Dissertations / Theses on the topic 'Centrifugal Microfluidics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 35 dissertations / theses for your research on the topic 'Centrifugal Microfluidics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Häberle, Stefan. "Multiphase microfluidics on a centrifugal platform /." Aachen : Shaker, 2008. http://d-nb.info/988194627/04.
Full textSchwemmer, Frank [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Advanced centrifugal microfluidics: timing, aliquoting and volume reduction." Freiburg : Universität, 2016. http://d-nb.info/1122647603/34.
Full textHäberle, Stefan [Verfasser]. "Multiphase Microfluidics on a Centrifugal Platform / Stefan Häberle." Aachen : Shaker, 2008. http://d-nb.info/1162790784/34.
Full textZhao, Yunpeng [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Handling of microparticles for assay automation in centrifugal microfluidics." Freiburg : Universität, 2019. http://d-nb.info/120271269X/34.
Full textZhao, Yunpeng Verfasser], and Roland [Akademischer Betreuer] [Zengerle. "Handling of microparticles for assay automation in centrifugal microfluidics." Freiburg : Universität, 2019. http://d-nb.info/120271269X/34.
Full textZehnle, Steffen [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Pneumatic operations in centrifugal microfluidics - an enabling technology for assay automation." Freiburg : Universität, 2019. http://d-nb.info/117696786X/34.
Full textStrohmeier, Oliver [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Centrifugal microfluidics for nucleic acid analysis at the point-of-care." Freiburg : Universität, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:25-freidok-108743.
Full textStrohmeier, Oliver Verfasser], and Roland [Akademischer Betreuer] [Zengerle. "Centrifugal microfluidics for nucleic acid analysis at the point-of-care." Freiburg : Universität, 2016. http://d-nb.info/1120020999/34.
Full textHin, Sebastian [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Reduction of system complexity in centrifugal microfluidics by magnetophoresis at continuous rotation and thermo-pneumatic bubble mixing." Freiburg : Universität, 2020. http://d-nb.info/1222908573/34.
Full textMark, Daniel [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Unit operations for the integration of laboratory processes in the field of nucleic acid analysis based on centrifugal microfluidics = Einheitsoperationen für die Integration von Laborprozessen im Bereich der Nukleinsaeureanalytik basierend auf zentrifugaler Mikrofluidik." Freiburg : Universität, 2013. http://d-nb.info/1123477361/34.
Full textKeller, Mark [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Microfluidic apps for centrifugal thermocyclers at constant rotational frequency." Freiburg : Universität, 2016. http://d-nb.info/1134965885/34.
Full textKazarine, Alexei. "Image segmentation applied to volumetric measurements on centrifugal microfluidic platforms in motion." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123215.
Full textLes systèmes microfluidiques permettent la miniaturisation de techniques classiques d'analyse chimique en n'utilisant qu'une fraction du temps et des ressources requises conventionnellement. Ces systèmes offrent la possibilité d'effectuer des mesures directement sur le terrain sans avoir recours à un personnel qualifié. Des systèmes microfluidiques ont été développés qui utilisent la force centrifuge pour diriger le débit de liquides injectés et accomplir une variété de processus analytiques. Bien que l'utilisation de la force centrifuge accorde à ces systèmes plusieurs avantages tels qu'un haut niveau de parallélisme, un potentiel de portabilité et la capacité de pomper des liquides indépendamment de leurs propriétés physicochimiques, elle crée aussi un modèle de conception qui requière l'accomplissement de toutes les opérations analytiques pendant que le système est en rotation.En accord avec ce modèle, il est important de développer des techniques de mesure qui peuvent être appliquées pendant qu'un système microfluidique centrifuge est en mouvement. Une mesure importante est celle du volume de liquides injectés dans un système microfluidique centrifuge. La capacité d'effectuer la mesure des volumes directement sur des systèmes microfluidiques en mouvement pourrait permettre la quantification du débit de liquide en temps réel et éliminer le besoin d'utiliser des chambres de comptage qui occupent un espace déjà restreint sur le système.Dans cette thèse, une technique basée sur la segmentation d'images a été développée pour mesurer le volume d'aliquotes de liquide dans des systèmes microfluidiques en rotation. Des systèmes d'évaluation contenant une couche de peinture contrastante ont été conçus, fabriqués et injectés avec des aliquotes de liquides. Des images de haute résolution de ces systèmes en mouvement ont été acquises avec une caméra numérique à haute vitesse synchronisée avec une lumière stroboscopique et traitées numériquement. Ces images ont été converties à un espace colorimétrique de niveau de gris et segmentées pour tracer un contour autour de chaque aliquote de liquide. Ces contours ont ensuite été utilisés pour calculer