Materials Research 46, no. 1 (July 2016): 19–40. http://dx.doi.org/10.1146/annurev-matsci-070115-031841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nevarez-Saenz, David, Ted Adler, Wei Wei, and Bhisham Sharma. "Additive manufacturing of ceramic porous structures for acoustical applications." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 264, no. 1 (June 24, 2022): 560–66. http://dx.doi.org/10.3397/nc-2022-773.

Full text
Abstract:
Ceramics offer the unique ability to withstand extreme temperatures and pressures without mechanical degradation-characteristics that make them ideal for acoustic applications in extreme environments. While ceramic forming is now a mature technology, traditional forming methods only allow two-dimensional design freedom, cannot create internal features, and often require expensive dies. Here, we propose the use of additive manufacturing (AM) to fabricate porous structures with complex pore geometries suitable for noise reduction applications. We fabricate cylindrical impedance tube test coupons of various pore geometries using a robocasting method that relies on clay extrusion. The printed green bodies are fired and sintered in an automated kiln to obtain the final ceramic sample. In this paper, we present the preliminary results from our wok on characterizing the relationships between the ceramic AM process parameters and the final ceramic part quality and dimensional accuracy. Finally, we investigate the acoustic absorption characteristics of the printed coupons using the normal incidence two microphone impedance tube method. Our results show that ceramics AM provides an attractive route to fabricate complex acoustic structures suitable for high temperature environments.
APA, Harvard, Vancouver, ISO, and other styles
4

Hassanin, Hany, Khamis Essa, Amr Elshaer, Mohamed Imbaby, Heba H. El-Mongy, and Tamer A. El-Sayed. "Micro-fabrication of ceramics: Additive manufacturing and conventional technologies." Journal of Advanced Ceramics 10, no. 1 (January 18, 2021): 1–27. http://dx.doi.org/10.1007/s40145-020-0422-5.

Full text
Abstract:
AbstractCeramic materials are increasingly used in micro-electro-mechanical systems (MEMS) as they offer many advantages such as high-temperature resistance, high wear resistance, low density, and favourable mechanical and chemical properties at elevated temperature. However, with the emerging of additive manufacturing, the use of ceramics for functional and structural MEMS raises new opportunities and challenges. This paper provides an extensive review of the manufacturing processes used for ceramic-based MEMS, including additive and conventional manufacturing technologies. The review covers the micro-fabrication techniques of ceramics with the focus on their operating principles, main features, and processed materials. Challenges that need to be addressed in applying additive technologies in MEMS include ceramic printing on wafers, post-processing at the micro-level, resolution, and quality control. The paper also sheds light on the new possibilities of ceramic additive micro-fabrication and their potential applications, which indicates a promising future.
APA, Harvard, Vancouver, ISO, and other styles
5

Chugunov, Svyatoslav, Nikolaus A. Adams, and Iskander Akhatov. "Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process." Materials 13, no. 18 (September 5, 2020): 3928. http://dx.doi.org/10.3390/ma13183928.

Full text
Abstract:
Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.
APA, Harvard, Vancouver, ISO, and other styles
6

OHJI, Tatsuki. "Additive manufacturing of ceramic components." Synthesiology 11, no. 2 (2018): 81–93. http://dx.doi.org/10.5571/synth.11.2_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

OHJI, Tatsuki. "Additive manufacturing of ceramic components." Synthesiology English edition 11, no. 2 (2019): 81–92. http://dx.doi.org/10.5571/syntheng.11.2_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nefedovaa, L. A., V. I. Ivkov, M. M. Sychov, S. V. Diachenko, and M. V. Gravit. "Additive manufacturing of ceramic insulators." Materials Today: Proceedings 30 (2020): 520–22. http://dx.doi.org/10.1016/j.matpr.2020.01.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schönherr, Julia Anna, Sonja Baumgartner, Malte Hartmann, and Jürgen Stampfl. "Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts." Materials 13, no. 7 (March 25, 2020): 1492. http://dx.doi.org/10.3390/ma13071492.

Full text
Abstract:
Lithography based additive manufacturing (AM) is one of the most established and widely used 3D-printing processes. It has enabled the processing of many different materials from thermoplast-like polymers to ceramics that have outstanding feature resolutions and surface quality, with comparable properties of traditional materials. This work focuses on the processing of glass ceramics, which have high optical demands, precision and mechanical properties specifically suitable for dental replacements, such as crowns. Lithography-based ceramic manufacturing (LCM) has been chosen as the optimal manufacturing process where a light source with a defined wavelength is used to cure and structure ceramic filled photosensitive resins. In the case of glass ceramic powders, plastic flow during thermal processing might reduce the precision, as well as the commonly observed sintering shrinkage associated with the utilized temperature program. To reduce this problem, particular sinter structures have been developed to optimize the precision of 3D-printed glass ceramic crowns. To evaluate the precision of the final part, testing using digitizing methods from optical to tactile systems were utilized with the best results were obtained from micro computed tomography (CT) scanning. These methods resulted in an optimized process allowing for possible production of high precision molar crowns with dimensional accuracy and high reproducibility.
APA, Harvard, Vancouver, ISO, and other styles
10

Nawrot, Witold, and Karol Malecha. "Additive manufacturing revolution in ceramic microsystems." Microelectronics International 37, no. 2 (March 28, 2020): 79–85. http://dx.doi.org/10.1108/mi-11-2019-0073.

