Journal articles on the topic 'Centrifugal Microfluidics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Centrifugal Microfluidics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Schwarz, I., S. Zehnle, T. Hutzenlaub, R. Zengerle, and N. Paust. "System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems." Lab on a Chip 16, no. 10 (2016): 1873–85. http://dx.doi.org/10.1039/c5lc01525a.
Full textSchwemmer, F., S. Zehnle, D. Mark, F. von Stetten, R. Zengerle, and N. Paust. "A microfluidic timer for timed valving and pumping in centrifugal microfluidics." Lab on a Chip 15, no. 6 (2015): 1545–53. http://dx.doi.org/10.1039/c4lc01269k.
Full textVargas, Matheus J. T., Michel K. Nieuwoudt, Rakesh Arul, David E. Williams, and M. Cather Simpson. "Direct laser writing of hydrophobic and hydrophilic valves in the same material applied to centrifugal microfluidics." RSC Advances 13, no. 32 (2023): 22302–14. http://dx.doi.org/10.1039/d3ra01749d.
Full textXie, Zhongqiang, Yongchao Cai, Jiahao Wu, Zhaokun Xian, and Hui You. "Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel." Applied Sciences 12, no. 9 (April 26, 2022): 4362. http://dx.doi.org/10.3390/app12094362.
Full textXie, Zhongqiang, Yongchao Cai, Jiahao Wu, Zhaokun Xian, and Hui You. "Research on the Centrifugal Driving of a Water-in-Oil Droplet in a Microfluidic Chip with Spiral Microchannel." Applied Sciences 12, no. 9 (April 26, 2022): 4362. http://dx.doi.org/10.3390/app12094362.
Full textShi, Yuxing, Peng Ye, Kuojun Yang, Jie Meng, Jiuchuan Guo, Zhixiang Pan, Qiaoge Bayin, and Wenhao Zhao. "Application of Microfluidics in Immunoassay: Recent Advancements." Journal of Healthcare Engineering 2021 (July 15, 2021): 1–24. http://dx.doi.org/10.1155/2021/2959843.
Full textBurger, Robert, Daniel Kirby, Macdara Glynn, Charles Nwankire, Mary O'Sullivan, Jonathan Siegrist, David Kinahan, et al. "Centrifugal microfluidics for cell analysis." Current Opinion in Chemical Biology 16, no. 3-4 (August 2012): 409–14. http://dx.doi.org/10.1016/j.cbpa.2012.06.002.
Full textGorkin, Robert, Jiwoon Park, Jonathan Siegrist, Mary Amasia, Beom Seok Lee, Jong-Myeon Park, Jintae Kim, Hanshin Kim, Marc Madou, and Yoon-Kyoung Cho. "Centrifugal microfluidics for biomedical applications." Lab on a Chip 10, no. 14 (2010): 1758. http://dx.doi.org/10.1039/b924109d.
Full textPishbin, Esmail, Amin Kazemzadeh, Mohammadreza Chimerad, Sasan Asiaei, Mahdi Navidbakhsh, and Aman Russom. "Frequency dependent multiphase flows on centrifugal microfluidics." Lab on a Chip 20, no. 3 (2020): 514–24. http://dx.doi.org/10.1039/c9lc00924h.
Full textNoroozi, Zahra, Horacio Kido, Miodrag Micic, Hansheng Pan, Christian Bartolome, Marko Princevac, Jim Zoval, and Marc Madou. "Reciprocating flow-based centrifugal microfluidics mixer." Review of Scientific Instruments 80, no. 7 (July 2009): 075102. http://dx.doi.org/10.1063/1.3169508.
Full textPeshin, Snehan, Marc Madou, and Lawrence Kulinsky. "Microvalves for Applications in Centrifugal Microfluidics." Sensors 22, no. 22 (November 18, 2022): 8955. http://dx.doi.org/10.3390/s22228955.
Full textAcharya, Sourav, Jasleen Chhabra, Soumyo Mukherji, and Debjani Paul. "A low-cost and portable centrifugal microfluidic platform for continuous processing of large sample volumes." AIP Advances 13, no. 1 (January 1, 2023): 015212. http://dx.doi.org/10.1063/5.0128239.
Full textKlatt, J. N., M. Depke, N. Goswami, N. Paust, R. Zengerle, F. Schmidt, and T. Hutzenlaub. "Tryptic digestion of human serum for proteomic mass spectrometry automated by centrifugal microfluidics." Lab on a Chip 20, no. 16 (2020): 2937–46. http://dx.doi.org/10.1039/d0lc00530d.