l'aire de chaque aliquote qui a ensuite été divisée par l'aire d'une aliquote de calibration située sur la même image pour obtenir le volume de chaque aliquote. La technique de mesure de volume a été caractérisée par des études conçus pour tester sa précision et son exactitude pour différents volumes. La précision et l'exactitude obtenues ont été de 1 et 2 % respectivement. Une caractérisation supplémentaire de la technique a révélé sa flexibilité quant au grandissement du système optique, la taille, la forme et le rapport hauteur/largeur des chambres du système et la fréquence de rotation du système. Une enquête sur les effets de la tension de surface du liquide mesuré sur la précision de la méthode a aussi été effectuée. L'applicabilité de la technique à des liquides de diverses couleurs a aussi été démontrée avec succès. La versatilité de cette méthode devrait permettre son utilisation dans une variété d'applications incluant la mesure de volumes en temps réel, le contrôle quantitatif de la performance de designs de systèmes microfluidiques centrifuges en temps réel et l'élimination de chambres de comptage dans leur conception.
Kong, Cher Rong Matthew. "Contactless liquid flow control for miniaturised analytical techniques on continually rotating centrifugal microfluidic platforms." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117150.
Full textDans notre société industrielle, la conception de techniques pour la quantification d'espèces chimiques dans l'environnement, les humains et les dérivés de la production manufacturière est primordiale. Au départ, ces techniques avaient été élaborées à partir d'instruments sophistiqués et se basaient sur des procédures complexes. Il serait donc avantageux de pouvoir réduire les coûts d'analyse et simplifier les procédures expérimentales, tout en maintenant un niveau élevé de la qualité des données recueillies. De plus, il est souvent souhaitable de pouvoir effectuer ces mesures rapidement, et si possible sur le site où l'échantillon à analyser est recueilli. Toutes ces caractéristiques bénéfiques des méthodes analytiques peuvent être obtenues, dans certains cas, à travers la miniaturisation. L'intérêt pour la miniaturisation a mené à une croissance rapide des systèmes microfluidiques, un domaine d'études qui se concentre sur l'utilisation de petits volumes de liquide et des systèmes de détection spécialement adaptés à ces volumes réduits. Tout système microfluidique doit intégrer une méthode de transfert des liquides à travers différentes étapes de traitements chimiques ou physiques. Une méthode de pompage particulièrement intéressante utilise la force centrifuge, ce qui permet d'éliminer l'utilisation de pompes ou connections externes au système où s'effectue l'analyse chimique. Jusqu'à présent, les systèmes employant la force centrifuge ont été limités par le nombre d'étapes analytiques consécutives, le liquide ne pouvant se déplacer que dans une seule direction définie par la force centrifuge appliquée.Pour cette thèse, plusieurs techniques de manipulation des liquides sur un système microfluidique à base de force centrifuge ont été dévelopées et caractérisées. Ces techniques ont été utilisées pour miniaturiser les méthodes analytiques classiques pour ensuite les intégrer à des plateformes microfluidiques à base de force centrifuge, l'objectif final étant la surveillance d'espèces chimiques dans l'environnement. Une technique de pompage par déplacement de deux phases liquides et une technique de pompage pneumatique à base de force centrifuge sont démontrées. La technique pneumatique à base de force centrifuge qui a été développée augmente de façon significative les capacités de la boîte à outils des systèmes microfluidiques à base de force centrifuge. Ce nouveau système permet d'effectuer simultanément des opérations essentielles dans les systèmes microfluidiques telles que le transfert de liquides sans valves, les dosages, la commutation du débit des liquides, les micromélanges par agitation ainsi que la recirculation des liquides. Cette technique se base sur l'application sans contact d'une pression pneumatique en utilisant de l'air comprimé sur un système microfluidique à base de force centrifuge en rotation constante. Ceci permet un contrôle complet du débit des liquides en combinant les effets de la pression pneumatique et de la force centrifuge. Le processus de fabrication de ce nouveau système est grandement simplifié par l'ajout du système pneumatique car cela diminue le nombre de valves à intégrer dans le système. De plus, son efficacité est accrue grâce à la possibilité d'effectuer des analyses de façon automatisée. Cette approche pneumatique a été appliquée à des mesures spectrophotométriques par la méthode des additions connues effectuées directement sur le disque. Dans le même ordre d'idées, un autre système employant la fonction pneumatique a été développé pour effectuer des extractions liquide-liquide entre une phase liquide et une phase organique. Ceci a démontré que la plateforme centrifuge est capable non seulement d'effectuer des réactions chimiques complexes en plusieurs étapes, mais aussi de répéter les cycles de réactions et autres processus.
