Academic literature on the topic 'Cellulose-based polyesters'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellulose-based polyesters.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cellulose-based polyesters"

1

Li, Dongfang, Tommy Iversen, and Monica Ek. "Hydrophobic materials based on cotton linter cellulose and an epoxy-activated polyester derived from a suberin monomer." Holzforschung 69, no. 6 (August 1, 2015): 721–30. http://dx.doi.org/10.1515/hf-2014-0261.

Full text
Abstract:
Abstract Suberin is a natural hydrophobic material that could be used to improve the water repellency of cellulose surfaces. It is also abundant in the outer bark of birch (Betula verrucosa); birch bark is a side-stream product in Scandinavia from the forest industry, which is generally burned for energy production. A suberin monomer, cis-9,10-epoxy-18-hydroxyoctadecanoic acid, was isolated from birch outer bark and polymerized via lipase (immobilized Candida antarctica lipase B). The resulting epoxy-activated polyester was characterized by nuclear magnetic resonance (NMR) imaging, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, and size exclusion chromatography. Then the polyester was cured with tartaric or oxalic acid, and the crosslinked polyesters were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry. Hydrophobic materials were prepared by compression molding of polyester-impregnated cellulose sheets, and the final products were characterized by FTIR, cross-polarization magic angle spinning 13C NMR, and field-emission scanning electron microscopy. The water contact angle was significantly increased from 0° for the original cellulose sheets to over 100° for the produced hydrophobic materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Junhua, Yao Liu, Zhaohua Qi, Liang He, and Lincai Peng. "Progress in the synthesis and properties of 2,5-furan dicarboxylate based polyesters." BioResources 15, no. 2 (February 14, 2020): 4502–27. http://dx.doi.org/10.15376/biores.15.2.zhang.

Full text
Abstract:
Biomass is a class of abundant renewable resource. Its efficient use in the field of biobased materials is one of the important ways for implementation of sustainable development strategies. 2,5-Furandicarboxylic acid (FDCA) as a potential alternative of terephthalic acid (PTA) to make alipharomatic polyesters, can be obtained in mass amount from cellulose via bio- or chemical process. For this reason, FDCA-based polyesters have gained high interest recently. This review systematically summarizes recent progress in the making of FDCA-based polyesters (including poly(ethylene 2,5-furandicarboxylate) (PEF), poly(propylene 2,5-furandicarboxylate) (PPF), poly(butylene 2,5-furandicarboxylate) (PBF), poly(hexylene 2,5-furandicarboxylate) (PHF), and their copolyesters), especially highlighting the progress and fundamental aspects for their synthesis and properties. Significant advantages (and also disadvantages) of the FDCA-based polyesters are clearly indicated relative to price, performance, and sustainable development, in reference to traditional petroleum-based polyesters in industrial application. The goal of this review is to provide useful information regarding the synthesis and properties of FDCA-based polyesters.
APA, Harvard, Vancouver, ISO, and other styles
3

Abe, Mateus Manabu, Marcia Cristina Branciforti, and Michel Brienzo. "Biodegradation of Hemicellulose-Cellulose-Starch-Based Bioplastics and Microbial Polyesters." Recycling 6, no. 1 (March 22, 2021): 22. http://dx.doi.org/10.3390/recycling6010022.

Full text
Abstract:
The volume of discarded solid wastes, especially plastic, which accumulates in large quantities in different environments, has substantially increased. Population growth and the consumption pattern of societies associated with unsustainable production routes have caused the pollution level to increase. Therefore, the development of materials that help mitigate the impacts of plastics is fundamental. However, bioplastics can result in a misunderstanding about their properties and environmental impacts, as well as incorrect management of their final disposition, from misidentifications and classifications. This chapter addresses the aspects and factors surrounding the biodegradation of bioplastics from natural (plant biomass (starch, lignin, cellulose, hemicellulose, and starch) and bacterial polyester polymers. Therefore, the biodegradation of bioplastics is a factor that must be studied, because due to the increase in the production of different bioplastics, they may present differences in the decomposition rates.
APA, Harvard, Vancouver, ISO, and other styles
4

Chang, Rong-Kun, and James C. Price. "Aliphatic Polyesters and Cellulose-Based Polymers for Controlled Release Applications." Journal of Biomaterials Applications 3, no. 1 (January 1988): 80–101. http://dx.doi.org/10.1177/088532828800300104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Berketova, L., and V. Polkovnikova. "On the Eco-, Edible and Fast-decomposing Packaging in the Food Industry." Bulletin of Science and Practice 6, no. 10 (October 15, 2020): 234–43. http://dx.doi.org/10.33619/2414-2948/59/23.

