Academic literature on the topic 'Central auditory pathway'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Central auditory pathway.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Central auditory pathway"

1

Bizley, Jennifer K., and Yihan Dai. "Non-auditory processing in the central auditory pathway." Current Opinion in Physiology 18 (December 2020): 100–105. http://dx.doi.org/10.1016/j.cophys.2020.09.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Izumi, Shuji. "Imaging of the Central Auditory Pathway." Japan Journal of Logopedics and Phoniatrics 53, no. 3 (2012): 183–86. http://dx.doi.org/10.5112/jjlp.53.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bamiou, Doris-Eva, David Werring, Karen Cox, John Stevens, Frank E. Musiek, Martin M. Brown, and Linda M. Luxon. "Patient-Reported Auditory Functions After Stroke of the Central Auditory Pathway." Stroke 43, no. 5 (May 2012): 1285–89. http://dx.doi.org/10.1161/strokeaha.111.644039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

King, A. J. "The auditory midbrain: Structure and function in the central auditory pathway." Neuroscience 21, no. 3 (June 1987): 1025–26. http://dx.doi.org/10.1016/0306-4522(87)90061-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bruyn, G. W. "The auditory midbrain. Structure and function in the central auditory pathway." Journal of the Neurological Sciences 79, no. 1-2 (June 1987): 239–40. http://dx.doi.org/10.1016/0022-510x(87)90278-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matsubara, J. A. "The auditory midbrain, structure and function in the central auditory pathway." Neurochemistry International 10, no. 4 (January 1987): 596–97. http://dx.doi.org/10.1016/0197-0186(87)90094-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Chia-Hao, Chia-Der Lin, and Ching-Liang Hsieh. "Electroacupuncture Promotes Neuroplasticity of Central Auditory Pathway: An Auditory Evoked Potentials Study." Evidence-Based Complementary and Alternative Medicine 2022 (November 21, 2022): 1–9. http://dx.doi.org/10.1155/2022/6855775.

Full text
Abstract:
Our previous studies found that electroacupuncture at the right Zhongzhu acupoint (TE3) can enhance auditory recovery in rats with noise-induced hearing loss. Here, we investigated the changes in auditory brainstem response (ABR) and long late latency (LLR) evoked potential to explain the mechanisms of electroacupuncture at TE3. The auditory evoked potentials were recorded, including ABR and LLR, at baseline and on day 3 (D3), D5, and D8 after baseline. The 2-Hz electroacupuncture at the right TE3 was applied on D3, D4, and D5 in the electroacupuncture group but not in the control group. In ABR, compared with the control group, the latency shift of waves I (0.298 ± 0.033 vs −0.045 ± 0.057 ms), III (0.718 ± 0.038 vs −0.163 ± 0.130 ms), and V (1.160 ± 0.082 vs −0.207 ± 0.138 ms) on D3 (all p < 0.01 ) and of wave V (0.616 ± 0.433 vs −0.352 ± 0.209 ms, p < 0.05 ) on D5 was greater in the electroacupuncture group than that in the control group. Moreover, the interpeak latency shift of I–III (0.420 ± 0.041 vs −0.118 ± 0.177 ms) and I–V (0.863 ± 0.088 vs −0.162 ± 0.156 ms) on D3 (both p < 0.05 ) and of III–V (0.342 ± 0.193 vs −0.190 ± 0.110 ms) and I–V (0.540 ± 0.352 vs −0.343 ± 0.184 ms) on D5 (both p < 0.05 ) was greater in the electroacupuncture group than that in the control group. In LLR, the latency shift of P0 was greater in the electroacupuncture group than in the control group on D3 (3.956 ± 2.975 vs −1.178 ± 1.358 ms, p < 0.01 ) and D5 (2.200 ± 1.889 vs −0.311 ± 1.078 ms, p < 0.05 ). These findings indicate that electroacupuncture at the right TE3 can modulate the neuroplasticity of the central auditory pathway, including the brain stem and the primary and secondary auditory cortex.
APA, Harvard, Vancouver, ISO, and other styles
8

Pantelemon, Cristina, Violeta Necula, Livia Livint Popa, Steluta Palade, Stefan Strilciuc, and Dafin Fior Muresanu. "The Potential Use of P1 CAEP as a Biomarker for Assessing Central Auditory Pathway Maturation in Hearing loss and Associated Disabilities: a case report." Journal of Medicine and Life 12, no. 4 (October 2019): 457–60. http://dx.doi.org/10.25122/jml-2019-0096.