Burger, Stefan [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "LabSlice XL – a centrifugal microfluidic cartridge for the automated bio-chemical processing of industrial process water." Freiburg : Universität, 2018. http://d-nb.info/1179694686/34.
Full textSchwarz, Ingmar [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Lumped model simulation for the fast development of robust centrifugal-microfluidic lab-on-a-chip systems." Freiburg : Universität, 2019. http://d-nb.info/1182226043/34.
Full textDuford, David. "Instrumentation, fabrication techniques and method development for sample introduction, preparation and extraction on centrifugal microfluidic devices in motion." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110441.
Full textLes polluants ont des impacts importants sur la santé et l'environnement résultant à des restrictions accrues des limites législatives. Cette surveillance environnementale accrue pousse les chimistes analytiques vers l'automatisation et la miniaturisation des méthodes de référence actuelles. L'analyse d'échantillons environnementaux solides bénéficiera de cette envolée par le développement de nouveaux instruments et techniques de manipulation d'échantillon via des dispositifs microfluidiques centrifuges qui intègrent des réactions à étapes multiples sur un dispositif unique.Afin d'étudier et d'optimiser les dispositifs microfluidiques centrifuges en mouvement, des plateformes motorisées qui incluent une caméra, une lumière stroboscopique et une variété d'autres composantes périphériques ont été développées. Celles-ci ont permis le contrôle efficace des dispositifs tout au long des séquences giratoires et l'acquisition simultanée de séries de photographies en arrêt sur image.Des méthodologies sont présentées pour l'introduction, la préparation et l'extraction d'échantillons sur des dispositifs microfluidiques centrifuges en mouvement. Ceci fut réalisé grâce à la recherche de techniques de fabrication hybrides incluant l'utilisation d'imprimantes 3D menant au développement d'une interface permettant l'introduction de solutés à concentrations variables aux dispositifs en mouvement. De plus, l'interaction d'aimants mobiles intégrés avec une série d'aimants fixes placée sous les dispositifs en mouvement a mené au développement des techniques de préparation d'échantillons solides par force magnétique et d'extraction liquide-solide d'échantillons par force magnétique. De nouvelles méthodes automatisées et miniaturisées ont été développées pour l'analyse d'espèces environnementales importantes telles que les hydrocarbures polycycliques aromatisés et les pesticides dans des échantillons solides.
Lutz, Sascha [Verfasser], and Roland [Akademischer Betreuer] Zengerle. "Centrifugal microfluidic platforms for protein and nucleic acid analysis = Zentrifugal mikrofluidische Plattformen für die Analyse von Proteinen und Nukleinsäuren." Freiburg : Universität, 2011. http://d-nb.info/1123463581/34.
Full textLan, Hsin-Ti, and 藍鑫帝. "The study of the fluid-flow mechanism in centrifugal microfluidics." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/12412545444196283448.
Full text逢甲大學
化學工程學所
96
Surface forces and the design of the microchannels play important role on the performance of the microfluidic functions. It is especially important when naoliter-sized liquid is processed on a centrifugal microfluidic platform. The driving force provided by the centrifugal force is not sufficient to overcome the surface force under a large surface to volume ratio and resulting in the failure in microfluidic functions. In this work, we performed an intensive study on the effect of the surface forces that hinder the microfluidic functions. It is found that by increasing the depth of the reservoir along with the surface modification can effectively improve the stability of the microfluidic functions.