Full text
Abstract:
Purpose The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new possibilities. Design/methodology/approach A short introduction into additive techniques is included, as well as primary characterization of structuring capabilities, dielectric performance and applicability in the electronic manufacturing process. Findings Ceramic stereolithography (SLA) is suitable for microchannel manufacturing, even using a relatively inexpensive system. This method is suitable for implementation into the electronic manufacturing process; however, a search for better materials is desired, especially for improved dielectric parameters, lowered sintering temperature and decreased porosity. Practical implications Relatively inexpensive ceramic SLA, which is now available, could make ceramic electronics, currently restricted to specific applications, more available. Originality/value Ceramic AM is in the beginning phase of implementation in electronic technology, and only a few reports are currently available, the most significant of which is mentioned in this paper.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ceramic Additive Manufacturing"

1

Feilden, Ezra. "Additive manufacturing of ceramics and ceramic composites via robocasting." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/55940.

Full text
Abstract:
In the last two decades additive manufacturing (AM) has emerged as a highly important and influential technology. A large range of approaches to AM have been developed which give rise to hundreds of distinct techniques. Many of these are specific to one material system, and only a handful have been successful at producing ceramic parts. Robocasting is one such technique, having been used to produce complex ceramic parts with reasonable mechanical properties. In this thesis robocasting is investigated further, firstly by characterising the rheology of the robocasting paste, and then by measuring the strength and reliability of ceramic parts produced by robocasting. The critical defects associated with the process are identified, and efforts have been made to eliminate them. Furthermore, it was possible to produce a new class of ceramic composites consisting of alumina platelets aligned by the shear forces that arise during printing. These platelets themselves and the composites were extensively characterised. A new in-situ double cantilever test was developed in order to study the fracture behaviour of the composites. Lastly, the principle of using the printing process to align platelets was applied to fibres in order to create printed fibre reinforced ceramic matrix composites, and printed carbon fibre reinforced epoxy.
APA, Harvard, Vancouver, ISO, and other styles
2

Zocca, Andrea [Verfasser]. "Additive manufacturing of porous ceramic structures from preceramic polymers / Andrea Zocca." Clausthal-Zellerfeld : Universitätsbibliothek Clausthal, 2016. http://d-nb.info/1093614021/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Snelling, Jr Dean Andrew. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/51606.

Full text
Abstract:
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 — T6 castings resulting from two different commercially available Binder Jetting media and traditional 'no-bake' silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375 °C was established for the ceramic insert (78% cordierite). Upon printing and sintering the ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Snelling, Dean Andrew Jr. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51606.

Full text
Abstract:
The goal of this work is to develop and characterize a manufacturing process that is able to create metal matrix composites with complex cellular geometries. The novel manufacturing method uses two distinct additive manufacturing processes: i) fabrication of patternless molds for cellular metal castings and ii) printing an advanced cellular ceramic for embedding in a metal matrix. However, while the use of AM greatly improves the freedom in the design of MMCs, it is important to identify the constraints imposed by the process and its process relationships. First, the author investigates potential differences in material properties (microstructure, porosity, mechanical strength) of A356 — T6 castings resulting from two different commercially available Binder Jetting media and traditional 'no-bake' silica sand. It was determined that they yielded statistically equivalent results in four of the seven tests performed: dendrite arm spacing, porosity, surface roughness, and tensile strength. They differed in sand tensile strength, hardness, and density. Additionally, two critical sources of process constraints on part geometry are examined: (i) depowdering unbound material from intricate casting channels and (ii) metal flow and solidification distances through complex mold geometries. A Taguchi Design of Experiments is used to determine the relationships of important independent variables of each constraint. For depowdering, a minimum cleaning diameter of 3 mm was determined along with an equation relating cleaning distance as a function of channel diameter. Furthermore, for metal flow, choke diameter was found to be significantly significant variable. Finally, the author presents methods to process complex ceramic structure from precursor powders via Binder Jetting AM technology to incorporate into a bonded sand mold and the subsequently casted metal matrix. Through sintering experiments, a sintering temperature of 1375 °C was established for the ceramic insert (78% cordierite). Upon printing and sintering the ceramic, three point bend tests showed the MMCs had less strength than the matrix material likely due to the relatively high porosity developed in the body. Additionally, it was found that the ceramic metal interface had minimal mechanical interlocking and chemical bonding limiting the strength of the final MMCs.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Page, Lindsay V. "Feasibility of Fused Deposition of Ceramics with Zirconia and Acrylic Binder." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1602.

Full text
Abstract:
Processing of ceramics has always been difficult due to how hard and brittle the material is. Fused Deposition of Ceramics (FDC) is a method of additive manufacturing which allows ceramic parts to be built layer by layer, abetting more complex geometries and avoiding the potential to fracture seen with processes such as grinding and milling. In the process of FDC, a polymeric binder system is mixed with ceramic powder for the printing of the part and then burned out to leave a fully ceramic part. This experiment investigates a new combination of materials, zirconia and acrylic binder, optimizing the process of making the material into a filament conducive to the printer system and then performing trials with the filament in the printer to assess its feasibility. Statistical analysis was used to determine optimal parameter levels using response surface methodology to pinpoint the material composition and temperature yielding the highest quality filament. It was discovered that although the mixture had adequate melting characteristics to be liquefied and printed into a part, the binder system did not provide the stiffness required to act as a piston to be fed through the printer head. Further studies should be completed continuing the investigation of zirconia and acrylic binder, but with added components to increase strength and rigidity of the filament.
APA, Harvard, Vancouver, ISO, and other styles
6

Hofacker, Eva. "QUALITY IMPROVEMENT OF CERAMIC PARTS FORMEDICAL APPLICATIONS THROUGHOPTIMIZATION OF THE ADDITIVE MANUFACTURING ANDPOST-PROCESSING PROCESSES." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226170.