Full text
Abstract:
We report a case in which we quantified the maturation of the central auditory pathway in children with hearing loss and associated disabilities; the audiological intervention was performed using the BAHA softband. The hearing aid was applied according to the international clinical protocols. The presented case reveals the importance of using the P1 CAEP biomarker in clinical practice along with a neuropsychological evaluation to assess the maturation of the central auditory pathways and to objectively quantify the results of auditory rehabilitation in children with hearing loss and associated disabilities.
APA, Harvard, Vancouver, ISO, and other styles
9

Juichi Ito, Miyahiko Murata, Saburo. "Regeneration of the Central Auditory Pathway in Adult Rats." Acta Oto-Laryngologica 119, no. 2 (January 1999): 132–34. http://dx.doi.org/10.1080/00016489950181512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Middleton, Michele L., Keith M. Wilson, and Robert W. Keith. "Central Auditory Evaluation of Patients with Spasmodic Dysphonia." Ear, Nose & Throat Journal 76, no. 10 (October 1997): 710–15. http://dx.doi.org/10.1177/014556139707601007.

Full text
Abstract:
Spasmodic dysphonia is a focal laryngeal dystonia characterized by inappropriate contractions of the intrinsic laryngeal musculature. The prevalence of associated neurological findings has led to detailed investigation of the central nervous system. Previous research revealed latency abnormalities in patients’ auditory brainstem responses. The present study further investigated central auditory findings in patients with spasmodic dysphonia, including brainstem and cortical function. Fourteen normal-hearing patients with spasmodic dysphonia were tested using the auditory brainstem response (ABR) and SCAN-A test of central auditory processing. The ABR estimated brainstem transmission time and evaluated auditory pathway integrity at a high stimulus rate. SCAN-A assessed the auditory cerebral cortex. Implications of these findings are discussed. We found no ABR abnormalities in subjects with spasmodic dysphonia. Positive SCAN-A findings were negligible. The ABR findings contradict previous reports.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Central auditory pathway"

1

Santos, Teresa P. G. "Tone-evoked Fos labeling in the central auditory pathway : effects of stimulus intensity and auditory fear conditioning." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37905.

Full text
Abstract:
Thesis (Ph. D.)--Harvard-MIT Division of Health Sciences and Technology, 2006.
Includes bibliographical references.
Understanding intensity coding and auditory learning are basic concerns of research on the auditory central pathway. There is no unifying model of intensity coding but several mechanisms have been proposed to play a role. The first aim of this thesis was to determine the mechanisms of intensity coding in the central auditory pathway from the cochlear nucleus to the auditory cortex. The Fos labeling method was used to assess neuronal activation in the central auditory system. This technique allows one to study large regions of the brain in awake animals. Increasing sound pressure level led to: (1) spreading of labeling towards neurons with higher best frequencies; (2) spread of labeling orthogonal to the tonotopic axis; (3) and increased density of labeling within the tonotopic band. In addition to encoding the physical features of a stimulus, it is fundamental for survival that we learn about the meaning of sounds and put them in a behavioral context. The second aim of this thesis was to study how learning, in particular auditory fear conditioning, changes the pattern of neuronal activation of neurons, as measured with Fos labeling, in the central nervous system. Conditioning led to an increase in Fos labeling in central auditory nuclei.
(cont.) This increase in labeling was similar to the effects of increasing sound intensity. The present results support the idea that auditory fear memories are stored in the auditory pathway.
by Teresa P.G. Santos.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Williamson, Tanika. "Hormone Replacement Therapy (HRT) Modulates Peripheral and Central Auditory System Processing With Aging." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6604.