SHI, WEI-KANG, and 石維剛. "Fabrication of Biomedical Fiber Materials with A Centrifugal Force Microfluidics." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/ff86aq.
Full text元培醫事科技大學
生物醫學工程系福祉科技與醫學工程碩士班
106
This study developed a microfiber manufacturing technology and explored the effects of process parameters on fiber size and characteristics. This method can produce high quality and axial gelatin fiber from gelatin solution by using a centrifugal force machine. The self-made centrifugal microfluidics device was used as the spinning equipment, and 20% ~ 40% gelatin solutions were prepared as the test material, and the test volume was 10ml ~ 40ml. The outlet of microchannel has a diameter of 700±0.1 μm and a length of 1.3 cm and a centrifugal speed of 7500 rpm to 15000 rpm. Silicone rubber temple were set from the centrifugal device 15 cm, spinning with a speed of 15000rpm. Next, the collected temples were observed with an optical microscope on the size and pattern of the filaments and analyzed for the producing efficiency and transparency of the sample filament with varying light transmittance and weight, respectively. Finally, the friction coefficient meter was used to analyze the relationship between the adhesive degree of testing temples and fiber amount. The fiber strength and fiber surface roughness of the prepared gelatin fibers were measured using a friction coefficient meter and a material testing machine. The research results provide biomedical microfiber manufacturing technology with commercial value and mass production potential.
Chang, Chin-Yu, and 張晉育. "The Real-Time Detection System of Centrifugal Microfluidics with Pneumatic Control Function." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/08132262683205481659.
Full text逢甲大學
自動控制工程所
97
A real-time automatic centrifugal detection system with a novel pneumatically enhanced microfluidic inspection platform and a controllable background light is developed based on the opto-microelectromechamical technology. The developed system can be used to detect various physical, chemical and biomedical samples effectively with reducing sample’s amount, lowering manufacture cost, speedy reaction time and inspection time, and promoting stability and sensitivity. Adjustable pressure ranges of airflow are of 0 to 3 bar, and adjustable angle of the airflow nozzles are ± 60°. The distance of airflow nozzles can be adjusted up to 3cm for controlling different detection that makes the system more flexible to achieve multi-functional microfluidic tests.
Liao, Te-Ying, and 廖特瑩. "A Real-time Centrifugal Inspection System of Microfluidics with Temperature Control and Wireless Communication Functions." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/36557577535249106581.
Full text逢甲大學
自動控制工程所
96
A novel centrifugal inspection system with operation modules for real-time dynamic imaging, temperature control and wireless transmission has been studied and fabricated based on the technologies of motor rotation and tracking control, temperature feedback control, and quasi-static images inspection. The developed platform performs well in motor speed control, sample location tracking, constant temperature setting, background light adjustment, and real-time images acquisition with wireless transmission function. The microfluidic images can be analyzed and stored on man-machine interface to examine microfluidic reactions. The system performance has improved in comparison to former developed platform that includes reduction of eccentric vibration, enhancement of signal transmission, and integration of interface programs. The goal of research aimed at the characteristics improvement of the centrifugal microfluidic platform. A rubber cushion was settled to reduce vibration effectively for steady operation in various measurement speeds. The wireless transmission module has designed to simplify signal transmission and processing. Furthermore, a constant temperature control unit has built to supply different temperature environments for dynamic microfluidic inspection. Moreover, the centrifugal disk-platform with complicated fluidic microstructures has been designed to demonstrate the applications of real-time biochemical or biomedical analysis.
LIN, WAN-JU, and 林婉如. "Liquid aliquoting on a centrifugal microfluidic platform." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/05959203515956322045.
Full text逢甲大學
化學工程學所
97
In this work, a simple, robust microfluidic design for liquid aliquoting on a centrifugal platform is proposed. This microfluidic function can be used in high throughput assays to solve the labor-intensive problems for the sample and reagent loading. On the centrifugal platform, while the liquid is driven by the centrifugal force, the Coriolis force is also acting on the liquid and results in deflection of the flow direction. Therefore, a regular inverse-Y design failed to achieve the aliquoting function on a centrifugal platform. In order to reduce the Coriois effect, a parallel flow design is proposed. Experimental results showed that the total liquid volume, rotational speed play important roles on governing liquid aliquoting. Higher liquid volume and lower rotational speed result in better liquid aliquoting. Under similar condition, parallel flow design showed much better results in liquid aliquoting than the inverse-Y design.