Full text
Abstract:
At the moment, all economically developed countries face the problem of pollution of the surrounding world, and one of the main pollutants is packaging. Packaging helps to preserve its contents from various damages, and informative and attractive packaging is an indispensable attribute of the marketing process. Most products are Packed in a huge amount of film and paper, which is thrown out by the consumer to the landfill. As a result, there are growing landfills for garbage, 40 % of which is disposable packaging. In the conditions of increased demand for so-called healthy food products, the question of packaging this food in no less "healthy" packaging arose. Eco-friendly, biodegradable, and edible packaging is one of the relatively new trends in the field of ecology. The international standard ASTM D-6400 "Standard specification for marking plastics intended for aerobic composting in municipal or industrial facilities" regulates the development of bioplastic mass technologies. According to the Standard specification for compostable plastics, biodegradable and decomposable plastics are classified into the following groups: starch, cellulose and protein based plastics; aliphatic polyesters; polylactic acids; polytrihydroxybutyrate; polyhydroxalkanoates; bio-derived polyethylene and lipid-derived polymers. According to the method of decomposition, bioplastics are divided into compostable plastic and photo-degradable plastics. The range of biodegradable plastics includes: starch; natural polyesters; renewable resource polyesters; synthetic aliphatic polyesters; aliphatic-aromatic co-polyesters; hydro-biodegradable polyester; water-soluble polymers; photo-biodegradable plastics and controlled degradation of dietary supplements. In the Russian Federation, the issues of bioplastic production have not been developed and are not legally fixed. Today, the main types of edible packaging include natural casings for meat products, wafer cups for ice cream, craft paper, cardboard, wood, cellulose, and others. Jute bags are a potential biodegradable packaging material. Many companies produce modern disposable eco-friendly dishes made of wood, bamboo, carbonized bamboo, sugar cane and other eco-friendly materials without the use of chemicals.
APA, Harvard, Vancouver, ISO, and other styles
6

Matos, Marina, Andreia F. Sousa, Nuno H. C. S. Silva, Carmen S. R. Freire, Márcia Andrade, Adélio Mendes, and Armando J. D. Silvestre. "Furanoate-Based Nanocomposites: A Case Study Using Poly(Butylene 2,5-Furanoate) and Poly(Butylene 2,5-Furanoate)-co-(Butylene Diglycolate) and Bacterial Cellulose." Polymers 10, no. 8 (July 24, 2018): 810. http://dx.doi.org/10.3390/polym10080810.

Full text
Abstract:
Polyesters made from 2,5-furandicarboxylic acid (FDCA) have been in the spotlight due to their renewable origins, together with the promising thermal, mechanical, and/or barrier properties. Following the same trend, (nano)composite materials based on FDCA could also generate similar interest, especially because novel materials with enhanced or refined properties could be obtained. This paper presents a case study on the use of furanoate-based polyesters and bacterial cellulose to prepare nanocomposites, namely acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate) and acetylated bacterial cellulose/poly(butylene 2,5-furandicarboxylate)-co-(butylene diglycolate)s. The balance between flexibility, prompted by the furanoate-diglycolate polymeric matrix; and the high strength prompted by the bacterial cellulose fibres, enabled the preparation of a wide range of new nanocomposite materials. The new nanocomposites had a glass transition between −25–46 °C and a melting temperature of 61–174 °C; and they were thermally stable up to 239–324 °C. Furthermore, these materials were highly reinforced materials with an enhanced Young’s modulus (up to 1239 MPa) compared to their neat copolyester counterparts. This was associated with both the reinforcing action of the cellulose fibres and the degree of crystallinity of the nanocomposites. In terms of elongation at break, the nanocomposites prepared from copolyesters with higher amounts of diglycolate moieties displayed higher elongations due to the soft nature of these segments.
APA, Harvard, Vancouver, ISO, and other styles
7

Sommer, Korbinian, Daniel Van Opdenbosch, and Cordt Zollfrank. "Synthesis and Characterization of Functional Cellulose–Ether-Based PCL- and PLA-Grafts-Copolymers." Polymers 15, no. 2 (January 15, 2023): 455. http://dx.doi.org/10.3390/polym15020455.

