Contents
Academic literature on the topic 'Cellulose acetate butyrate Protic ionic liquid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellulose acetate butyrate Protic ionic liquid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellulose acetate butyrate Protic ionic liquid"
Huang, Kelin, Ben Wang, Yan Cao, Huiquan Li, Jinshu Wang, Weijiang Lin, Chaoshi Mu, and Dankui Liao. "Homogeneous Preparation of Cellulose Acetate Propionate (CAP) and Cellulose Acetate Butyrate (CAB) from Sugarcane Bagasse Cellulose in Ionic Liquid." Journal of Agricultural and Food Chemistry 59, no. 10 (May 25, 2011): 5376–81. http://dx.doi.org/10.1021/jf104881f.
Full textCao, Yan, Huiquan Li, and Jun Zhang. "Homogeneous Synthesis and Characterization of Cellulose Acetate Butyrate (CAB) in 1-Allyl-3-Methylimidazolium Chloride (AmimCl) Ionic Liquid." Industrial & Engineering Chemistry Research 50, no. 13 (July 6, 2011): 7808–14. http://dx.doi.org/10.1021/ie2004362.
Full textBaird, Zachariah Steven, Petri Uusi-Kyyny, Artur Dahlberg, Daniel Cederkrantz, and Ville Alopaeus. "Densities, Viscosities, and Thermal Conductivities of the Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water." International Journal of Thermophysics 41, no. 12 (October 1, 2020). http://dx.doi.org/10.1007/s10765-020-02742-4.
Full textPitaloka, Nadya Fitriani, Ardilla Sriwijayanti, Santi Anisa, and Irne Dyah Ayu Wijayanti. "Utilization Of Sugarcane Bagasse Cellulose-Clay Nanocomposite As A Biodegradable And Antibacterial Packaging Material To Extend The Food's Shelf Life." Khazanah: Jurnal Mahasiswa 12, no. 2 (December 13, 2020). http://dx.doi.org/10.20885/khazanah.vol12.iss2.art43.
Full textDissertations / Theses on the topic "Cellulose acetate butyrate Protic ionic liquid"
Ebrahimi, Mohammad. "Hybrid membranes based on iοnic liquids for application in fuel cells." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR029.
Full textProton exchange membrane fuel cell (PEMC) has attracted a lot of attention in the both, laboratories and industries because PEMFC is considered as the green source of energy. Polymer electrolyte membrane (PEM) is the most important part in PEMFC owing to the fact that it is responsible for carrying protons between electrodes. Nafion® is the most commonly used polymer for PEM preparation because of its good thermal, mechanical, and chemical stability as well as high ionic conductivity. This polymer has excellent performance at low up to moderate temperatures under humidified condition. However, working at elevated temperature is more desirable and under these conditions the ionic conductivity of Nafion® membrane drops down significantly owing to the water evaporation. To obtain PEMs which can be applied at higher temperatures under anhydrous conditions, ionic liquids (ILs) are used as the proton carrier. The aim of this PhD thesis was to synthesis thermally stable and conductive ILs and use them as the additive to prepare proton conductive membranes for PEMFC application at elevated temperature.Several Pr-ILs containing different anions ([TFS]-, [TFA]-, [HS]-, [BUPH]-, and [EHPH]-based) and cations ([DETA]-, [DEPA]-, [MIM]-, and [BIM]-based) were prepared by acid-base neutralization reaction. The dynamic TGA results showed that there is a direct link between the acidity of acid and thermal stability of IL and [TFS]-based ILs demonstrated the highest thermal stability (Tdeg ~ 415−435 °C) owing to the high acidity of trifluoromethanesulfonic acid (pKa ~ -14). [TFS]-based ILs showed the highest ionic conductivity values (~ 34.5−63.7 mS•cm-1 at 150 °C) because trifluoromethanesulfonic acid is a stronger acid as compared to the other used acids for IL synthesis. According to the results, the following ionic conductivity order of studied anions can be proposed: [TFS] ˃ [HS] ˃ [TFA] ˃ [BUPH] ˃ [EHPH]. The obtained results showed that synthesized Pr-ILs have great potential to be used in PEMFC application. However, owing to the physical state of ILs, it is not possible to use them alone as the electrolyte in PEMFC. In order to have ion conductive PEM, composite membranes (polymer + IL) must be prepared.CAB/[DETA][TFS]-[DEPA][BUPH] composite membranes were prepared by a phase inversion technique. Composite membranes containing 0, 23, 33, and 41 wt.% of ILs were prepared (M0, M1, M2, and M3, respectively) by the phase inversion method. The presence of ILs in the membrane was confirmed by FTIR and EDX analysis. Thermal analysis revealed the lower thermal stability of composite membranes (Tdeg ~ 256–265 °C) in comparison with pure CAB membrane (Tdeg ~ 360 °C). Composite membranes showed good ionic conductivity (0.1–1 mS•cm-1 at 120 °C) and it was found that an increase of ILs concentration from 23 to 41 wt.% resulted in rising the membrane ionic conductivity owing to the increase of conductive regions. Furthermore, membrane ionic conductivity increased by rising the operating temperature from 25 to 120 °C owing to the ionic mobility enhancement. M3 membrane showed the highest ionic conductivity of 0.443 mS•cm-1 at 120 °C under anhydrous condition. The results prove that the fabricated CAB/[DETA][TFS]-[DEPA][BUPH] composite membranes are promising candidates for using in electrochemical applications, namely fuel cell