Yu, Yi-Chung, and 余以中. "Development of Centrifugal Microfluidic Device for Viscosity Measurement." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/21554821087327753043.
Full text國立臺灣大學
醫學工程學研究所
103
Viscosity is an important marker in biological industry and medical predictions. It corresponds to the “thickness” of sample fluid and plays an important role in cardiovascular disease. The device used to measure the viscosity is viscometer. The traditional viscometers utilize mechanical forces for pumping and control sample fluid. In this study, we design a disc-shape centrifugal microfluidic device in order to measure the fluidic viscosity. There are many benefits of disc-shape microfluidic devices as the same with other ordinary microfluidic devices. Furthermore, it is possible and easier to manipulate the flow conditions by controlling the rotational speed. In this study, we use computer simulations to develop the relationship between sample viscosities with their flow conditions and manufacture the microfluidic device. Viscosity is inversely proportion to the flow distance regardless of rotational speed within 0.8 ~ 16m Pa-s.
"Multi-functional centrifugal microfluidic discs for bio-detection applications." Thesis, 2011. http://library.cuhk.edu.hk/record=b6075114.
Full text"November 2010."
Thesis (Ph.D.)--Chinese University of Hong Kong, 2011.
Includes bibliographical references (leaves 140-152).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstract also in Chinese.
LI, CHUN-HAN, and 李俊翰. "Real-time Fluorescence Detection for Centrifugal Microfluidic Sensing Application." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/90421434580542054146.
Full text逢甲大學
自動控制工程所
99
Based on centrifugal microfluidic detection and micro-optoelectromechanical system (MOEMS) technology, a platform of the real-time photoelectric fluorescence centrifugal microfluidic detection is developed and applied to detect food and drug constituents rapidly. Fluorescence detection and analysis are experimented based on the fluorescene-dim response by reacting a photosensitive chemical luminescence material with a tannic acid. To detect of tannic acid concentrations of tea and Chinese Gall, the varied light intensity response by reacting samples and catalysts are experimented. The higher the sample’s is, the lower the light intensity produces. The catalyst concentration of CuCl2 in 1×10-4 mol/l can provide optimal tannic acid detection in the concentration range of 7~80×10-3 mol/l. The developed real-time fluorescence detection system can be applied to analyze tannic acid concentration quantitatively in food, tea and Chinese Gall. The more extract time is, the higher tannic acid concentration is. The light intensity response shows that the maximum voltage can be achieved with shorter rise time and longer recover time. The system has the advantage of a rapid and correct analysis in medicines and foods that contain tannic acid.
Wang, Chi-Jui, and 王啟睿. "Centrifugal microfluidic platform enabling immunoaffinity-based exosome enrichment from whole blood." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/mxv9rj.
Full text國立臺灣大學
應用力學研究所
105
Cancer management can be better served by suitable biomarkers ranging from diagnosis and monitoring of therapeutic progress. Over the past few years, clinical relevance of exosomes as a marker during tumor progression and early disease detection has been validated. However, the enrichment of exosomes remains technically challenging, where purity, reproducibility and automation are highly desirable. In this thesis, a centrifugal microfluidic platform was presented to enrich exosomes directly from blood. The platform contains a microfluidic disk and a mechanism to collect plasma into an Eppendorf tube. A range of parameters of immunomagnetic beads to plasma ratio and system performance could be obtained from 100 to 600 μl of human whole blood. Western blotting was used for protein quantification. Besides, the performance of exosome enrichment was compared with that from ultracentrifugation and a commercial exosome isolation kit. Results showed that the microfluidic device successfully enriches exosomes from three breast cancer patients directly from whole blood. Averaged 98.3% red blood cells from whole blood was depleted in the plasma separation process. Taken together, our microfluidic platform provides a simple-to-use and robust approach to enrich specific exosomes by recognizing the exosomal surface markers. Moreover, the automated system reduces variation in operator biases and may serve as a standard device for clinical uses.
Hu, Nien-Wen, and 胡念文. "Centrifugal microfluidic disk platform enabling RNA enrichment from cells and exosomes." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2sas28.
Full text國立臺灣大學
應用力學研究所
106
Liquid biopsy has been applied to clinical research and disease management in recent years. It provides a non-invasive, low risk and time saving approach to access bio-samples such as RNA, DNA, proteins, exosomes, and cells from body fluids. Given that nucleic acid is the origin of abnormal mutants, detecting RNA might be able to collect information before other biomarkers show disease signal which might be suitable for early disease detection. Enrichment of RNA is an important process to characterize the nucleic acid. Although there are many RNA isolation kits on the market, most of them are manually operated, which is time-consuming and operator dependent. Only a few methods are automated, and they are operated by high-throughput, large-volume devices. This thesis aims to developing an automated RNA enrichment method and a microfluidic assay. Considering the automation of a centrifuge and input of reagents, a disk-based RNA isolation was designed. The protocol modified from CatchGeneTM Cell/Exosome miRNA Kit was applied to an acrylic disk with chambers and microfluidic channels motivated by the ease of fluid manipulation via centrifugation. First, the mixing ability of the disk was tested and compared with that from standard kit protocol. Then, the stability and the quality of the RNA enriched by the disk protocol were validated using MCF7 cells as samples. Results of electrophoresis showed that the RNA samples enriched by three identical disks had the same quality as tube protocol, which suggest the performance of the system was stable. Results detected by NanodropTM and QubitTM showed that the performance of the disk was stable since the coefficient of variation of the RNA concentration was only 0.18 and the quantity of total RNA was as high as 75.5% of that enriched by standard kit protocol with only 13% standard deviation. The quality of the RNA sample was evaluated by the similarity between positive control and disk outcome, which is the similarity of the genetic expression proportion of four biomarkers: RPP30, ER, HER2 and Ki67. Overall, the proportion of genetic expression level of RNA sample enriched by the disk was very similar to that enriched by the standard protocol. Besides MCF7 cells, other cells such as BT474 and WBC were also used to validate the application of the microfluidic platform to different samples. Results of electrophoresis and qPCR both showed high quality. The genetic expression proportion of RNA sample enriched from BT474 and WBC in two methods showed high similarity. After validation using cells, exosomes from plasma of healthy donor were introduced to the system. Results detected by qPCR with three biomarkers, miR21, let-7 and GAPDH, showed that the microfluidic platform was able to enrich exosomal RNA with high sensitivity. In conclusion, the microfluidic platform was able to enrich extracellular and exosomal RNA with high quality and stability. System automation was the motivation may enable further utilization of the microfluidic disk-based technology.
Li, Yi –. Siou, and 李懿修. "Design and Analysis of Square-wave Micromixer on Centrifugal Microfluidic Platform." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/v6d44n.
Full text國立虎尾科技大學
自動化工程研究所
103
This study focuses on changing geometrical shapes and different inlet angles to design a variety of square-wave micromixers for mixing blood plasma on a centrifugal microfluidic platform and achieve optimal results through numerical analysis, thus reducing the cost of the experiment. Micromixers can generally be divided into 21, 31 and 31 3D square-wave mixers. Micromixers on rotating platforms propel blood plasma and reagent in the buffer reservoir to perform the first stir mixing under centrifugal force and Coriolis force, and increasing the vortex effect at the corner of square-wave channel, as well as improving mixing efficiency. During the design process, finite element software (COMSOL) is first applied to simulate the flow field and determine the optimal square-wave micromixer. The microfluidic mixers were fabricated using both conventional soft lithography techniques and CNC machining process. The experimental results show that a mixing efficiency of up to 91.4% can be achieved within 5 s when using a 3D mixer on a centrifugal platform under 1,000 rpm. The feasibility of the proposed device for clinical applications has been demonstrated by performing prothrombin time (PT) tests using plasma samples obtained from 20 healthy male donors, the mean time required for coagulation was determined to be approximately 11.4 s. It is shown that the mean time required to complete the entire PT test (including loading, mixing and coagulation) is less than 45 s.
Chen, Xuan-fu, and 陳宣甫. "Development of Microfluidic Centrifugal Platform for Plasma Separation and Sample Preparation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/26zdnm.
Full text國立虎尾科技大學
自動化工程研究所
102
In performing blood tests for clinical diagnosis purposes, it is first necessary to separate the plasma from the whole human blood. However, traditional methods for separating and preparing plasma are labor intensive and time consuming. Accordingly, the present study proposes a simple lab-on-CD device in which the plasma is first separated from the whole human blood, then divided into two samples of equal volume, and finally decanted into a detection chamber for analysis purposes. The optimal geometry parameters of the Y-shaped microchannel used to divide the plasma sample are determined by means of computational fluid dynamics (CFD) simulations. The performance of the proposed device is then evaluated using blood samples with hematrocrit concentrations ranging from 6~48%. The results show that given a CD rotation speed of 1800 rpm for a blood sample with a hematocrit concentration of 6%, a separation efficiency of 96% can be achieved within 5~6 s. Moreover, the two plasma samples collected from the left and right branches of the optimized Y-shaped splitter network differ in volume by no more than 0.5 nL. Finally, it is shown that the volume of plasma decanted into the detection chamber can be precisely controlled through an appropriate manipulation of the disk rotation speed. The second objective of this work is to design a microfluidic platform for the separation of plasma from whole human blood and the subsequent mixing of the plasma with a prothrombin time reagent. The results show that mixing efficiency of more than 97% can be obtained within 5 s given a CD rotation speed of 3400 rpm.
Ni, Jia-He, and 倪家禾. "Novel Bifurcation Design for Centrifugal Microfluidic Platform with Wide Range Rotational Speed." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/3jvum5.
Full text國立虎尾科技大學
機械與機電工程研究所
99
A CD-based Enzyme linked immunosorbent assay (CD-ELISA) is used in a wide range of applications including cancer and HIV testing, drug screening and micro-organism identification. Bifurcation design is the most important structure for microfluidic channels in CD-ELISA. In this study, a bifurcation design feasible for mass production and suitable for applications over a wide range of rotational speeds is proposed. Simulations based on two phase flow theories along with incompressible flow theories were used in this study to confirm the feasibility of the novel design. The factors that influenced the bifurcation ratio for microfluidic channels in CD-ELISA were also investigated. The geometric length for bifurcation, opening angles, and the bifurcation shape in the middle section were varied to investigate the effects of each factor on the bifurcation ratio. From the experimental results, the factors with the greatest influence on the bifurcation ratio were the geometry of the end face of the partitioning plate and the distance from the opening end. These factors can be used as controlling factors for the design of microfluidic channels.
Grumann, Markus [Verfasser]. "Readout of diagnostic assays on a centrifugal microfluidic platform / vorgelegt von Markus Grumann." 2006. http://d-nb.info/978031474/34.
Full textLin, Chia-Tung, and 林家同. "Direct Anti-MLB Measurement on a Hand-powered Centrifugal Microfluidic Platform for POCT Diagnosis." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/hq6697.
Full text國立交通大學
生醫工程研究所
108
In the past few decades, microfluidic devices are vigorously implementing the idea of point of care testing (POCT);However, due to size effects, serious problems such as bubble blocking or low mixing efficiency appeared during operations, which led to inaccurate results. In addition, expensive and relatively bulky pumps are required in the microsystem to initiate liquid transport and control fluids. Recently, centrifugal microfluidics have become more and more popular for its simple-operating and easy-to-setup driving method;Although the above problems were solved in the system, these driving machines ranging from CD-players to bulky centrifuges still demand on the electricity to trigger, which means that it was impossible to manipulate in the electricity-lacking country, not even to mention practicing POCT concept. In this paper, we focused on the drug-resistant bacteria infection detection (The drug-resistant Streptococcus pneumoniae, DRSP, was taken as an example). We designed a centrifugal microfluidic (CMF) disc on a hand-powered rotor with magnetic chitosan beads (MCBs) to detect circulating antibody against the DRSP. The antibody-spiked human whole blood was used to simulate the real healthcare situation and the comparison between that and antibody-spiked PBS was shown to prove the high compatible and low interference with bio-fluid. The limit-of-detection (LOD) in PBS and human whole blood were 14.45 ng/ml and 38.9 ng/nl, respectively. The recovery rate was 95%. In conclusion, since our low-cost, time-saving, user-friendly, and minimized-electricity-comsumed hand-powered CMF detected the target antibody precisely, we believed that another similar assays can be feasible as well. Therefore, we were firmly convinced that this alternative POCT device was going to lead the trend of next-generation healthcare diagnosis.
LaCroix-Fralish, Angela. "Development of a centrifugal microfluidic system for rapid on-site analysis of environmentally important species." Thesis, 2009. http://spectrum.library.concordia.ca/976211/1/MR63318.pdf.
Full textWANG, CHEN-YA, and 王貞雅. "Development and Biomedical Application of Microfluidic Biochip Fabrication Technology with Centrifugal Force Actuation and Thermal Control Mechanism." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/20892729701801245966.
Full text長庚大學
醫療機電工程研究所
94
There is currently great interest in combining the functional components that are necessary for performing complex chemical and biochemical analyses into small, integrated units and Micro-Electro-Mechanical Systems (MEMS) are developed quickly in the field of biomedical devices and lab test for the miniaturization of object, which stands for faster reaction, higher efficiency, less specimen and less space. Microfluidic devices, from single element to integrated micro-total-analysis-system (μTAS) or lab-on-a-chip are under development and are expected to speed up and simplify important biological operations. However, the pumping and valving designs of biochip are fabricated by semi-conductor or LIGA process so that the processes not only are complicated but also cost a lot of money. In order to overcome the short- comings of the conventional lab-on-a-chip fabrication, depending on the pumps and valves, this research utilizes centrifugal propulsion to actuate fluid flow in the microfluidic channels and proposes a new lab-on-a-chip fabrication method, “microfluidic biochip fabrication technology with centrifugal force actuation and thermal control mechanism”, and the new fabrication technology will be verified by biomedical applications to test its feasibility. This research comprises of three different stages. The first stage is the microfluidic design of the biochip system. The microfluidic design includes analysis of microfluidic propulsion theory, thermal Conductivity theory, design of functional microfluidic patterns, incision of microfluidic and evaluation of microfluidic quality. The working solution includes using SolidWorks for pattern design, ANSYS for pattern simulation, PowerMill and Visual Basic to design the software window platform for computer numerical control (CNC) programming profile and CNC machine for pattern engraving. FRT and FTA machines are also used to evaluate the microfluidic surface quality. The second stage is the platform design of microfluidic biochip fabrication including capability study and design guideline and hardware design. The hardware design of microfluidic platform includes heat press device to seal the lab-on-a-CD (compact disk), temperature control device, centrifugal actuation device and electronic stroboscopes device. The heat press device with temperature feedback control is designed to seal the biochip. A servo motor within the centrifugal actuation device is used to generate centrifugal force which will lead the sample move through the microfluidic channel instead of pumps and valves. The temperature control device is designed to provide constant temperature for microfluidc channels. The electronic stroboscopes device is mainly used to observe fluid routes in high-speed rotation. The third stage is the clinical biomedical applications. The protocol of clinical test is pre-process and preservation of specimen, quantitative and qualitative biochemical reaction of specimen, and post-process of specimen or sewage. The separation, mixing and heating of specimen are so common in the clinical test that our biochip fabrication technology is verified by blood separation test, hexokinase method and BCG method. Hexokinase method is the measurement of blood sugar and BCG is the measurement of albumin. Seven cases are involved in either control or test group. Each case needs 10 c.c. of blood sample. The microfluidic biochip is applied in the test group and the conventional method offered by Chang Gung Memorial Hospital was applied in the control group. The statistical method, SPSS, was used to verify the value of this technique. In the statistical results of our microfluidic biochip and clinical data, the P-value is 0.115 in the blood sugar test, and 0.075 in the albumin test. To sum up, there is no remarkable different between our novel biochip and clinical test method. Our centrifugal microfluidic fabrication technology with temperature controlled developed in this study is a desk-top device and can use in laboratory or clinical biomedical tests. Furthermore, this biochip can also be used in other clinical tests in near future.
Focke, Maximilian [Verfasser]. "Lab-on-a-foil : genotyping by real-time PCR in microthermoformed polymer foils on a centrifugal microfluidic platform / vorgelegt von Maximilian Focke." 2010. http://d-nb.info/1007665394/34.
Full text