Full text
Abstract:
After the findings were reported for the Women’s Health Initiative (WHI) study in the past decade, there has been a significant decline in the overall use of hormone replacement therapy (HRT) among women. However, there are still millions of middle-aged, menopausal women in the U.S. who are currently undergoing hormone therapy. Their reasons for continuing treatment include relief of severe menopausal symptoms, aid in the management of osteoporosis and reduction in the risk of colon cancer (Ness et al., 2005). The purpose of the following investigation was to evaluate the impact of HRT on the central and peripheral auditory systems both during and after treatment. Over the course of the study, hormone treatments were administered to female aging CBA/CaJ mice to observe what effects estrogen (E) and progestin (P) have on the peripheral and central auditory systems. Female CBA/CaJ middle age mice were ovariectomized and placed into 4 HRT groups (E, P, E+P and Placebo [Pb]). Hormone treatment lasted 6 months followed by a recovery/washout period of 1 month. During this time, electrophysiology tests such as auditory brainstem responses (ABR) and ABR gap in noise (GIN) were used to measure neural activity for the auditory nerve and brainstem. Distortion product otoacoustic emission (DPOAE) testing was also implemented to assess the functional status of the outer hair cells (OHC) and their ability to amplify sound in the cochlea. After 6 months of treatment, animals treated with E exhibited the least amount of changes in ABR thresholds and ABR GIN amplitudes than any other subject groups. Interestingly, P animals exhibited an abrupt increase in ABR thresholds only 3 months after treatment; however, for ABR GIN amplitude levels a progressive reduction observed throughout the study. E+P and Pb animals showed signs of accelerated age-related hearing loss (ARHL) with significantly elevated ABR thresholds and dwindling ABR GIN amplitude levels. No significant signs of recovery were observed for any of the hormone groups. Therefore, in the present murine investigation, the effects of HRT were long lasting. To further expand on the results obtained for the electrophysiology tests, molecular biology experiments were performed to evaluate the expression of IGF-1R and FoxO3 in the cochlea during hormone therapy, from both in vitro and in vivo perspectives. Both genes play significant roles in the PI3K/AKT pathway and were specifically chosen because of their role in anti-apoptotic responses and cell survival. It was hypothesized that E attenuates the effects of ARHL via the PI3K/AKT pathway by up-regulating IGF-1R and FoxO3 to counteract the effects of oxidative stress in the aging mammalian cochlea. qPCR experiments were performed with stria vascularis (SV) lateral wall cells extracted from the cochlea of each animal in the hormone groups post-treatment (in vivo) and in SVK-1 cells treated with HRT over various lengths of time (in vitro) to evaluate the expression levels of IGF-1R and FoxO3. In-vivo experiments showed that the E-treated animals had significantly higher IG-1R levels compared to the other subject groups after treatment was discontinued. Similarly, IGF-1R levels steadily increased for E-treated SVK-1 cells over the course of hormone therapy, compared to P and E+P cells. FoxO3 expression, on the other hand, declined for all of the hormone-treated cells groups, relative to control SVK-1 cells (in vitro), and no statistical differences were detected for FoxO3 levels among the post-treatment animals (in vivo). These findings indicate that there is cross talk between E and IGF-1R involving the PI3K/AKT pathway, which contributes to the delayed onset of ARHL observed during HRT with E. Meanwhile, FoxO3 may not play a role in neuro-protective properties in the cochlea during HRT, as initially hypothesized.
APA, Harvard, Vancouver, ISO, and other styles
3

Attyé, Arnaud. "Central auditory pathways study using Magnetic Resonance Imaging." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAS044/document.