Full text
Abstract:
Additive Manufacturing (AM) is beneficial for medical applications in which tissues must be replaced because AM enables the fabrication of highly complex three-dimensional structures. In this study the AM and the post-processing steps of additive manufactured ceramic parts of a specific material for tissue replacement were examined in order to optimize the parts’ quality. Visual inspection and microscopic techniques, weighing, dimensional measurements, and flexural bending tests were used for the result evaluation. Different cleaning agents and methods were tested with the result that the current cleaning agent and method had the best cleaning performance. With changed orientation on the building platform, changed supports during the AM and defined positions in the furnace during sintering, the parts’  quality was clearly improved, i.e. the parts had no longer countless cracks, were not warped anymore and had a smooth surface. Post-curing with UV light was found to have a detrimental impact on the parts’ quality. Tests with different sintering temperatures showed, that the sintering temperature influences the appearance, the degree of shrinkage, the degree of fusion, and the flexural strength of the parts. Hence, depending on the intended application the  sintering parameters must be specified for each part.
Additiv tillverkning är fördelaktigt för medicinska tillämpningar där vävnader måste bytas ut eftersom additiv tillverkning möjliggör tillverkning av högkomplexa tredimensionella strukturer. I denna studie undersöktes additiv tillverkning och efterbehandlingsstegen av tillsatsframställda keramiska delar av ett specifikt material för vävnadsersättning för att optimera delarnas kvalitet. Visuell inspektion och mikroskopiska tekniker, vägning, dimensionella mätningar och böjningsböjningstest användes för resultatutvärderingen. Olika rengöringsmedel och metoder testades med det resultat att det aktuella rengöringsmedlet och metoden hade den bästa rengöringsytan. Med ändrad orientering på byggplattformen och ändrade stöd under additiv tillverkning och definierade positioner i ugnen under sintring förbättrades delarnas kvalitet klart, dvs delarna hade inte längre otaliga sprickor, inte varvade längre och hade en jämn yta. Efterhärdning med UV-ljus har visat sig ha en negativ inverkan på delarnas kvalitet. Test med olika sintringstemperaturer visade att sintringstemperaturen påverkar utseendet, graden av krympning, graden av fusion och böjhållfastheten hos delarna. Därför, beroende på den avsedda tillämpningen, måste sintringsparametrarna anges.
APA, Harvard, Vancouver, ISO, and other styles
7

Pesce, Arianna. "3D printing of ceramic-based solid state energy conversion devices." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673218.