Full textShih, Chih Hsin, Chien Hsing Lu, Chia Hui Lin, and Hou Jin Wu. "Design and Analysis of Micromixers on a Centrifugal Platform." Advanced Materials Research 74 (June 2009): 203–6. http://dx.doi.org/10.4028/www.scientific.net/amr.74.203.
Full textLiu, Xun, Yuan Ji, Yongbo Deng, and Yihui Wu. "Advection of droplet collision in centrifugal microfluidics." Physics of Fluids 31, no. 3 (March 2019): 032003. http://dx.doi.org/10.1063/1.5082218.
Full textHess, J. F., S. Zehnle, P. Juelg, T. Hutzenlaub, R. Zengerle, and N. Paust. "Review on pneumatic operations in centrifugal microfluidics." Lab on a Chip 19, no. 22 (2019): 3745–70. http://dx.doi.org/10.1039/c9lc00441f.
Full textMaguire, I., R. O'Kennedy, J. Ducrée, and F. Regan. "A review of centrifugal microfluidics in environmental monitoring." Analytical Methods 10, no. 13 (2018): 1497–515. http://dx.doi.org/10.1039/c8ay00361k.
Full textBoisen, Anja. "(Sensor Division Outstanding Achievement Award) Micro/Nano Sensors and Drug Delivery." ECS Meeting Abstracts MA2022-02, no. 61 (October 9, 2022): 2247. http://dx.doi.org/10.1149/ma2022-02612247mtgabs.
Full textAzimi-Boulali, Javid, Masoud Madadelahi, Marc J. Madou, and Sergio O. Martinez-Chapa. "Droplet and Particle Generation on Centrifugal Microfluidic Platforms: A Review." Micromachines 11, no. 6 (June 22, 2020): 603. http://dx.doi.org/10.3390/mi11060603.
Full textWang, Guanghui, Jie Tan, Minghui Tang, Changbin Zhang, Dongying Zhang, Wenbin Ji, Junhao Chen, Ho-Pui Ho, and Xuping Zhang. "Binary centrifugal microfluidics enabling novel, digital addressable functions for valving and routing." Lab on a Chip 18, no. 8 (2018): 1197–206. http://dx.doi.org/10.1039/c8lc00026c.
Full textSchaff, Ulrich Y., and Greg J. Sommer. "Whole Blood Immunoassay Based on Centrifugal Bead Sedimentation." Clinical Chemistry 57, no. 5 (May 1, 2011): 753–61. http://dx.doi.org/10.1373/clinchem.2011.162206.
Full textLi, Qi, Xingchen Zhou, Qian Wang, Wenfang Liu, and Chuanpin Chen. "Microfluidics for COVID-19: From Current Work to Future Perspective." Biosensors 13, no. 2 (January 20, 2023): 163. http://dx.doi.org/10.3390/bios13020163.
Full textBurger, S., M. Schulz, F. von Stetten, R. Zengerle, and N. Paust. "Rigorous buoyancy driven bubble mixing for centrifugal microfluidics." Lab on a Chip 16, no. 2 (2016): 261–68. http://dx.doi.org/10.1039/c5lc01280e.
Full textOkamoto, Shunya, and Yoshiaki Ukita. "Automatic microfluidic enzyme-linked immunosorbent assay based on CLOCK-controlled autonomous centrifugal microfluidics." Sensors and Actuators B: Chemical 261 (May 2018): 264–70. http://dx.doi.org/10.1016/j.snb.2018.01.150.
Full textDing, Zhaoxiong, Dongying Zhang, Guanghui Wang, Minghui Tang, Yumin Dong, Yixin Zhang, Ho-pui Ho, and Xuping Zhang. "An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration." Lab on a Chip 16, no. 18 (2016): 3604–14. http://dx.doi.org/10.1039/c6lc00542j.
Full textBrenner, Thilo, Thomas Glatzel, Roland Zengerle, and Jens Ducrée. "Frequency-dependent transversal flow control in centrifugal microfluidics." Lab Chip 5, no. 2 (2005): 146–50. http://dx.doi.org/10.1039/b406699e.