Full text
Abstract:
1er objectif : Mieux caractériser les surdités neuro-sensoriellesNous avons démontré dans ce travail de thèse que nous étions capablesd’individualiser le saccule et l’utricule pour faire le diagnostic d’hydropscompartiment par compartiment. L’intérêt repose sur les propriétés biomecaniquesdifferentes de ces deux structures notamment en terme decompliance. En isolant l’hydrops sacculaire, nous avons démontré qu’ilétait lié à la présence de surdité neurosensorielle pour les patients avecune Maladie de Ménière mais également qu’il pouvait être détecté pourdes patients présentant des surdités isolées sur les basses fréquences, quine sont habituellement pas classées comme porteurs cliniquement de laMaladie de Ménière. Nous avons mis au point une séquence 3D-FLAIRutilisable en pratique clinique pour la détection d’hydrops sacculaire,utilisable quelque soit le champ magnétique et le constructeur.Pour les patients porteurs de schwannomes cochléo-vestibulaires, nousavons démontré que le degré de perte auditive était cette fois liée à laprésence d’un hydrops utriculaire. Ce diagnostic peut être porté sansinjection de produit de contraste puisque la présence d’un schwannomeobstructif entraine mécaniquement une augmentation du taux protidiquedans la périlymphe et donc une discrimination périlymphe/endolymphesur les séquences T2 en echo de gradient.En revisitant l’anatomie histologique avec la remnographie, nous avonsproposé une théorie bi-compartimentale pour les échanges endolymphe/liquidecéphalorachidien ; supposant que l’utricule et le saccule joue un rôle detampon entre le cerveau et la cochlée. En cas d’obstruction mécanique,au niveau de l’aqueduc du vestibule pour la maladie de Ménière et dunerf cochléo-vestibulaire pour les tumeurs du conduit auditif interne ; letampon ne joue plus son rôle. Surviennent alors des lésions cellulaires desstéréocils de la cochlée et la surdité attenante.2ème objectif : Mieux caractériser les altérations structurelles neuronalesrétro-cochléaires des surdités neurosensoriellesDu point de vue biophysique de l’IRM, l’étude du nerf cochléaire possèdel’avantage de posséder une structure simple essentiellement composéed’une seule population de fibre à modéliser par voxel, au prix d’une régiond’étude compliquée intricant de l’os, du liquide et de l’air dans l’ostemporal. Nous avons donc commencer par développer un algorithmede pré-traitement des données de diffusion qui utilise toutes les toolboxrécentes pour corriger les artéfacts de susceptibilité magnétique, de mouvements, de champ B0 et B1, les courants de Foucaults, les arrtéfactsde Gibbs. Nous avons utilisée une séquence de Diffusion optimisée pourêtre utilisable en pratique clinique en cas de mouvements des patients,construite par bloc de 15 directions.Nous avons ensuite appris à utiliser des biomarqueurs quantitatifs, notammentle coefficient de diffusion apparent des fibres, directement issusdu signal de Diffusion dont nous avons préalablement testé la fiabilitésur des données de diffusion multi-compartimentale de haute qualité auniveau de l’encéphale. Nous avons ensuite proposée une méthode originaled’extraction de l’information des voxels du nerf cochléaire appelée spectralclustering pour obtenir ce coefficient de densité des fibres de façon robusteau niveau de notre population témoin. Enfin, nous avons implémenté unalgorithme de Manifold Learning pour l’analyse de ce signal de diffusion,qui surpasse les biomarqueurs scalaires en confrontation à des modèlespathologiques auditifs en tenant compte de l’hétérogénité du signal dediffusion dans un cluster. Nous avons ainsi démontré que les patientsporteurs de la maladie de Ménière présentaient une augmentation de ladensité de fibre, en faisant de particulier bosn candidats à l’implantationcochléaire, en accord avec les premières études cliniques fonctionnellessur le sujet
Sensorineural hearing loss (SNHL) is a common functional disorder in humans. Besides clinical investigations, magnetic resonance imaging (MRI) is the modality of choice to explore the central auditory pathways. Indeed, new MRI sequences and postprocessing methods have revolutionized our understanding of inner ear and brain disorders.The inner ear is the organ of sound detection and balance. Within the inner ear, there are two distinct compartments filled with endolymph and perilymph.The accumulation of endolymph fluid is called “endolymphatic hydrops”. Endolymphatic hydrops may occur as a consequence of a variety of disorders, including Meniere’s Disease, immune-mediated diseases or internal auditory canal tumors.Previous classification for grading the amount of endolymph liquid using MRI has proposed a global semi-quantitative evaluation, without distinguishing the utricle from the saccule, whose biomechanical properties are different in terms of compliance.This work had two main objectives: 1°) to better characterize the role of endolymphatic hydrops in SNHL occurrence; 2°) to study secondary auditory pathways alterations.Part 1: Understanding the role and pathophysiology of endolymphatic hydrops in SNHL occurrence.Endolymphatic hydrops can be identified using MRI, acquired 4-6-hours after injection of contrast media. This work has demonstrated the feasibility and improved this technique in a clinical setting.Using optimized morphological sequences, we were able to illustrate inner ear microanatomy based on temporal bone dissection, and to distinguish the saccule and the utricle.In accordance with a multi-compartmental model, we observed that the saccular hydrops was a specific biomarker of low-tone SNHL in the context of typical or atypical forms of Meniere’s Disease. In addition, utricular hydrops was linked to the degree of hearing loss in patients with schwannomas. We raise the hypothesis that both saccule and utricle compartment play the role of a buffer in endolymph reabsorption. When their compliance is overstretched, inner ear endolymph regulation fails, subsequently leading to cochlear lesions such as loss of the shorter stereocilia of the hair cells, as suggested by experimental animal modelsThus, we were able to prove the high prevalence of endolymphatic hydrops in patients with SNHL.Part 2: Development of new imaging biomarkers to study the central auditory pathways.Diffusion-Weighted Imaging play a crucial role because it can help to assess the intracellular compartment by displaying the Brownian movements of water molecules. In the context of cochlear lesions, anterograde axonal degeneration has only been demonstrated in animal models. In the context of retrocochlear lesions, no MRI sequences have previously showed efficiency in distinguishing the cochlear from the facial nerve. This is crucial for safe surgery procedure.We have designed optimized postprocessing tools to explore SNHL patients with High-Angular Resolution DWI acquisition. We have included in the clinical setting software tools for B0 and B1 bias field artifacts’ correction, Denoising process, Gibbs artifacts’ correction, Susceptibility and Eddy Current artifacts management.The ultimate goal was to properly study the Fiber Orientation Distribution (FOD) along the auditory pathways in case-controlled studies, using top-of-the-art methods of fixels analysis and a newly developed toolbox with Machine Learning analysis of the Diffusion signal.We have studied reproducibility of these two methods on Multi-Shell Diffusion gradient scheme by test-retest procedure. We have then used the fixel method to seek for auditory pathways alterations in Meniere’s Disease and Machine Learning automatic analyses to extract Inner Auditory Canal cranial nerves.Thus, we have developed a new method for cranial nerves’ tractography using FOD spectral clustering, efficient in terms of computer requirement and in tumor condition
APA, Harvard, Vancouver, ISO, and other styles
4

Deardorff, Adam S. "Developmental Expression of Calcium Buffering Proteins in Central Auditory Pathways of Normal Hearing and Congenitally Deaf Mice." Wright State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=wright1276870379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Jenny X. "Hearing the Light: A Behavioral and Neurophysiological Comparison of Two Optogenetic Strategies for Direct Excitation of Central Auditory Pathways." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:27007736.

Full text
Abstract:
For deaf individuals with absent/damaged cochleae or auditory nerves, the auditory brainstem implant (ABI) is the only option to restore hearing. However, most ABI users have only sound awareness without meaningful speech comprehension. These electrical implants are limited by crosstalk between neighboring electrodes that indiscriminately activates large groups of neurons. In contrast, optogenetics provides a means to manipulate neural circuits with temporal and spatial precision by using light to activate genetically modified neurons expressing light-gated ion channels called channelrhodopsins. However, central auditory neurons fire at speeds that exceed the limits of most available channelrhodopsins. In this study, we explored the feasibility of an optogenetic auditory prosthesis by infecting neurons of the murine inferior colliculus (ICc) with viruses expressing standard channelrhodopsin-2 (ChR2) and Chronos, a newly discovered opsin with ultra-fast channel kinetics. Through extracellular in vivo recordings in the ICc, we found that while ChR2-driven neurons can synchronize stimulation rates up to nearly 80 Hz, neurons infected with Chronos entrained pulses as fast as 200 Hz, approximating the synchronization limit for natural acoustic input in the midbrain. Optical stimulation of Chronos at rates as high as 300 Hz evoked minimally-adapting responses, although spikes were no longer fully synchronized. Chronos mediated responses support a superior code for the detection and discrimination of high pulse rates as compared with ChR2. It was hypothesized that this improved temporal fidelity might translate into better behavioral detection of optogenetic stimulation. After unilateral ICc injections of saline or viral constructs, mice were trained to perform an auditory avoidance task. An optic fiber assembly was implanted into the injected ICc and the detection task was repeated with photostimulation in the place of acoustic input. Chronos and ChR2 expressing mice exhibited similar detection slopes, while saline injected animals performed at chance. These findings suggest that while Chronos can transform a range of stimulation patterns with higher accuracy compared with ChR2, this does not translate into a perceptual advantage. This project has implications for both the future design of auditory prostheses and our understanding of signal processing in central auditory pathways.
APA, Harvard, Vancouver, ISO, and other styles
6

Vilela, Nadia. "Indicadores para o transtorno do processamento auditivo em pré-escolares." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/5/5170/tde-18112016-124448/.

Full text
Abstract:
Introdução: O sistema auditivo envolve uma formação em rede e se relaciona com outros sistemas como o da linguagem. O Processamento Auditivo Central (PAC) envolve as habilidades auditivas necessárias para a interpretação dos sons que ouvimos. Atualmente, só é possível detectar uma alteração de PAC a partir dos 7 anos de idade. Por outro lado, sabe-se que nesta idade, a criança já está em processo de alfabetização e que a alteração de PAC pode dificultar seu aprendizado. Objetivos: Investigar se o desempenho em provas auditivas realizadas em crianças aos cinco anos de idade apresenta correspondência com o desempenho alcançado aos sete anos. Método: Em dois momentos distintos, foram realizadas avaliações auditivas e do PAC em 36 crianças. Foi realizada audiometria nas oitavas de frequência entre 0,25 a 8,0 KHz, imitanciometria, avaliação eletroacústica com captação das emissões otoacústicas por estímulos transientes e avaliação do efeito inibitório da via eferente. Os testes para avaliar o PAC foram: Localização Sonora, teste de Memória Sequencial Verbal e Não-verbal, teste \'Pediatric Speech Intelligibility\', teste de Identificação de Figuras com ruído de fundo, teste Dicótico de Dígitos e o teste \'Random Gap Detection\'. As crianças também realizaram o Teste de Vocabulário por Figuras USP. À primeira avaliação, a faixa etária variou entre 5:2 e 6:1 meses e à segunda avaliação entre 7:1 e 7:8 meses. O intervalo entre as avaliações I e II variou entre 18 e 23 meses. A partir dos resultados alcançados nos testes do PAC à segunda avaliação, as crianças foram classificadas em três grupos: G I: 10 crianças com alteração de PAC e queixa de fala; G II: 18 crianças com alteração de PAC; e G III: 8 crianças com o PAC normal. Esta classificação foi mantida retrospectivamente para a avaliação I. Nos testes de hipótese foi fixado nível de significância de 0,05. Resultados: A comparação entre as avaliações mostra que já na primeira avaliação é possível identificar risco para a alteração de PAC. Foi estabelecida uma função discriminante que classificou corretamente as crianças com alteração de PAC à primeira avaliação em 77,8% no G I, 66,7% no G II e 87,5% no G III. Conclusão: Crianças que apresentam alteração do PAC aos 7 anos já demonstraram indicadores de alteração aos 5 anos de idade
Introduction: The auditory system involves a network formation and relates to other systems such as language. Central Auditory Processing (CAP) involves the listening skills necessary to interpret the sounds. Currently, it is not possible to diagnose an CAP disorder before the age of 7. On the other hand, it is known that at this age, children are already in literacy process and CAP disorders may hinder their learning. Objectives: To investigate if the performance of five-year-old children in hearing tests has correspondence with the performance achieved at the age of seven. Method: Hearing and CAP tests were applied to 36 children in two different moments. Pure-tone audiometry was performed between 0.25 to 8.0 KHz, in octave intervals, immitanciometry, electroacoustic evaluation with transient evoked otoacoustic emissions and evaluation of the inhibitory effect of efferent pathway. The tests to assess auditory processing were: Sound Localization, Verbal and Nonverbal Sequential Memory tests, Pediatric Speech Intelligibility test, Figure Identification test with ipsilateral White Noise presentation, Dichotic Digits test and Random Gap Detection test. The children also performed the USP Vocabulary Test by Figures. In the first evaluation, the ages ranged between 5:2 and 6:1 months and in the second evaluation between 7:1 and 7:8 months. The interval between evaluation I and II ranged between 18 and 23 months. From the results achieved in the tests of CAP in the second evaluation, the children were classified into three groups: G I: 10 children with CAP disorders and complaints of speech; G II: 18 children with auditory CAP; and G III: 8 children with normal CAP. This classification was maintained retrospectively for evaluation I. In hypothesis tests was set the 0.05 significance level. Results: The comparison between the evaluations showed that the first evaluation can already identify risk for CAP disorders. The discriminant function was established and appropriately classified children with CAP disorders in the first assessment in 77.8% in G I, 66.7% in G II and 87.5% in G III. Conclusion: Children with CAP disorder at the age of 7 had already shown disorder indicators at the age of 5
APA, Harvard, Vancouver, ISO, and other styles
7

Servière, Jacques. "La tonotopie du colliculus inferieur chez trois espèces de mammifères (chat, singe, cobaye) : étude anatomo-fonctionnelle par le 14c-2-désoxyglucose." Paris 6, 1986. http://www.theses.fr/1986PA066251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perrot, Xavier. "Modulation centrale du fonctionnement cochléaire chez l’humain : activation et plasticité." Thesis, Lyon 2, 2009. http://www.theses.fr/2009LYO29998.

Full text
Abstract:
Le système auditif possède deux particularités. En périphérie, les mécanismes cochléaires actifs (MCA), sous-tendus par la motilité des cellules ciliées externes (CCE), interviennent dans la sensibilité auditive et la sélectivité fréquentielle. Sur le versant central, le système efférent olivocochléaire médian (SEOCM), qui se projette sur les CCE et module les MCA, améliore la perception auditive en milieu bruité. Sur le plan exploratoire, ces deux processus peuvent être évalués grâce aux otoémissions acoustiques provoquées (OEAP) et leur suppression controlatérale. Par ailleurs, des résultats expérimentaux chez l’animal ont montré l’existence d’un rétrocontrôle exercé par le système auditif corticofuge descendant (SACD) sur la cochlée, via le SEOCM.Le présent travail comporte trois études réalisées chez l’humain, visant à explorer les interactions entre SACD, SEOCM et MCA. Les études 1 et 2, utilisant une méthodologie innovante chez des patients épileptiques réalisant une stéréo-électroencéphalographie, ont révélé un effet atténuateur différentiel de la stimulation électrique intracérébrale sur l’amplitude des OEAP, en fonction des modalités de stimulation, ainsi qu’une variabilité de cet effet selon les caractéristiques de l’épilepsie. L’étude 3 a montré un renforcement bilatéral de l’activité du SEOCM chez des musiciens professionnels.Pris dans leur ensemble, ces résultats fournissent d’une part, des arguments directs et indirects en faveur de l’existence d’un SACD fonctionnel chez l’humain. D’autre part, des phénomènes de plasticité à long terme, pathologique ou supranormale, seraient susceptibles de modifier l’activité de cette voie cortico-olivocochléaire
The auditory system has two special features. At peripheral level, active cochlear micromechanisms (ACM), underlain by motility of outer hair cells (OHC), are involved in auditory sensitivity and frequency selectivity. At central level, the medial olivocochlear efferent system (MOCES), which directly projects onto OHC to modulate ACM, improves auditory perception in noise. From an exploratory point of view, both processes can be assessed through transient evoked otoacoustic emissions (TEOAE) and the procedure of contralateral suppression. In addition, experimental data in animals have disclosed a top-down control exerted by corticofugal descending auditory system (CDAS) on cochlea, via MOCES.The present work comprises three studies carried out in human, aiming to investigate interactions between CDAS, MOCES and ACM. The first and second studies, based on an innovative experimental procedure in epileptic patients undergoing presurgical stereoelectroencephalography, have revealed a differential attenuation effect of intracerebral electrical stimulation on TEOAE amplitude depending on stimulation modalities, as well as a variability of this effect depending on the clinical history of epilepsy. The third study has shown a bilateral enhancement of MOCES activity in professional musicians.Taking together, these results provide direct and indirect evidence for the existence of a functional CDAS in humans. Moreover, possible long-term plasticity phenomenon, either pathological –as in epileptic patients– or supernormal –as in professional musicians– may change cortico-olivocochlear activity
APA, Harvard, Vancouver, ISO, and other styles
9

Chaudun, Fabrice. "Involvement of dorsomedial prefrontal projections pathways to the basolateral amygdala and ventrolateral periaqueductal grey matter in conditioned fear expression." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0118/document.

Full text
Abstract:
A l’heure actuelle, une des principales questions des neurosciences comportementales est de comprendre les bases neurales des apprentissages et de comprendre comment des modifications au sein de circuits neuronaux spécifiques contrôlent les changements comportementaux liés à une expérience particulière. De nombreuses études ont récemment mis en évidence le rôle important des circuits neuronaux dans les phénomènes d’apprentissages associatifs, et notamment dans la régulation des comportements de peur. Cependant, leurs caractéristiques anatomiques et fonctionnelles restent encore largement inconnues. L’une des principales fonctions des circuits neuronaux est leur capacité à adapter le comportement en fonction de la nature des informations internes ou environnementales disponibles. Malgré de nombreux progrès réalisés sur la compréhension des substrats et mécanismes neuronaux sous tendant le conditionnement de peur au sein de structures telles que l'amygdale (AMG), le cortex préfrontal dorso-médian (dmPFC) et la substance grise periaqueducale (PAG), les mécanismes neuronaux gouvernant les interactions inter-structure ainsi que le contrôle local de ces différents circuits neuronaux restent encore largement inconnus. Dans ce contexte, ce travail de thèse a eupour objectifs principaux, d’évaluer la contribution des voies de projections dmPFC-BLA et dmPFC-vlPAG dans la régulation des comportements de peur, et, d’identifier les mécanismes neuronaux sous-jacent contrôlant l'expression de la peur. Afin de répondre à ces questions, nous avons utilisé conjointement des enregistrements électrophysiologiques unitaires et de potentiels de champs couplés à des approches optogénétiques au cours de l’expression de la peur conditionnée. Nous avons pu mettre en évidence un nouveau mécanisme neuronal basé sur une oscillation cérébrale à 4 Hz entre le dmPFC et le BLA impliqué dans la synchronisation neuronale des neurones de ces deux structures nécessaire à l’expression de la peur. Nous avons aussi démontré que le dmPFC via ses projections sur le vlPAG contrôle directement l’expression de la peur. Ensemble, nos données contribuent à une meilleure compréhension des circuits neuronaux ainsi que des mécanismes du comportement de peur qui dans le futur pourront aider à une amélioration thérapeutique des troubles anxieux
A central endeavour of modern neuroscience is to understand the neural basis of learningand how the selection of dedicated circuits modulates experience-dependent changes inbehaviour. Decades of research allowed a global understanding of the computations occurring inhard-wired networks during associative learning, in particular fear behaviour. However, brainfunctions are not only derived from hard-wired circuits, but also depend on modulation of circuitfunction. It is therefore realistic to consider that brain areas contain multiple potential circuitswhich selection is based on environmental context and internal state. Whereas the role of entirebrain areas such as the amygdala (AMG), the dorsal medial prefrontal cortex (dmPFC) or theperiaqueductal grey matter (PAG) in fear behaviour is reasonably well understood at themolecular and synaptic levels, there is a big gap in our knowledge of how fear behaviour iscontrolled at the level of defined circuits within these brain areas. More particularly, whereas thedmPFC densely project to both the basolateral amygdala (BLA) and PAG, the contributions ofthese two projections pathway during fear behaviour are largely unknown. Beside theinvolvement of these neuronal pathways in the transmission of fear related-information, theneuronal mechanisms involved in the encoding of fear behaviour within these pathways are alsovirtually unknown. In this context, the present thesis work had two main objectives. First,evaluate the contribution of the dmPFC-BLA and dmPFC-vlPAG pathways in the regulation offear behaviour, and second, identify the neuronal mechanisms controlling fear expression in thesecircuits. To achieve these goals, we used a combination of single unit and local field potentialrecordings coupled to optogenetic approaches in behaving animals submitted to a discriminativefear conditioning paradigm. Our results first, identified a novel neuronal mechanism of fear expression based on the development of 4 H oscillations within dmPFC-BLA circuits thatdetermine the dynamics of freezing behaviour and allows the long-range synchronization offiring activities to drive fear behaviour. Secondly, our results identified the precise circuitry at thelevel of the dmPFC and vlPAG that causally regulate fear behaviour. Together these data provideimportant insights into the neuronal circuits and mechanisms of fear behaviour. Ultimately thesefindings will eventually lead to a refinement of actual therapeutic strategies for pathological conditions such as anxiety disorders
APA, Harvard, Vancouver, ISO, and other styles
10

Gilley, Phillip M. "Effects of sensory deprivation on reorganization of the central auditory pathways /." 2006. http://proquest.umi.com/pqdweb?did=1216725121&sid=1&Fmt=2&clientId=10361&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Central auditory pathway"

1

Kaga, Kimitaka. Central Auditory Pathway Disorders. Tokyo: Springer Japan, 2009. http://dx.doi.org/10.1007/978-4-431-26920-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

The auditory midbrain: Structure and function in the central auditory pathway. Clifton, N.J: Humana Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Mary Ellen. Indices of hearing in patients with central auditory pathology. Oslo: Scandinavian University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thompson, Mary Ellen. Indices of hearing in patients with central auditory pathology. Oslo, Norway: Scandinavian University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rees, Adrian. The auditory brain. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

The auditory brain. Oxford: Oxford University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Syka, Josef. Acoustical Signal Processing in the Central Auditory System. Boston, MA: Springer US, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

A, Baran Jane, and Pinheiro Marilyn L, eds. Neuroaudiology: Case studies. San Diego, Calif: Singular Pub. Group, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaga, Kimitaka. Central Auditory Pathway Disorders. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaga, Kimitaka. Central Auditory Pathway Disorders. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Central auditory pathway"

1

Syka, J., J. Popelář, R. Druga, and A. Vlková. "Descending Central Auditory Pathway — Structure and Function." In Auditory Pathway, 279–92. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1300-7_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Müller-Preuss, P., A. Bieser, A. Preuss, and H. Fastl. "Neural Processing of AM-Sounds within Central Auditory Pathway." In Auditory Pathway, 327–31. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1300-7_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aitkin, Lindsay. "Properties of Central Auditory Neurones of Cats Responding to Free-Field Acoustic Stimuli." In Auditory Pathway, 335–47. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1300-7_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rouiller, E. M., and D. K. Ryugo. "The Central Projection of Intracellularly Labeled Auditory Nerve Fibers: Morphometric Relationships Between Structural and Physiological Properties." In Auditory Pathway, 101–6. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1300-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ryugo, David K. "The Auditory Nerve: Peripheral Innervation, Cell Body Morphology, and Central Projections." In The Mammalian Auditory Pathway: Neuroanatomy, 23–65. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4416-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Canlon, Barbara, Robert Benjamin Illing, and Joseph Walton. "Cell Biology and Physiology of the Aging Central Auditory Pathway." In The Aging Auditory System, 39–74. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0993-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Casseday, John H., Thane Fremouw, and Ellen Covey. "The Inferior Colliculus: A Hub for the Central Auditory System." In Integrative Functions in the Mammalian Auditory Pathway, 238–318. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-3654-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rouiller, E. M. "Mapping Activity in the Auditory Pathway with C-Fos." In Acoustical Signal Processing in the Central Auditory System, 33–48. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8712-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schildberger, Klaus, Franz Huber, and David W. Wohlers. "14. Central Auditory Pathway: Neuronal Correlates of Phonotactic Behavior." In Cricket Behavior and Neurobiology, edited by Franz Huber, Thomas E. Moore, and Werner Loher, 423–58. Ithaca, NY: Cornell University Press, 2019. http://dx.doi.org/10.7591/9781501745904-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kaiser, Alexander, and Ellen Covey. "5-HT Innervation of the Auditory Pathway in Birds and Bats." In Acoustical Signal Processing in the Central Auditory System, 71–78. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8712-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Central auditory pathway"

1

Wigand, Marlene C. C., Arthur Wunderlich, Eva Goldberg-Bockhorn, Thomas K. Hoffmann, Meinrad Beer, Martha E. Shenton, and Sylvain Bouix. "Microstructural Alterations of the Auditory nerve and Central auditory pathways in unilateral sensorineural hearing deficiency – a DTI study." In Abstract- und Posterband – 91. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Welche Qualität macht den Unterschied. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1711244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wigand, Marlene C. C., A. Wunderlich, E. Goldberg-Bockhorn, T. Hoffmann, W. Schlötzer, M. Beer, M. Shenton, and S. Bouix. "Microstructural Alterations of the Auditory nerve and Central auditory pathways in unilateral sensorineural hearing deficiency – a DTI study." In 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wigand, M., A. Wunderlich, TK Hoffmann, and A. Leichtle. "Visualization and microstructural Analysis of the Auditory nerve and Central auditory pathways using Diffusion tensor imaging – Results and Perspectives." In Abstract- und Posterband – 89. Jahresversammlung der Deutschen Gesellschaft für HNO-Heilkunde, Kopf- und Hals-Chirurgie e.V., Bonn – Forschung heute – Zukunft morgen. Georg Thieme Verlag KG, 2018. http://dx.doi.org/10.1055/s-0038-1640687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography