Dissertations / Theses on the topic 'Centre manifold theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 17 dissertations / theses for your research on the topic 'Centre manifold theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Liu, Weishi. "Center manifold theory for smooth invariant manifolds." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/28762.
Full textAllahem, Ali Ibraheem. "Numerical investigation of chaotic dynamics in multidimensional transition states." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14058.
Full textMacKenzie, Tony. "Create accurate numerical models of complex spatio-temporal dynamical systems with holistic discretisation." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001466/.
Full textLichtner, Mark. "Exponential dichotomy and smooth invariant center manifolds for semilinear hyperbolic systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981306659.
Full textSilva, Vinicius Barros da. "Bifurcação de Hopf e formas normais : uma nova abordagem para sistemas dinâmicos /." Rio Claro, 2018. http://hdl.handle.net/11449/180496.
Full textResumo: Este estudo objetiva provar que sistemas dinâmicos de dimensão N, de codimensão um e satisfazendo as condições do teorema da bifurcação de Hopf, podem ser expressos em uma forma analítica simplificada que preserva a topologia do espaço de fases da configuração original, na vizinhança do ponto de equilíbrio. A esta forma simplificada é atribuído o nome de forma normal. Para tanto, foi utilizado a teoria da variedade central, necessária para reduzir a dimensão de sistemas à sua variedade bidimensional, e o teorema das formas normais, utilizando-se como método para determinar a forma simplificada da variedade central associada aos sistemas dinâmicos, atendendo as condições do teorema da bifurcação de Hopf. A partir da análise dos resultados aqui encontrados foi possível construir a prova matemática de que sistemas de dimensão N, atendendo as condições do teorema de Hopf, podem ser reescritos em uma expressão analítica geral e simplificada. Enfim, através deste estudo foi possível resumir todos os resultados aqui obtidos em um teorema geral que, além de reduzir a custosa tarefa de obtenção de formas normais, abrange sistemas N-dimensionais com ocorrência da bifurcação de Hopf.
Abstract: In this work we prove the following: consider a N-dimensional system that is reduced to its center manifold. If it is proved the system satisfies the conditions of Hopf bifurcation theorem, then the original system of differential equations is rewritten in a simpler analytical expression that preserves the phase space topology. This last is also known as the normal form. The center manifold is used to derive a reduced order expression, and the normal form theory is applied to simplify the form of the dynamics on the center manifold. The key results here allow constructing a general mathematical proof for the normal form of N-dimensional systems reduced to its center manifold. In the class of dynamical systems under Hopf bifurcations, the present work reduces the work done to obtain normal forms.
Mestre
Kasnakoglu, Cosku. "Reduced order modeling, nonlinear analysis and control methods for flow control problems." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1195629380.
Full textArugaslan, Cincin Duygu. "Differential Equations With Discontinuities And Population Dynamics." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610574/index.pdf.
Full text#8722
equivalence of that system to an impulsive differential equation, Hopf bifurcation is investigated. Finally, the obtained results are extended to a 3-dimensional discontinuous system of Filippov type. After the existence of a center manifold is proved for the 3-dimensional system, a theorem on the bifurcation of periodic solutions is provided in the critical case. Illustrative examples and numerical simulations are presented to verify the theoretical results.
Marmo, Carlos Nehemy. "Bifurcações em PLLs de terceira ordem em redes OWMS." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-29012009-103841/.
Full textThis work presents a qualitative study of the non-linear differential equations that describe the synchronous state in 3rd order PLLs that compose One-way masterslave time distribution networks with Single Star and Single Chain topologies. Using bifurcation theory, the dynamical behavior of third-order phase-locked loops employed to extract the syncronous state in each node is analyzed depending on constitutive node parameters when two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node. When parameter combinations result in non hyperbolic synchronous states, from Lyapunov point of view, the linear approximation does not provide any information about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in the neighborhood of these points. Thus, the local stability can be determined.
Garcia, Ignacio de Mateo. "Iterative matrix-free computation of Hopf bifurcations as Neimark-Sacker points of fixed point iterations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16478.
Full textClassical methods for the direct computation of Hopf bifurcation points and other singularities rely on the evaluation and factorization of Jacobian matrices. In view of large scale problems arising from PDE discretization systems of the form f( x (t), α ), for t bigger than 0, where x are the state variables, α are certain parameters and f is smooth with respect to x and α, a matrix-free scheme is developed based exclusively on Jacobian-vector products and other first and second derivative vectors to obtain the critical parameter α causing the loss of stability at the Hopf point. In the present work, a system of equations is defined to locate Hopf points, iteratively, extending the system equations with a scalar test function φ, based on a projection of the eigenspaces. Since the system f arises from a spatial discretization of an original set of PDEs, an error correction considering the different discretization procedures is presented. To satisfy the Hopf conditions a single parameter is adjusted independently or simultaneously with the state vector in a deflated iteration step, reaching herewith both: locating the critical parameter and accelerating the convergence rate of the system. As a practical experiment, the algorithm is presented for the Hopf point of a brain cell represented by the FitzHugh-Nagumo model. It will be shown how for a critical current, the membrane potential will present a travelling wave typical of an oscillatory behaviour.
Marmo, Carlos Nehemy. "Sincronismo em redes mestre-escravo de via-única: estrela simples, cadeia simples e mista." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-18022004-233234/.
Full textThis work presents stability analysis of the syncronous state for three types of one-way master-slave time distribution network topologies: single star, single chain and both of them, mixed. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the syncronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node and, in each case, the existence and stability of the syncronous state are studied. For parameter combinations resulting in non hyperbolic synchronous states, the linear approximation does not provide any information, even about the local behaviour of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behaviour of the original system in the neighborhood of these points. Thus, the local stability can be determined.
Phongi, Eddy Kimba. "Centre manifold theory with an application in population modelling." Thesis, 2009. http://hdl.handle.net/10413/431.
Full textThesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2009.
Chen, Chen. "Multiscale modelling of continuum and discrete dynamics in materials with complicated microstructure." Thesis, 2015. http://hdl.handle.net/2440/98116.
Full textThesis (Ph.D.) -- University of Adelaide, School of Mathematical Sciences, 2015.
Podder, Chandra Nath. "Mathematics of HSV-2 Dynamics." 2010. http://hdl.handle.net/1993/4082.
Full textChaudhary, Osman. "Rigorous justification of Taylor Dispersion via Center Manifold theory." Thesis, 2017. https://hdl.handle.net/2144/24106.
Full textNazari, Fereshteh. "Backward bifurcation in HCV transmission dynamics." 2014. http://hdl.handle.net/1993/23821.
Full text"Analysis and Control of Space Systems Dynamics via Floquet Theory, Normal Forms and Center Manifold Reduction." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.55623.
Full textDissertation/Thesis
Doctoral Dissertation Systems Engineering 2019
Δερμιτζάκης, Ιωάννης. "Βελτιστοποίηση διεργασιών υπό περιοδική λειτουργία." Thesis, 2009. http://nemertes.lis.upatras.gr/jspui/handle/10889/1776.
Full textThe frequency-dependent Pi criterion of Bittanti et al. (1973) has been used extensively in applications to predict potential performance improvement under periodic forcing in a nonlinear system. The criterion, however, is local in nature and is limited to periodic forcing functions of small magnitude. The present work develops a method to determine higher-order corrections to the pi criterion, derived from basic results of Center Manifold theory. The proposed method is based on solving the Center Manifold partial differential equation via power series. The end result of the proposed approach is the approximate calculation of the performance index in the form of a series expansion, which provides accurate results under larger amplitudes. The proposed method is applied to a continuous stirred tank reactor, where the yield of the desired product must be maximized. An algorithm was constructed, that predicts the steady state of a nitrogen removal system consisting of a plug flow reactor and a secondary clarifier with recycle. Using a numerical model based on ASM3 and a grid of degrees of freedom, the steady states of this system were calculated. The optimal values for minimizing the total aeration were found, as well as those for minimizing the total nitrogen exit flow. In both cases the Nitrobacter bacteria were washed out thus indicating the bypassing of nitrate production.