Full text
Abstract:
The use of biodegradable materials such as cellulose and polyesters can be extended through the combination, as well as modification, of these biopolymers. By controlling the molecular structure and composition of copolymers of these components, it should also be possible to tailor their material properties. We hereby report on the synthesis and characterization of cellulose-based graft copolymers with a precise molecular composition and copolymer architecture. To prepare such materials, we initially modified cellulose through the regioselective protection of the 6-OH group using trityl chloride. The 6-O protected compound was then alkylated, and deprotection at the 6-OH group provided the desired 2,3-di-O-alkyl cellulose compounds that were used as macroinitiators for ring opening polymerization. Regioselective modification was hereby necessary to obtain compounds with an exact molecular composition. Ring opening polymerization, catalyzed by Sn(Oct)2, at the primary 6-OH group of the cellulose macroinitiator, using L-lactide or ε-caprolactone, resulted in graft copolymers with the desired functionalization pattern. The materials were characterized using Fourier-transform infrared spectroscopy, 1H- and 13C- nuclear magnetic resonance spectroscopy, size exclusion chromatography as well as X-ray diffraction, and differential scanning calorimetry. PCL-based copolymers exhibited distinct melting point as well as a crystalline phase of up to 47%, while copolymers with PLA segments were highly amorphous, showing a broad amorphous reflex in the XRD spectra, and no melting or crystallization points were discernible using differential scanning calorimetry.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Yuhuan, Jinglu Liao, Jun Lu, Zhaoshu Chen, Shanjun Gao, Lin Gan, and Jin Huang. "Regulating surface molecular structure of cellulose nanocrystals to optimize mechanical reinforcement effect on hydrophobic bio-based polyesters." Iranian Polymer Journal 29, no. 8 (June 25, 2020): 693–705. http://dx.doi.org/10.1007/s13726-020-00832-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Di Bella, Gaetano, Santo Fabio Corsino, Federica De Marines, Francesco Lopresti, Vincenzo La Carrubba, Michele Torregrossa, and Gaspare Viviani. "Occurrence of Microplastics in Waste Sludge of Wastewater Treatment Plants: Comparison between Membrane Bioreactor (MBR) and Conventional Activated Sludge (CAS) Technologies." Membranes 12, no. 4 (March 29, 2022): 371. http://dx.doi.org/10.3390/membranes12040371.

Full text
Abstract:
In this study, the presence of microplastics in the sludge of three wastewater treatment plants (WWTPs) was examined. The investigated WWTPs operated based on a conventional activated sludge (CAS) process, with (W1) or without (W2) primary clarification, and a membrane bioreactor process (MBR) (W3). The microplastics (MPs) concentration in the samples of W3 was approximately 81.1 ± 4.2 × 103 particles/kg dry sludge, whereas MPs concentrations in W1 and W2 were 46.0 ± 14.8 × 103 particles/kg dry sludge and 36.0 ± 5.2 × 103 particles/kg dry sludge, respectively. Moreover, MPs mainly consisted of fragments (66–68%) in the CAS plants, whereas the fractions of MPs shapes in the MBR sludge were more evenly distributed, although fiber (47%) was the most abundant fraction. Furthermore, samples from the MBR showed a greater diversity in MPs composition. Indeed, all the main polyesters (i.e., textile fibers and polyethylene terephthalate), polyolefins (i.e., polyethylene and polypropylene) and rubber (i.e., polybutadiene) were observed, whereas only polybutadiene, cellulose acetate and polyester were detected in the CAS plants. These findings confirmed that MPs from wastewater are transferred and concentrated in the waste sludge. This is a critical finding since sludge disposal could become a new pathway for microplastic release into the environment and because MPs might affect the fouling behavior of the membrane.
APA, Harvard, Vancouver, ISO, and other styles
10

Valvez, Sara, Alberto Maceiras, Paulo Santos, and Paulo N. B. Reis. "Olive Stones as Filler for Polymer-Based Composites: A Review." Materials 14, no. 4 (February 10, 2021): 845. http://dx.doi.org/10.3390/ma14040845.

Full text
Abstract:
Olives’ consumption produces copious agricultural byproducts that have accompanied humanity for millennia, but the increasing worldwide production complicates its management. Most wastes are generated during olive oil production in form of olive stones and other lignocellulosic derivatives. Industrial processes of chemical or physical nature to recover economically compounds from biomass residues are costly, difficult, and non-environmentally friendly. Cellulose, hemicellulose, and lignin biopolymers are the principal components of olive stones, which present interesting qualities as lignocellulosic fillers in polymeric composites. This review will summarize examples of composites based on thermoplastic polymers, such as polystyrene (PS), polylactide (PLA), polyvinyl chloride (PVC), polypropylene (PP), and polycaprolactone (PCL); thermosetting resins (phenol-formaldehyde, unsaturated polyesters, and epoxy) and acrylonitrile butadiene rubber/devulcanized waste rubber (NBR/DWR) blends focusing on the fabrication procedures, characterization, and possible applications. Finally, thanks to the wide disparity in polymer matrix types, the variability in applications is important, from adsorption to mechanical enhancement, showing the easiness and benefit of olive stone integration in many materials.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cellulose-based polyesters"

1

Olsson, Ann. "Suberin based polyesters." Licentiate thesis, KTH, Fibre and Polymer Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10528.

Full text
Abstract:

In the wish to replace oil-based chemicals and materials with such based on biodegradable and renewable resources, this work has been performed. In a biorefinary concept, waste birch bark from paper pulp mills and timber production has been evaluated as a potential source for polyesters. 

In the present thesis investigations are made on synthesis of epoxy-functionalized polyesters from the birch outer bark aliphatic suberin ω-hydroxy fatty acid, cis-9,10-epoxy-18-hydroxyoctadecanoic acid. Studies of accessibility and reactivity of cellulose have been performed as a first step to enable covalent attachment or grafting of the epoxy-functionalized polyesters to cellulose. 

Candida antarctica lipase B (Novozym 435) is reported to be an efficient catalyst for condensation polymerization of cis-9,10-epoxy-18-hydroxyoctadecanoic acid to form poly(9,10-epoxy-18-hydroxyoctadecanoic acid) with high molecular weight (Mw). Performed in toluene in the presence of molecular sieves a Mw of 20000 (reaction time 68 h, Mw/Mn 2.2) was obtained. Performed in bulk without any drying agent a Mw of 15000  was obtained at a much shorter reaction time (reaction time 3h, Mw/Mn 2.2). Further the same lipase has been used for succesful co-polymerizations of cis-9,10-epoxy-18-hydroxyoctadecanoic acid with lactones. By combining condensation and ring-opening polymerization, epoxy-functionalized linear polyesters and cyclic oligomers have been synthesized. For example, co-polymerization of cis-9,10-epoxy-18-hydroxy-octadecanoic acid and ε-caprolactone performed in toluene in the presence of molecular sieves gave mainly cyclic oligomers, especially at shorter reaction times. Co-polymerization performed in bulk gave linear polyesters with a Mw of 35000 (reaction time 24 h, Mw/Mn 6), irrespective molecular sieves were added or not. 

The epoxy-functionalized polyesters could be used for surface modification of pulp fibres and cellulose fibrils, which further can be used for production of new valuable composite materials with improved features. Knowledge of how different processing conditions affect the structure of cellulose is an important tool in the work to achieve successful grafting of produced polyesters to cellulose fibres/fibrils. CP/MAS 13C-NMR spectroscopy has been used to study structural changes caused by the dissolving pulp process. An irreversible increase in average fibril aggregate width from raw pulp to final pulp during the process is shown. This increase in aggregate width could negatively influence the reactivity of the cellulose.

 

 

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography