Dissertations / Theses on the topic 'Centriole to centrosome conversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 20 dissertations / theses for your research on the topic 'Centriole to centrosome conversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
V, Persico. "Drosophila melanogaster: a model system to study centriole elimination and basal body dynamics." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1096483.
Full textPer via del suo ruolo essenziale nell'omeostasi cellulare e tissutale, la struttura, la funzione e il numero di centrosomi sono altamente regolati per garantire il naturale sviluppo degli organismi, attraverso l'assemblaggio di una molteplicità di complessi proteici. Poiché l'organizzazione e l'integrità del centrosoma dipendono dai centrioli e dal materiale pericentriolare (PCM) che lo compongono, comprendere la dinamica di questi organelli è fondamentale per decifrare il comportamento del centrosoma. Ad oggi, abbiamo una conoscenza abbastanza dettagliata della composizione e della struttura dei centrioli e anche di ciò che riguarda il processo di duplicazione e maturazione centrosomale. Si conosce qualcosa del processo di eliminazione dei centrioli durante la gametogenesi, ma si sa molto poco su come i centrioli vengono eliminati nelle cellule differenziate post-mitotiche. Durante lo sviluppo dell'occhio di Drosophila, i centrioli delle cellule retiniche in differenziazione non reclutano la γ-Tubulina, suggerendo che non sono in grado di organizzare centri di organizzazione dei microtubuli (MTOC) funzionali. Coerentemente con questa ipotesi, questo studio mostra che Cnn e Spd-2, proteine che consentono il reclutamento di γ-tubulina, e DPlp, che è coinvolta nell'organizzazione del materiale pericentriolare, non vengono accumulati dai centrioli delle cellule del terzo stadio larvale. Nonostante la perdita di questi componenti essenziali del materiale pericentriolare, i centrioli sono strutturalmente intatti e possono reclutare Asl e ANA-1. Di solito, l'accumulo di Asl e ANA-1 consente ai centrioli figli di acquisire la condizione di maternità. Infatti, i centrioli madre accumulano correttamente Plk-4; tuttavia, non sono in grado di duplicare. Questi risultati mostrano che, in questo modello, l'accumulo di Plk-4 non è sufficiente per consentire la duplicazione di centrioli. Durante la progressione dello sviluppo della pupa, il numero di centrioli diminuisce progressivamente, e iniziano a essere osservati difetti strutturali. Questi fenotipi suggeriscono che l'eliminazione dei centrioli inizia con la perdita dell'integrità strutturale, piuttosto che con la riduzione del PCM, come mostrato in altri modelli. Inoltre, Asl, ANA-1 e Sas-4 sono ancora rilevabili, sottolineando che queste proteine da sole non sono in grado di garantire il mantenimento dell'integrità dei centrioli. Tra le funzioni cellulari essenziali svolte dai centrioli, vi è la loro capacità di agire come basal bodies per nucleare l'assonema, la struttura portante di ciglia e flagelli, che svolgono importanti funzioni cellulari come la trasduzione del segnale e la motilità cellulare. Dato il ruolo critico dei centrioli e delle ciglia nella fisiologia cellulare, le mutazioni di numerose proteine centriolari causano vari disturbi, tra cui microcefalia, nanismo e ciliopatie. Pertanto, è fondamentale comprendere meglio i meccanismi che regolano la dinamica dei centrioli e delle ciglia. In questo studio sono state analizzate le ciglia dei neuroni sensoriali di tipo I della Drosophila melanogaster, per comprendere il ruolo svolto dalle proteine centriolari Klp10A, Cnb, Gorab e Rcd4 nelle dinamiche di centrioli e ciglia. Nei neuroni sensoriali di tipo I di Drosophila, Klp10A (Kinesin-like protein 10A), un membro della famiglia delle kinesine 13, si localizza nella parte distale della zona di transizione (TZ), appena sopra il segnale UNC-GFP. Questo studio mostra che la mutazione di klp10A provoca sostanziali difetti strutturali dei neuroni sensoriali, come l'eccessivo allungamento di entrambi i centrioli in direzioni opposte. È stato anche osservato che le estensioni di entrambi i centrioli, chiamati basal bodies prossimale e distale, mostrano doppietti circondati da materiale elettrondenso e brevi sporgenze laterali come si quelle che si trovano nella TZ di controllo. Pertanto, le regioni distali allungate dei centrioli dei mutanti per klp10A, possono essere equivalenti a TZ. Il fenotipo osservato nel mutante klp10A è profondamente diverso da quello osservato nei neuroni sensoriali dei mutanti per altre proteine della TZ che sono limitate alla porzione prossimale. Ciò suggerisce che Klp10A potrebbe essere un componente chiave della zona di transizione ciliare in Drosophila, specificamente associato alla regione distale della TZ dove svolge un ruolo essenziale nell'allungamento dei centrioli e nell'assemblaggio e nell mantenimento dell'assoneema ciliare. La Centrobina (Cnb) è una proteina centrosomale che si localizza specificamente nei centrioli figli. È stato dimostrato che la mutazione della cnb rende i centrioli figli, chiamati PBB in questo modello, in grado di agire come basal body distali (DBB) per nucleare assonemi soprannumerari. Ciò è confermato da questo studio condotto in un diverso ceppo mutante di cnb che suggerisce che la Cnb agisce come regolatore negativo della ciliogenesi. In Drosophila melanogaster, è stata scoperta una nuova proteina centriolare essenziale per la duplicazione dei centrioli, Gorab. I neuroni sensoriali del doppio mutante cnb-gorab analizzati in questo studio, mostrano una riduzione più forte dei centrioli rispetto al singolo mutante gorab. Di conseguenza, anche il numero di ciglia è gravemente colpito. Questi risultati suggeriscono che nel mutante cnb-gorab, la duplicazione dei centrioli fallisce prima della formazione del basal body. Lavori recenti hanno identificato la proteina umana chiamata PPP1R35 (Rcd4 in Drosophila - Reduction in Cnn dots 4), che è coinvolta nella conversione centriolocentrosoma (CCC) e nell’allungamento di centriolo. Le analisi dei neuroni sensoriali mutanti di Rcd4 mostrano una forte riduzione dei centrioli e delle ciglia e anche la frammentazione centriolare. Ciò suggerisce che Rcd4 potrebbe essere coinvolto nella CCC in modo simile alla sua controparte umana.
Gaume, Xavier. "Localisation et fonctions de la nucléoline au centrosome." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0890.
Full textNucleolin is an abundant non-ribosomal protein of the nucleolus. Nevertheless its functions are not restricted to ribosome biogenesis. Without nucleolin, a phenotype of abnormally high centrosome numbers was recently reported in mitosis, associated with multipolar spindle formation. The purpose of our study is to understand nucleolin’s involvement in the appearance of this phenotype and specifically consequences on microtubule network organisation. By immunofluorescence, visual evidences of a centrosomal fraction of nucleolin are provided, specifically associated with the mature centriole of interphase cells. In mitosis, only a phosphorylated form of nucleolin is detected at the spindle poles.In interphase, nucleolin depleted cells exhibit immature centriole amplification surrounded by an abnormal mesh of pericentrine, showing a loss of pericentriolar matrix structuration. Furthermore, in most nucleolin depleted cells, a complete disorganisation of microtubule network is observed, caused by a slower microtubule nucleation capacity and a loss of microtubule anchoring at the mature centriole. Using co-immunoprecipitation with γ-tubulin, a major centrosomal protein, a link with the microtubule nucleation complex was highlighted.Taken together my thesis results reveal that in interphase cells, nucleolin is structurally associated with the mature centriole, and functionally stimulates microtubule nucleation and participates in their anchoring at the mature centrosome to orient microtubule network. Thus, nucleolin could be a major actor in the synchronicity between centrosome and nucleoli for cell cycle regulation
Fishman, Emily Lillian. "The Atypical Centriole of Human and Beetle Sperm." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1556808522272757.
Full textSano(Hamasaki), Mayumi. "Pregnenoloneは分裂期のcentriole engagementを制御する." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195989.
Full textWang, Yongheng. "The role of Sas-4 in ciliogenesis and centriole biogenesis in Drosophila." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1461074141.
Full textBouhlel, Bougdhira Imen. "The centrin-binding protein Sfi1 : functions in fission yeast and human." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS465/document.
Full textThe centrosome is the main microtubule organizing center. It nucleates and organizes interphase microtubule and contributes to the assembly of the bipolar mitotic spindle. To do so, the centrosome, present in one copy at the beginning of the cell cycle, duplicates to produce a second copy. The duplication process is tightly controlled and regulated since centrosome over-duplication can lead to multipolar mitotic spindles and promote genome instability and tumorigenesis. The duplication of the yeast centrosome, the SPB (Spindle pole body), begins with the duplication of the half bridge. This appendage is composed of Sfi1/Cdc31 complex organized in a parallel array attached to the core SPB. SPB duplication relies on the assembly of a second array of Sfi1/Cdc31, anti-parallel to the first one, creating thereby an assembly site for the new SPB. Therefore Sfi1 is essential for SPB duplication and our work defined the timing of half-bridge duplication and some of the regulatory mechanisms that favor bridge splitting to release duplicated centrosomes and allow spindle assembly at mitotic onset. Sfi1 and Cdc31/Centrins are conserved in human cells where the centrosome is composed of two centrioles surrounded by the pericentriolar material. Centrins are concentrated in the distal end of centrioles. Sfi1 has also been localized to centrioles, but its function remained unknown. Thus, we started investigating Sfi1 function in human cells. We found that Sfi1 depletion leads to a decrease in Centrin recruitment to the centrioles. It also leads to a cell cycle arrest in G1 in RPE1 cells, an event previously observed in presence of defects in centriole biogenesis. In HeLa cells where the cell cycle is not affected, Sfi1 depletion leads to a mitotic delay. Moreover, Sfi1 depletion leads to cilium assembly. To conclude, these results altogether point towards a role of human Sfi1 in centriole biogenesis
Bliemeister, Amanda Nichole. "Mps1 and Plk4 Cooperate to Regulate Centriole Assembly." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406211266.
Full textSmith, Amy Elisabeth. "The centriole in evolution : from motility to mitosis." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f48e77ea-fbf9-4ac6-b86e-854f6739a5aa.
Full textCosta, Vicente Catarina. "Elucidating the pathway of centrosome formation." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:a7c109ae-7e99-4121-a7f7-d070a01c2f42.
Full textPiel, Matthieu. "Étude cinématique et fonctionnelle du centrosome des cellules de vertébré." Paris 6, 2001. https://tel.archives-ouvertes.fr/tel-00012067.
Full textDelgehyr, Nathalie. "Le centriole père et l'organisation des microtubules en interphase : rôle de la delta-tubuline et de la ninéine." Paris 11, 2004. http://www.theses.fr/2004PA112053.
Full textThe centrosome favours nucleation and anchoring of microtubules. It is composed of a centriole pair and a pericentriolar material. Centrioles duplicate once per cell cycle in a conservative manner, thus they have not the same age. The older one is named mother centriole and carried appendages. In interphase, the younger centriole moves whereas the mother is immotile. I worked on the role of the mother centriole in ciliogenesis and in microtubule organisation in interphase. The mother centriole can be anchored to the plasma membrane and promoted the formation of an axoneme. Few data are available about control of centriole size, anchoring to the membrane and of formation of the axoneme. Delta-tubulin could be a good candidate to participate in these processes. This protein is localized at the pericentrosomal material and at the cell junctions in mammal cells, and at the transition basal bodies/axonemes in c. Reinhardtii. At the onset of ciliogenesis, one of these tubulin forms disappeared. Its overexpression leads to cold hypersensitivity of microtubules, and without delta-tubulin centrioles might be longer, suggesting that this protein should regulate dynamics of some microtubules. In interphase cells, microtubules are anchored at subdistal appendages. My work has shown that the presence of the gamma-turc at the centrosome is not sufficient to anchor microtubules, suggesting that microtubule nucleation and anchoring at the centrosome are two independent processes. The microtubule anchoring seems to be dependent on the presence of the mother centriole protein ninein. This protein is able to dock the nucleation complex and the anchoring complex on these appendages
Novak, Zsofia A. "The role and regulation of Asterless in the centrosome cycle." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4fadaef1-8c9e-4c70-ac59-47f35af3988e.
Full textQuarantotti, Valentina. "Towards the understanding of pericentriolar satellite biology." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274539.
Full textMartinez-Campos, Maruxa. "Characterisation of the Drosophila Pericentrin-Like Protein (D-PLP) and its role in centrosome and centriole function." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616026.
Full textAngus, Karen Lisa. "The role of distal centriole and casein kinase 1 centrosome proteins in the function of cytolytic immune cells." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648426.
Full textJo, Kyoung Ha Jo. "The sperm centrioles have unique structures and require poc1 for proper formation in Drosophila melanogaster." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1543408971319716.
Full textAl, Jord Adel. "Centriole amplification in brain multiciliated cells : high resolution spatiotemporal dynamics and identification of regulatory mechanisms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066706/document.
Full textMulticiliated mammalian cells play a crucial role in the propulsion of physiological fluids. Their dysfunction causes severe chronic diseases. In contrast to the strict centriole number control in cycling cells, multiciliated cell differentiation is marked by the production of up to several hundred centrioles, each nucleating a motile cilium. The mechanisms of centriole amplification or centriole number control in these cells were unknown and new centrioles were thought to appear de novo in the cytoplasm. First, videomicroscopy combined with correlative super-resolution and electron microscopy has enabled us to determine that all procentrioles are generated via runs of nucleation from the pre-existing progenitor cell centrosome. We show that the daughter centriole of the centrosome is the primary nucleation site for 95% of the new centrioles in multiciliated cells and thus refute the de novo hypothesis. Then, we provide evidence of an activation of the mitosis regulatory network during the centriole dynamic. With single cell live imaging and pharmacological modulation of mitosis regulators, we show that the mitosis machinery orchestrates the spatiotemporal progression of centriole amplification in terminally differentiating multiciliated cell progenitors. The fine-tuning of Cdk1 activity prevents mitosis while allowing the timely coordination of centriole number, growth, and disengagement through checkpoint-like phase transitions necessary for subsequent functional motile ciliation. This PhD provides a new paradigm for studying multiciliated cell differentiation, cilia-related diseases and pathological centriole amplification associated with cancer and microcephaly
Hung, Hui-Fang. "Roles of the Mother Centriole Appendage Protein Cenexin in Microtubule Organization during Cell Migration and Cell Division: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/842.
Full textHung, Hui-Fang. "Roles of the Mother Centriole Appendage Protein Cenexin in Microtubule Organization during Cell Migration and Cell Division: A Dissertation." eScholarship@UMMS, 2008. http://escholarship.umassmed.edu/gsbs_diss/842.
Full textMarquardt, Joseph R. "Examining the Regulation and Functions of Centrosomal Mps1." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1492705268485057.
Full text