Full textPeytavi, Régis, Frédéric R. Raymond, Dominic Gagné, François J. Picard, Guangyao Jia, Jim Zoval, Marc Madou, et al. "Microfluidic Device for Rapid (<15 min) Automated Microarray Hybridization." Clinical Chemistry 51, no. 10 (October 1, 2005): 1836–44. http://dx.doi.org/10.1373/clinchem.2005.052845.
Full textGe, Ya-Hao, Yi-Mei Lan, Xing-Rui Li, Yu-Wei Shan, Yu-Jie Yang, Sen-Sen Li, Chaoyong Yang, and Lu-Jian Chen. "Polymerized cholesteric liquid crystal microdisks generated by centrifugal microfluidics towards tunable laser emissions [Invited]." Chinese Optics Letters 18, no. 8 (2020): 080006. http://dx.doi.org/10.3788/col202018.080006.
Full textKainz, Daniel M., Susanna M. Früh, Tobias Hutzenlaub, Roland Zengerle, and Nils Paust. "Flow control for lateral flow strips with centrifugal microfluidics." Lab on a Chip 19, no. 16 (2019): 2718–27. http://dx.doi.org/10.1039/c9lc00308h.
Full textMiyazaki, Celina M., Eadaoin Carthy, and David J. Kinahan. "Biosensing on the Centrifugal Microfluidic Lab-on-a-Disc Platform." Processes 8, no. 11 (October 28, 2020): 1360. http://dx.doi.org/10.3390/pr8111360.
Full textKazemzadeh, Amin, P. Ganesan, Fatimah Ibrahim, Lawrence Kulinsky, and Marc J. Madou. "Guided routing on spinning microfluidic platforms." RSC Advances 5, no. 12 (2015): 8669–79. http://dx.doi.org/10.1039/c4ra14397c.
Full textDelgado, Saraí M. Torres, David J. Kinahan, Fralett Suárez Sandoval, Lourdes Albina Nirupa Julius, Niamh A. Kilcawley, Jens Ducrée, and Dario Mager. "Fully automated chemiluminescence detection using an electrified-Lab-on-a-Disc (eLoaD) platform." Lab on a Chip 16, no. 20 (2016): 4002–11. http://dx.doi.org/10.1039/c6lc00973e.
Full textHin, S., N. Paust, M. Keller, M. Rombach, O. Strohmeier, R. Zengerle, and K. Mitsakakis. "Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics." Lab on a Chip 18, no. 2 (2018): 362–70. http://dx.doi.org/10.1039/c7lc01249g.
Full textWoolf, Michael, Leah Dignan, Scott Karas, Hannah Lewis, Kevyn Hadley, Aeren Nauman, Marcellene Gates-Hollingsworth, et al. "Characterization of a Centrifugal Microfluidic Orthogonal Flow Platform." Micromachines 13, no. 3 (March 20, 2022): 487. http://dx.doi.org/10.3390/mi13030487.
Full textNoroozi, Zahra, Horacio Kido, Régis Peytavi, Rie Nakajima-Sasaki, Algimantas Jasinskas, Miodrag Micic, Philip L. Felgner, and Marc J. Madou. "A multiplexed immunoassay system based upon reciprocating centrifugal microfluidics." Review of Scientific Instruments 82, no. 6 (June 2011): 064303. http://dx.doi.org/10.1063/1.3597578.
Full textYeo, Joo Chuan, Kenry, Zhihai Zhao, Pan Zhang, Zhiping Wang, and Chwee Teck Lim. "Label-free extraction of extracellular vesicles using centrifugal microfluidics." Biomicrofluidics 12, no. 2 (March 2018): 024103. http://dx.doi.org/10.1063/1.5019983.
Full textYu, Zeta Tak For, Jophin George Joseph, Shirley Xiaosu Liu, Mei Ki Cheung, Parker James Haffey, Katsuo Kurabayashi, and Jianping Fu. "Centrifugal microfluidics for sorting immune cells from whole blood." Sensors and Actuators B: Chemical 245 (June 2017): 1050–61. http://dx.doi.org/10.1016/j.snb.2017.01.113.
Full textGrumann, Markus, Thilo Brenner, Christian Beer, Roland Zengerle, and Jens Ducrée. "Visualization of flow patterning in high-speed centrifugal microfluidics." Review of Scientific Instruments 76, no. 2 (February 2005): 025101. http://dx.doi.org/10.1063/1.1834703.
Full textCHEN, Jerry Min, Yu-Jen CHEN, and Lung-Sheng TSENG. "Micromixing of Fluids within Droplets Generated on Centrifugal Microfluidics." Journal of Fluid Science and Technology 8, no. 2 (2013): 200–208. http://dx.doi.org/10.1299/jfst.8.200.
Full textKeller, M., G. Czilwik, J. Schott, I. Schwarz, K. Dormanns, F. von Stetten, R. Zengerle, and N. Paust. "Robust temperature change rate actuated valving and switching for highly integrated centrifugal microfluidics." Lab on a Chip 17, no. 5 (2017): 864–75. http://dx.doi.org/10.1039/c6lc01536k.
Full textKlatt, J. N., T. J. Dinh, O. Schilling, R. Zengerle, F. Schmidt, T. Hutzenlaub, and N. Paust. "Automation of peptide desalting for proteomic liquid chromatography – tandem mass spectrometry by centrifugal microfluidics." Lab on a Chip 21, no. 11 (2021): 2255–64. http://dx.doi.org/10.1039/d1lc00137j.
Full textAndreasen, Sune Z., Dorota Kwasny, Letizia Amato, Anna Line Brøgger, Filippo G. Bosco, Karsten B. Andersen, Winnie E. Svendsen, and Anja Boisen. "Integrating electrochemical detection with centrifugal microfluidics for real-time and fully automated sample testing." RSC Advances 5, no. 22 (2015): 17187–93. http://dx.doi.org/10.1039/c4ra16858e.
Full textSnider, Adam, Ileana Pirozzi, and Anubhav Tripathi. "Centrifugal Microfluidics Traps for Parallel Isolation and Imaging of Single Cells." Micromachines 11, no. 2 (January 29, 2020): 149. http://dx.doi.org/10.3390/mi11020149.
Full textSchwemmer, F., T. Hutzenlaub, D. Buselmeier, N. Paust, F. von Stetten, D. Mark, R. Zengerle, and D. Kosse. "Centrifugo-pneumatic multi-liquid aliquoting – parallel aliquoting and combination of multiple liquids in centrifugal microfluidics." Lab on a Chip 15, no. 15 (2015): 3250–58. http://dx.doi.org/10.1039/c5lc00513b.
Full textMahmodi Arjmand, Ehsan, Maryam Saadatmand, Manouchehr Eghbal, Mohammad Reza Bakhtiari, and Sima Mehraji. "A New Detection Chamber Design on Centrifugal Microfluidic Platform to Measure Hemoglobin of Whole Blood." SLAS TECHNOLOGY: Translating Life Sciences Innovation 26, no. 4 (March 1, 2021): 392–98. http://dx.doi.org/10.1177/2472630320985456.
Full textMadadelahi, Masoud, Javid Azimi-Boulali, Marc Madou, and Sergio Omar Martinez-Chapa. "Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics." Micromachines 13, no. 6 (May 31, 2022): 881. http://dx.doi.org/10.3390/mi13060881.
Full textXiao, Yujin, Shunji Li, Zheng Pang, Chao Wan, Lina Li, Huijuan Yuan, Xianzhe Hong, et al. "Multi-reagents dispensing centrifugal microfluidics for point-of-care testing." Biosensors and Bioelectronics 206 (June 2022): 114130. http://dx.doi.org/10.1016/j.bios.2022.114130.
Full textHess, Jacob Friedrich, Maria Elena Hess, Roland Zengerle, Nils Paust, Melanie Boerries, and Tobias Hutzenlaub. "Automated library preparation for whole genome sequencing by centrifugal microfluidics." Analytica Chimica Acta 1182 (October 2021): 338954. http://dx.doi.org/10.1016/j.aca.2021.338954.
Full textKlatt, Jan-Niklas, Ingmar Schwarz, Tobias Hutzenlaub, Roland Zengerle, Frank Schwemmer, Dominique Kosse, Jake Vincent, et al. "Miniaturization, Parallelization, and Automation of Endotoxin Detection by Centrifugal Microfluidics." Analytical Chemistry 93, no. 24 (June 8, 2021): 8508–16. http://dx.doi.org/10.1021/acs.analchem.1c01041.
Full textPeshin, Snehan, Derosh George, Roya Shiri, and Marc Madou. "Reusable Capillary Flow-Based Wax Switch Valve for Centrifugal Microfluidics." ECS Meeting Abstracts MA2021-01, no. 60 (May 30, 2021): 1611. http://dx.doi.org/10.1149/ma2021-01601611mtgabs.
Full text