Full text
Abstract:
En les darreres dècades, les tecnologies de fabricació additiva han aconseguit una àmplia difusió, evolucionant des dels primers prototips fins a una extensa distribució comercial. Els materials ceràmics són ben coneguts per la seva alta rigidesa, fragilitat i tenacitat, que dificulten la consecució de formes complexes i fa extremadament costosa la seva mecanització (gran consum d’eines o motlles per a ús individual). La fabricació additiva pot reduir el cost de fabricació i obrir nous dissenys, amb llibertat de forma pràcticament total, no realitzables amb tècniques de fabricació tradicional. El primer pas de la recerca en aquest camp és l’aplicació de la fabricació additiva al camp dels materials funcionals, on els requisits de propietats estructurals, microestructurals, òptiques i elèctriques són superiors als de les aplicacions comercials. En particular, l’oportunitat de dissenys complexos és interessant per a aplicacions en les quals l’àrea activa juga un paper important en el rendiment final, com en catàlisi o en dispositius electroquímics. En aquests casos, sovint cal més d’un material ceràmic. Per aquest motiu hi ha un gran interès en la realització una impressió 3D de múltiples materials, que permetria la producció d’aquests dispositius amb passos de fabricació reduïts i, en conseqüència, reduint el cost. Aquesta tesi es centra en la impressió de dispositius de geometries complexes per provar els avantatges exclusius de la fabricació additiva, tant en el camp de la catàlisi com en l’aplicació de piles de combustible i electrolitzadors. Per a això, el treball aborda el desenvolupament de suports imprimibles i la hibridació de dues tecnologies d’impressió diferents per produir tot el dispositiu en un sol pas: estereolitografia i robocasting. La estereolitografia (SLA) es caracteritza per oferir estructures d’alta densitat (> 90%) amb gran resolució espacial, de l’ordre de 25 micres en les tres direccions. S’han produït electròlits per cel·les d’òxid sòlid (SOC) en zircònia estabilitzada amb ítria a el 3% i a l’8% molar. Es produïren piles de botó incorporant materials estàndard d’elèctrode per caracteritzar el rendiment electroquímic. Després d’haver demostrat que la tecnologia SLA produeix electròlits adequats amb propietats comparables a les produïdes per la fabricació tradicional, s’ha mesurat un increment de rendiment, coherent amb l’increment d’àrea activa, realitzat mitjançant la corrugació de l’electròlit. Seguidament, es va explorar en aquesta tesi la possibilitat d’implementar opcions multimaterials, necessàries per imprimir un dispositiu comercial basat en la tecnologia SOCs. Utilitzant SLA com a tecnologia base, es va agregar a la màquina un sistema de robocasting, aconseguint una impressora 3D de cinc materials. Les pastes necessàries per a la impressió per robocasting s’han desenvolupat íntegrament en el marc d’aquesta tesi a partir de pols ceràmics i components orgànics en proporcions adequades, avaluant el seu reologia i capacitat de curat. D’aquesta manera, es van produir materials de càtode, ànode i interconnector. La hibridació de SLA amb robocasting va se assolida satisfactòriament, demostrant la possibilitat d’imprimir piles de capes dels diferents components. El sinteritzat conjunt d’aquests sistemes va ser dut a terme, afrontant les dificultats de la calcinació conjunta de capes composades per diferents materials . Les primeres cel·les obtingudes mitjançant aquest procediment van ser testejades. Tot i que encara serà necessària una optimització per a millorar els rendiments, aquestes cel·les son la demostració de la possibilitat de fabricar dispositius SOC mitjançant impressió 3D multimaterial. Finalment, fent servir la tècnica de SLA es van produir plaques de microcanals, utilitzades com a llit per a la reacció de metanització de CO2, demostrant la seva eficàcia enfront de la tecnologia tradicional basada en acer inoxidable en termes de conversió de CO2. També es va fabricar per primera vegada un reactor d’intercanvi de calor amb col·lectors integrats mitjançant impressió 3D.
En las últimas décadas, las tecnologías de fabricación aditiva han logrado una amplia difusión, evolucionando desde los primeros prototipos hasta conseguir una extensa distribución comercial. Los materiales cerámicos son bien conocidos por su alta rigidez, fragilidad y tenacidad, que dificultan la consecución de formas complejas y hace extremadamente costosa su mecanización (gran consumo de herramientas o moldes para uso individual). La fabricación aditiva puede reducir el coste de fabricación y abrir nuevos diseños, con libertad de forma prácticamente total, no realizables mediante técnicas tradicionales. El primer paso de la investigación en este campo es la aplicación de la fabricación aditiva al campo de los materiales funcionales, donde los requisitos de propiedades estructurales, microestructurales, ópticas y eléctricas son superiores a los de las aplicaciones comerciales. En particular, la oportunidad de diseños complejos es interesante para aplicaciones en las que el área activa juega un papel importante en el rendimiento final, como en catálisis o en dispositivos electroquímicos. En estos casos, a menudo es necesario más de un material cerámico. Por este motivo es de un gran interés la impresión 3D de múltiples materiales, que permitiría la producción de dichos dispositivos con pasos de fabricación reducidos y, en consecuencia, reduciendo el coste. Esta tesis se centra en la impresión de dispositivos de geometrías complejas para probar las ventajas exclusivas de la fabricación aditiva, tanto en el campo de la catálisis como en la aplicación de pilas de combustible y electrolizadores. Para ello, el trabajo aborda el desarrollo de soportes imprimibles y la hibridación de dos tecnologías de impresión diferentes para producir todo el dispositivo en un solo paso: estereolitografía y robocasting. La estereolitografía (SLA) se caracteriza por obtener estructuras de alta densidad (> 90%) con gran resolución espacial, del orden de 25 µm en las tres direcciones. Se han producido electrolitos para celdas de óxido sólido (SOC) en zirconia estabilizada con itria al 3% y al 8% molar. Se produjeron pilas de botón incorporando materiales estándar de cátodo y ánodo sobre los electrolitos imprimidos, para caracterizar el rendimiento electroquímico. Después de haber demostrado que la tecnología SLA produce electrolitos adecuados con propiedades comparables a las producidas por la fabricación tradicional, se ha medido un incremento de rendimiento, coherente con el incremento de área activa, realizado mediante la corrugación del electrolito. Seguidamente, en esta tesis se exploró la posibilidad de implementar opciones multimaterial, necesarias para imprimir un dispositivo comercial basado en tecnología SOCs. Utilizando SLA como tecnología base, se agregó a la máquina un sistema de robocasting, logrando imprimir cinco materiales. Las pastas necesarias para la impresión por robocasting se han desarrollado íntegramente en el marco de esta tesis a partir de polvos cerámicos comerciales y componentes orgánicos, evaluando su reología y capacidad de curado; produciendo materiales de cátodo, ánodo e interconector. La hibridación de SLA con robocasting fue alcanzada satisfactoriamente, demostrando la posibilidad de imprimir apilamientos de capas de los diferentes componentes. El sinterizado conjunto de tales sistemas fue llevado a cabo, afrontando los retos de la calcinación conjunta de capas compuestas por distintos materiales. Las primeras celdas obtenidas utilizando este procedimiento fueron testadas. Aunque será necesaria una optimización para mejorar los rendimientos, estas celdas son la demostración de la posibilidad de fabricar dispositivos SOC mediante impresión 3D multimaterial. Finalmente, usando técnica de SLA se produjeron placas de microcanales, utilizadas como lecho para la reacción de metanización de CO2, demostrando su eficacia frente a la tecnología tradicional basada en acero inoxidable en términos de conversión de CO2. También se fabricó por primera vez un reactor de intercambio de calor con colectores integrados mediante impresión 3D.
In the last decades, additive manufacturing technologies (AM) have obtained a wider spreading, moving from the prototyping scale to the commercial distribution for some types of materials. The ceramic materials are well known for their high stiffness, brittleness and toughness, which make their processing limited in shape and extremely expensive (high consumption of tools or moulds for individual use). Additive manufacturing can reduce the cost of manufacturing and open new designs, near-free to shape, not realizable with subtracting manufacturing. Next step of the research in this field is the application of additive manufacturing to the field of functional materials, where the requirements of structural, microstructural, optical and electric properties are higher than for commercial applications. In particular the near-free design opportunity is particularly interesting for applications in which the area plays an important role on the final performance, such as in catalysis and for electrochemical devices. In these cases, often more than a ceramic material is necessary arising the interest of the scientific community to the multi-material possibility of 3D printing, to enable the production of such devices with reduced manufacturing steps and on consequence, reducing the cost. This thesis focuses on the printing of complex geometries devices to prove the unfair advantage of additive manufacturing, as in the catalysis field, as for fuel cells and electrolysis application. For this purpose, the work addresses on developing of printable media and hybridization of two different printing technologies to produce the entire device in a single step: stereo-lithography and robocasting. Stereo-lithography (SLA) offers the possibility of obtaining high-density structures (>90%) with high spatial resolution, in the order of 25 µm in the three directions. Electrolytes for Solid Oxide Cells (SOCs) have been produced in 3mol% and 8mol% yttria stabilized zirconia. Button cells were realized with state-of-the-art materials to characterize the electrochemical performance. At first, it was demonstrated that SLA technology is suitable to produce electrolytes with properties comparable with the ones produced by traditional manufacturing. The freedom of design, characteristic of the 3D printing, enables the increase of the performance according with the implement of the area. As a further step, the possibility of implementing multi-material options, necessary to print a commercial device based on SOCs technology, was explored in this thesis. Using SLA as a base, a robocasting system was added to the machine. In this way, a five-material 3D printer could be achieved. The required pastes for robocasting were integrally produced, mixing the ceramic commercial powders with organic materials in appropriate proportions and evaluating their rheology performance and curability. In this way, cathode, anode and interconnect layers were produced. The hybridization of SLA with robocasting was satisfactory achieved, demonstrating the possibility of printing stacks of layers of the different components. The co-sintering of such systems was conducted, facing the challenge of the simultaneous annealing of layers of different materials. The first cells using this procedure were obtained and tested. While still requiring optimization to improve their performances, these cells are the first-time demonstration of the feasibility of SOC devices by multi-material 3D printing. Micro-channel plates, used as bed for CO2 methanation reaction were produced with SLA, proving their efficiency compared with stainless steel ones in terms of CO2 conversion. A heat exchange reactor with integrated manifolds was produced by 3D printing for the first time.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
APA, Harvard, Vancouver, ISO, and other styles
8

Hajiha, Reza. "A Novel Method in Additive Manufacturing of Titanium Matrix Composites with Ceramic Reinforcement by Thermal Decomposition of Aluminum Sulfate." Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10838545.

Full text
Abstract:

Metal matrix composites (MMCs) microstructure consists of a metallic alloy and a particular reinforcing component, ceramic in the case of this research. They are of high interest due to their high temperature strength, improved thermal stability, improved friction and wear resistant. Defining a low-cost additive manufacturing process that can fabricate high-quality MMC parts will combine the benefit of additive manufacturing and MMC together, which is highly desirable in today’s manufacturing.

This research introduces a novel method to fabricate MMC by introduction of uniformly distributed and dispersed ultra-fine ceramic particles within a metal substrate to form metal-ceramic composite during bulk sintering and to further develop three dimensional printing for fabrication of MMC structures reinforced by ceramic particles. This novel process is capable to fabricate metal-ceramic composite structures with a lower cost and shorter lead time in manufacturing compared to other existing additive manufacturing processes.

APA, Harvard, Vancouver, ISO, and other styles
9

Myers, Kyle M. "Structure-Property Relationship of Binder Jetted Fused Silica Preforms to Manufacture Ceramic-Metallic Interpenetrating Phase Composites." Youngstown State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1464089607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Odinot, Julie. "Développement de la fabrication additive directe par DED-CLAD : de la poudre à la mise en forme de pièces céramiques denses." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLN059.

Full text
Abstract:
Les techniques d’élaboration de matériaux par fabrication additive (FA) sont en plein essor [1]. Elles permettent de fabriquer des pièces par ajout de matière, en opposition avec les techniques traditionnelles par soustraction de matière (usinage). Il existe à l’heure actuelle de nombreux procédés de FA, adaptés à différentes applications : fusion ou frittage par faisceau d’électrons ou par laser, dépôt de matière direct ou en lit de poudre… Ces procédés ont été bien développés pour des matériaux polymères puis métalliques. Des techniques de FA de matériaux céramiques via des polymères chargés ont également vu le jour, mais celles-ci nécessitent des traitements postérieurs (cycles de déliantage, frittage) [2]. Les matériaux céramiques denses sont encore peu développés en fabrication additive en raison de la fissuration de ces matériaux lors de leur élaboration.La technologie CLAD (Construction Laser Additive Directe), développée par IREPA-LASER, permet la fabrication de pièces par dépôt de matière fondue. Le matériau sous forme de poudre est acheminé via une buse laser et projeté dans le faisceau. Il est ainsi porté à la température de fusion. La fusion successive de plusieurs couches permet l’obtention de la pièce. Cette technique, en plus de n’utiliser que la matière nécessaire (contrairement aux techniques de fabrication par lit de poudre), permet la fabrication de pièces de grandes dimensions, voire en multi-matériaux. Cette technologie est, pour l’heure, dédiée aux matériaux métalliques.L’objet de ce sujet de thèse, en partenariat entre l’ONERA et IREPA-LASER dans le cadre du projet inter-Carnot CLADIATOR, est d’étudier la FA de matériaux céramiques denses par le procédé CLAD®. Cette étude porte ainsi sur le procédé dans son ensemble, des matières premières aux pièces finales, en passant par l’adaptation du moyen de fabrication aux contraintes spécifiques liées aux matériaux céramiques.Les matières premières exigent d’être adaptées au procédé ; les deux principales difficultés étant la coulabilité de la poudre, nécessaire pour son acheminement dans la buse, et l’absorption de la source laser par le matériau pour sa montée en température. En parallèle de la caractérisation des matières premières (granulométrie, MEB, dilatométrie, DRX…), des essais d’atomisation par séchage seront effectués pour optimiser la coulabilité des poudres [3]. Ce procédé d’atomisation permet d’obtenir des poudres sous forme d’agglomérats sphériques de plus petites particules ; leur forme est régulière, mais elles restent poreuses. L’ajout de dopants sera étudié pour améliorer l’absorption du signal, en adéquation avec une éventuelle adaptation du laser. Les matériaux considérés sont l’alumine, la zircone ainsi que des compositions eutectiques d’alumine-zircone.La principale difficulté de ce sujet réside dans la sensibilité à la fissuration des matériaux céramiques, en raison du fort gradient thermique induit par le chauffage local du laser et le refroidissement de la pièce. Des solutions de chauffage de la pièce et/ou du matériau avant et après le dépôt seront étudiées pour limiter les contraintes thermomécaniques subies par le matériau [3,4].La machine devra également être modifiée pour supporter les températures élevées nécessaires à l’élaboration de céramiques (températures de fusion et dispositif de pré/post chauffage). L’étude et l’optimisation de ces solutions seront effectuées à l’aide de modélisations multi physiques sur le logiciel COMSOL en collaboration avec IREPA-LASER.Enfin, l’influence du procédé d’élaboration sur l’état des pièces réalisées sera étudiée grâce à des caractérisations microscopiques, mécaniques, thermiques…
This work, in partnership between the ONERA Materials and Composite Structure Department (DMSC) and IREPA Laser within the CLADIATOR project, is based on the study of direct additive manufacturing of dense ceramic materials by direct melt deposition (also known as laser cladding) process. This process enables high dimensions or even multi-materials part manufacturing.It will deal with the adaptation of raw materials (ceramic powders) to the existing machine, especially in the case of powder flowability and optical absorption. Indeed, the powder flowability enables its transportation up to the laser nozzle, while the optical absorption of the laser signal is necessary to allow its melting.In parallel, the existing machine also needs to be adapted to ceramic materials : the main difficulty of this work will be the occurence of cracks during the manufacturing. This phenomena is due to the local heating by the laser and the materials brittleness. That’s why some secondary heating solutions, before or after the melt, will have to be defined to decrease the thermal gradient in the material while processing. Those solutions will be discussed between Onera and Irepa Laser, based on FEM simulations established with COMSOL Multiphysics software.Finally, the elaboration process influence on the manufactured ceramics parts will be investigated with microscopy, mechanical and thermal characterization
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Ceramic Additive Manufacturing"

1

Shimamura, Kiyoshi, Soshu Kirihara, Jun Akedo, Tatsuki Ohji, and Makio Naito, eds. Additive Manufacturing and Strategic Technologies in Advanced Ceramics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119236016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Solid Freeform and Additive Fabrication - 2000. University of Cambridge ESOL Examinations, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dimos, Duane, Stephen C. Danforth, and Michael J. Cima. Solid Freeform and Additive Fabrication: Volume 542. University of Cambridge ESOL Examinations, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Editor), Duane Dimos, Stephen C. Danforth (Editor), and M. J. Cima (Editor), eds. Solid Freeform and Additive Fabrication: Symposium Held November 30-December 1, 1998, Boston, Massachusetts, U.S.A (Materials Research Society Symposium Proceedings). Materials Research Society, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Editor), Stephen C. Danforth, Duane Dimos (Editor), and Fritz Prinz (Editor), eds. Solid Freeform and Additive Fabrication-2000: Symposium Held April 24-26, 2000, San Francisco, California, U.S.A (Materials Research Society Symposia Proceedings, V. 625.). Materials Research Society, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

KONG. Additive Manufacturing of Ceramics Hb. Institute of Physics Publishing, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narayan, Roger J., ed. Additive Manufacturing in Biomedical Applications. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v23a.9781627083928.

Full text
Abstract:
Volume 23A provides a comprehensive review of established and emerging 3D printing and bioprinting approaches for biomedical applications, and expansive coverage of various feedstock materials for 3D printing. The Volume includes articles on 3D printing and bioprinting of surgical models, surgical implants, and other medical devices. The introductory section considers developments and trends in additively manufactured medical devices and material aspects of additively manufactured medical devices. The polymer section considers vat polymerization and powder-bed fusion of polymers. The ceramics section contains articles on binder jet additive manufacturing and selective laser sintering of ceramics for medical applications. The metals section includes articles on additive manufacturing of stainless steel, titanium alloy, and cobalt-chromium alloy biomedical devices. The bioprinting section considers laser-induced forward transfer, piezoelectric jetting, microvalve jetting, plotting, pneumatic extrusion, and electrospinning of biomaterials. Finally, the applications section includes articles on additive manufacturing of personalized surgical instruments, orthotics, dentures, crowns and bridges, implantable energy harvesting devices, and pharmaceuticals. For information on the print version of Volume 23A, ISBN: 978-1-62708-390-4, follow this link.
APA, Harvard, Vancouver, ISO, and other styles
8

Ohji, Tatsuki, Makio Naito, Soshu Kirihara, Jun Akedo, and Kiyoshi Shimamura. Additive Manufacturing and Strategic Technologies in Advanced Ceramics. Wiley & Sons, Incorporated, John, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohji, Tatsuki, Makio Naito, Soshu Kirihara, Jun Akedo, and Kiyoshi Shimamura. Additive Manufacturing and Strategic Technologies in Advanced Ceramics. Wiley & Sons, Limited, John, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohji, Tatsuki, Makio Naito, Soshu Kirihara, Jun Akedo, and Kiyoshi Shimamura. Additive Manufacturing and Strategic Technologies in Advanced Ceramics. Wiley & Sons, Limited, John, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ceramic Additive Manufacturing"

1

Clemens, Frank, Josef Schulz, Lovro Gorjan, Antje Liersch, Tutu Sebastian, and Fateme Sarraf. "Debinding and Sintering of Dense Ceramic Structures Made with Fused Deposition Modeling." In Industrializing Additive Manufacturing, 293–303. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54334-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santoliquido, Oscar, Giovanni Bianchi, and Alberto Ortona. "Additive Manufacturing of Complex Ceramic Architectures." In Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 117–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66866-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Revelo, Carlos F., and Henry A. Colorado. "Additive Manufacturing of Kaolinite Clay From Colombia." In Ceramic Transactions Series, 505–16. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119407270.ch46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wunderlich, Christian, Beatrice Bendjus, and Malgorzata Kopycinska-Müller. "NDE in Additive Manufacturing of Ceramic Components." In Handbook of Nondestructive Evaluation 4.0, 1–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48200-8_15-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wunderlich, Christian, Beatrice Bendjus, and Malgorzata Kopycinska-Müller. "NDE in Additive Manufacturing of Ceramic Components." In Handbook of Nondestructive Evaluation 4.0, 735–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-73206-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Qiang, Gildas Guillemot, Charles-André Gandin, and Michel Bellet. "Finite Element Modeling of Ceramic Deposition by LBM(SLM) Additive Manufacturing." In Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 49–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66866-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anish Mathews, Priya, Swati Koonisetty, Sanjay Bhardwaj, Papiya Biswas, Roy Johnson, and G. Padmanabham. "Patent Trends in Additive Manufacturing of Ceramic Materials." In Handbook of Advanced Ceramics and Composites, 319–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16347-1_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anish Mathews, Priya, Swati Koonisetty, Sanjay Bhardwaj, Papiya Biswas, Roy Johnson, and Padmanabham Gadhe. "Patent Trends in Additive Manufacturing of Ceramic Materials." In Handbook of Advanced Ceramics and Composites, 1–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-73255-8_57-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Li, Hadi Miyanaji, Durga Janaki Ram, Amir Zandinejad, and Shanshan Zhang. "Functionally Graded Ceramic Based Materials Using Additive Manufacturing: Review and Progress." In Ceramic Transactions Series, 43–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119236016.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Homa, Johannes, and Martin Schwentenwein. "A Novel Additive Manufacturing Technology for High-Performance Ceramics." In Ceramic Engineering and Science Proceedings, 33–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119040354.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ceramic Additive Manufacturing"

1

Fan, N. C., W. C. J. Wei, B. H. Liu, A. B. Wang, and R. C. Luo. "Ceramic feedstocks for additive manufacturing." In 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7474917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diptanshu, Erik Young, Chao Ma, Suleiman Obeidat, Bo Pang, and Nick Kang. "Ceramic Additive Manufacturing Using VAT Photopolymerization." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6389.

Full text
Abstract:
The popularity of additive manufacturing for producing porous bio-ceramics using vat photopolymerization in the recent years has gained a lot of impetus due to its high resolution and low surface roughness. In this study, a commercial vat polymerization printer (Nobel Superfine, XYZprinting) was used to create green bodies using a ceramic suspension consisting of 10 vol.% of alumina particles in a photopolymerizable resin. Four different sizes of cubical green bodies were printed out. They were subjected to thermal processing which included de-binding to get rid of the polymer and thereafter sintering for joining of the ceramic particles. The porosity percentage of the four different sizes were measured and compared. The lowest porosity was observed in the smallest cubes (5 mm). It was found to be 43.3%. There was an increase in the porosity of the sintered parts for the larger cubes (10, 15 and 20 mm). However, the difference in the porosity among these sizes was not significant and ranged from 61.5% to 65.2%. The compressive testing of the samples showed that the strength of the 5-mm cube was the maximum among all samples and the compressive strength decreased as the size of the samples increased. These ceramic materials of various densities are of great interest for biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Campanella, Jesse, Ivan Figueroa-Cecco, Ian Fujinaka, Adam Sasek, Margaret Nowicki, Lionel Vargas-Gonzalez, and Nicholas Ku. "Additive Manufacturing With Ceramics." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-70601.

Full text
Abstract:
Abstract The purpose of this project was to modify and improve an off-the-shelf 3D printer, previously modified by Army Research Laboratory, to print a ceramic slurry of B4C and SiC. Initial iterations suggest improvement in mixedness of the ceramic composite is desirable to create a more homogenous blended microstructure. The initial design utilized a basic auger shape designed to move the slurry along, but it did not effectively mix the two slurries while printing. Various auger designs were also modeled in SolidWorks, matching the rheological properties of the ceramic slurries engaged in the print, to determine influence of geometric modifications on auger performance. Experimental augers were printed using a Formlabs 2 stereolithography printer, with clear photopolymer resin, and tested on the modified 3D printer. Modeling predictions were verified through the experimental print allowing for rapid analysis of geometric modifications without requiring an experimental print for each iteration. The group examined the homogeneity of the mixture under a 10x and then 40x microscope. A point counting method, like that used in traditional volume fraction analysis, was employed to evaluate mixedness.
APA, Harvard, Vancouver, ISO, and other styles
4

Cline, Kjetil, Andrew LaFlam, Logan Smith, Margaret Nowicki, and Nicholas Ku. "Additive Manufacturing With Ceramics." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23253.

Full text
Abstract:
Abstract The purpose of this project is to design a device that improves the performance of a ceramic additive manufacturing (AM) 3D printer constructed by Army Research Labs (ARL). ARL modified a standard LulzBot Taz 6 3D printer to print a ceramic slurry mixture of Boron Carbide (B4C) and Silicon Carbide (SiC) instead of plastic filament. Since these compounds are often used in body armor, ARL has been observing the effects on properties when these components are 3D printed. The current printer utilizes an auger in the print head to receive and mix the B4C and SiC slurries and extrude the combined slurry out of the print nozzle. The current design is limited in its ability to thoroughly mix the slurries during the printing process. Therefore, team Concept Creators has designed an improved auger that will increase the mixedness of the slurries, thus increasing the print quality of the composite specimen.
APA, Harvard, Vancouver, ISO, and other styles
5

Hatzenbichler, Markus, Ruth Felzmann, Simon Gruber, Gerald Mitteramskogler, Passakorn Tesavibul, Jürgen Stampfl, and Robert Liska. "Additive Manufacturing of High Performance Ceramic Structures." In 9th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3353-7_k005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mansfield, Brooke, Sabrina Torres, Tianyu Yu, and Dazhong Wu. "A Review on Additive Manufacturing of Ceramics." In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2886.

Full text
Abstract:
Abstract Additive manufacturing (AM), also known as 3D printing, has been used for rapid prototyping due to its ability to produce parts with complex geometries from computer-aided design files. Currently, polymers and metals are the most commonly used materials for AM. However, ceramic materials have unique mechanical properties such as strength, corrosion resistance, and temperature resistance. This paper provides a review of recent AM techniques for ceramics such as extrusion-based AM, the mechanical properties of additively manufactured ceramics, and the applications of ceramics in various industries, including aerospace, automotive, energy, electronics, and medical. A detailed overview of binder-jetting, laser-assisted processes, laminated object manufacturing (LOM), and material extrusion-based 3D printing is presented. Finally, the challenges and opportunities in AM of ceramics are identified.
APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Zipeng, Lu An, Sushil Lakshmanan, Jason N. Armstrong, Shenqiang Ren, and Chi Zhou. "Additive Manufacturing of Porous Ceramics With Foaming Agent." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-63493.

Full text
Abstract:
Abstract The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.
APA, Harvard, Vancouver, ISO, and other styles
8

Lorenz, Lukas, Thomas Ackstaller, and Karlheinz Bock. "Stereolithographic printed polymers on ceramic for 3D-opto-MID." In 3D Printed Optics and Additive Photonic Manufacturing II, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2020. http://dx.doi.org/10.1117/12.2554997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nawrot, Witold, Heike Bartsch, Krzysztof Szostak, Piotr Slobodzian, Jens Muller, and Karol Malecha. "Ceramic Additive Manufacturing for High-Performance Microwave Circuits." In 2022 24th International Microwave and Radar Conference (MIKON). IEEE, 2022. http://dx.doi.org/10.23919/mikon54314.2022.9924862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ziqiang, Zhao, Mahta Mapar, Yeong Wai Yee, Sam Zhang, and Donliang Zhao. "Initial Study of Selective Laser Melting of ZrO /Al O Ceramic." In 1st International Conference on Progress in Additive Manufacturing. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-0446-3_068.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Ceramic Additive Manufacturing"

1

Haslam, J., J. Kelly, and R. Harris. Predictive Models for Ceramic Additive Manufacturing, CRADA No. TC02251. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1863168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Haslam, Jeff, James Kelly, and Randy Harris. Predicitve Models for Ceramic Additive Manufacturing, Final Report CRADA No. TC02251. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1525465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shulman, Holly, and Nicole Ross. Additive Manufacturing for Cost Efficient Production of Compact Ceramic Heat Exchangers and Recuperators. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1234436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peterson, Dominic S. Additive Manufacturing for Ceramics. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography