Academic literature on the topic 'Cellulose'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellulose.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellulose"
Deng, Yijie, and Shiao Y. Wang. "Sorption of Cellulases in Biofilm Enhances Cellulose Degradation by Bacillus subtilis." Microorganisms 10, no. 8 (July 26, 2022): 1505. http://dx.doi.org/10.3390/microorganisms10081505.
Full textKumar, Amit. "Dissolving pulp production: Cellulases and xylanases for the enhancement of cellulose accessibility and reactivity." Physical Sciences Reviews 6, no. 5 (April 30, 2021): 111–29. http://dx.doi.org/10.1515/psr-2019-0047.
Full textHetzler, Stephan, Daniel Bröker, and Alexander Steinbüchel. "Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains." Applied and Environmental Microbiology 79, no. 17 (June 21, 2013): 5159–66. http://dx.doi.org/10.1128/aem.01214-13.
Full textHall, J., G. W. Black, L. M. A. Ferreira, S. J. Millward-Sadler, B. R. S. Ali, G. P. Hazlewood, and H. J. Gilbert. "The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel." Biochemical Journal 309, no. 3 (August 1, 1995): 749–56. http://dx.doi.org/10.1042/bj3090749.
Full textBrumm, Phillip, Phillip Brumm, Dan Xie, Dan Xie, Larry Allen, Larry Allen, David A. Mead, and David A. Mead. "Hydrolysis of Cellulose by Soluble Clostridium Thermocellum and Acidothermus Cellulolyticus Cellulases." Journal of Enzymes 1, no. 1 (April 26, 2018): 5–19. http://dx.doi.org/10.14302/issn.2690-4829.jen-18-2025.
Full textChatterjee, Soumya, Sonika Sharma, Rajesh Kumar Prasad, Sibnarayan Datta, Dharmendra Dubey, Mukesh K. Meghvansi, Mohan G. Vairale, and Vijay Veer. "Cellulase Enzyme based Biodegradation of Cellulosic Materials: An Overview." South Asian Journal of Experimental Biology 5, no. 6 (March 11, 2016): 271–82. http://dx.doi.org/10.38150/sajeb.5(6).p271-282.
Full textPratama, Rahadian, I. Made Artika, Tetty Chaidamsari, Herti Sugiarti, and Soekarno Mismana Putra. "Isolation and Molecular Cloning of Cellulase Gene from Bovine Rumen Bacteria." Current Biochemistry 1, no. 1 (September 2, 2017): 29–36. http://dx.doi.org/10.29244/cb.1.1.29-36.
Full textLi, Xia, Xiaoyan Geng, Lu Gao, Yanfang Wu, Yongli Wang, Alei Geng, Jianzhong Sun, and Jianxiong Jiang. "Optimized expression of a hyperthermostable endoglucanase from Pyrococcus horikoshii in Arabidopsis thaliana." BioResources 14, no. 2 (February 19, 2019): 2812–26. http://dx.doi.org/10.15376/biores.14.2.2812-2826.
Full textMizuno, Masahiro, Shuji Kachi, Eiji Togawa, Noriko Hayashi, Kouichi Nozaki, Toshiyuki Itoh, and Yoshihiko Amano. "Structure of Regenerated Celluloses Treated with Ionic Liquids and Comparison of their Enzymatic Digestibility by Purified Cellulase Components." Australian Journal of Chemistry 65, no. 11 (2012): 1491. http://dx.doi.org/10.1071/ch12342.
Full textBu, Yingjie, Bassam Alkotaini, Bipinchandra K. Salunke, Aarti R. Deshmukh, Pathikrit Saha, and Beom Soo Kim. "Direct ethanol production from cellulose by consortium of Trichoderma reesei and Candida molischiana." Green Processing and Synthesis 8, no. 1 (January 28, 2019): 416–20. http://dx.doi.org/10.1515/gps-2019-0009.
Full textDissertations / Theses on the topic "Cellulose"
Ravachol, Julie. "Rôle des glycosides hydrolases de famille 9 dans la dégradation de la cellulose et exploration du catabolisme de xyloglucane chez Ruminiclostridium cellulolyticum." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4054.
Full textRuminiclostridium cellulolyticum is a mesophilic and strictly anaerobic bacterium. It produces multienzymatic complexes called cellulosomes which efficiently degrade the plant cell wall polysaccharides. Family-9 Glycoside Hydrolases (GH9) are plethoric in cellulosome-producing bacteria. The genome of R. cellulolyticum thus encodes for 13 GH9 enzymes, 12 of them participate to the cellulosomes.My Ph. D. aimed at characterizing all GH9 enzymes from R. cellulolyticum, by determining their activities in a free and complexed states, in order to elucidate their role in cellulose degradation. All GH9 enzymes exhibit various activities and substrate specificities. Two of them have atypical activities, since one is inactive and one is a xyloglucanase. Results obtained when all GH9 are in complex highlighted the importance of GH9 diversity and revealed they act synergistically in cellulose depolymerization. Moreover, expanding the panel of GH9 enzymes by introducing an exogenous cellulase from Lachnoclostridium phytofermentans improved the cellulolytic capacities of R. cellulolyticum. The xyloglucanase activity of one GH9 enzyme prompted me to investigate the xyloglucan catabolism in R. cellulolyticum. This work uncovered the presence of a specialized equipment for xyloglucan utilization. After extracellular digestion of xyloglucan by cellulosomal enzymes, xyloglucan dextrins are imported into the cytoplasm via a specific ABC-transporter and sequentially hydrolyzed by cytoplasmic enzymes into fermentable mono and disaccharides
Cervin, Nicholas. "Porous Cellulose Materials from Nano Fibrillated Cellulose." Licentiate thesis, KTH, Fiberteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104196.
Full textQC 20121107
Peri, Suma Lee Yoon Y. "Kinetic investigation and modeling of cellulase enzyme using non-crystalline cellulose and cello-oligosaccharides." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/PERI_SUMA_47.pdf.
Full textMokatse, Khomotso. "Production, characterization and evaluation of fungal cellulases for effective digestion of cellulose." Thesis, University of Limpopo (Turfloop Campus), 2013. http://hdl.handle.net/10386/1129.
Full textThe production of cellulase is a key factor in the hydrolysis of cellulosic materials and it is essential to make the process economically viable. Cellulases are the most studied multi- enzyme complex and comprise of endo-glucanases (EG), cellobiohydrolases (CBH) and β- glucosidases (BGL). The complete cellulase system; comprising CBH, EG and BGL components thus acts synergistically to convert crystalline cellulose to glucose. Cellulases are currently the third largest industrial enzyme worldwide. This is due to their wide applications in cotton processing, paper recycling, juice extraction, as detergent enzymes and additives in animal feed. In this study, production of cellulase by five fungal isolates (BTU 251-BTU 255) isolated from mushrooms, was investigated and optimised. Internal transcribed spacer regions (ITS1 and ITS4) were applied to identify the five fungal microorganisms. Isolates were identified as follows: BTU 251 as Aspegillus niger,BTU 253 as Penicillium polonicum, and BTU 255 as Penicillium polonicum. Cellulase was produced in shake flask cultures using Mandel’s mineral solution medium and Avicel as a carbon source. Cellulase activity was tested using 3, 5-Dinitrosalicylic acid assay and zymography, A. niger BTU 251 showed five activity bands ranging from 25- 61 kDa had an average nkat of 7000. Cultures from BTU 252 were the least active with an average nkat/ml of 200 and one activity band of 25 kDa. P. polonicum BTU 253 showed three activity bands ranging between 45 and 60 kDa and had an average nkat/ml of 2200. BTU 254 showed five activity bands ranging from 22- 116 kDa and had average nkat of 350. P. polonicum BTU 255 produced the highest cellulase activity of 8000 nkat/ml and with three activity bands estimated at 45-60 kDa on zymography. The optimal temperature for activity of the cellulases was between 55-70°C and enzymes were most active within a pH range of 4-6. Optimal pH for production of cellulases by P. polonicum BTU 255, P. polonicum BTU 253 and A. niger BTU 251 was 4 while optimal temperature for production of the cellulases was between 50-55°C. Total cellulase activity was determined using Whatman No.1 filter paper as a substrate and β- glucosidase production was determined in polyacrylamide gels using esculin as a substrate. In the hydrolysis of crystalline cellulose (Avicel), a combination of A. niger BTU 251 and P. polonicum BTU 255 (1:1), (1:9), (1:3), and (1:2) produced maximum glucose as follows: 1:1 (0.83g/L), 1:9 (10.4g/L), 1:3 (0.77g/L) and 1:2 (0.73g/L). Cellulases from P. polonicum BTU 255 were partially purified using affinity precipitation and analysed using MALDI- TOF/TOF. Peptide sequences of P. polonicum obtained from MALDI-TOF/TOF analysis were aligned by multiple sequence alignment with C. pingtungium. Conserved regions were identified using BLAST anaylsis as sequences of cellobiohydrolases. More research is required in producing a variety of cellulases that are capable of hydrolysing crystalline cellulose, the current study contributes to possible provision of locally developed combinations of cellulases that can be used in the production of bioethanol.
Schult, Tove. "Properties of acid sulfite cellulose for cellulose derivatives." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1508.
Full textLinder, Markus. "Structure-function relationships in fungal cellulose-binding domains /." Espoo, Finland : VTT, Technical Research Centre of Finland, 1996. http://www.vtt.fi/inf/pdf/publications/1996/P294.pdf.
Full textGal, Laurent. "Etude du cellulosome de Clostridium cellulolyticum et de l'un de ses composants : la cellulase CelG." Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11071.
Full textLane, J. M. "Solid state NMR studies of cellulose and cellulose acetate." Thesis, University of East Anglia, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374690.
Full textHu, Gang. "Adsorpton and Activity of Cellulase Enzymes on Various of Cellulose Substrates." NCSU, 2009. http://www.lib.ncsu.edu/theses/available/etd-04222009-234535/.
Full textQian, Chen. "Adsorption of Xyloglucan onto Cellulose and Cellulase onto Self-assembled Monolayers." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/42496.
Full textMaster of Science
Books on the topic "Cellulose"
Yaser, Abu Zahrim, Mohd Sani Sarjadi, and Junidah Lamaming. Cellulose. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084.
Full textClarke, Anthony J. Biodegradation of cellulose: Enzymology and biotechnology. Lancaster, Pa: Technomic Pub. Co., 1996.
Find full textKhan, Sher Bahadar, and Tahseen Kamal. Bacterial Cellulose. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003118756.
Full textOksman, Kristiina, and Mohini Sain, eds. Cellulose Nanocomposites. Washington, DC: American Chemical Society, 2006. http://dx.doi.org/10.1021/bk-2006-0938.
Full textHeinze, Thomas J., and Wolfgang G. Glasser, eds. Cellulose Derivatives. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0688.
Full textHeinze, Thomas, Omar A. El Seoud, and Andreas Koschella. Cellulose Derivatives. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73168-1.
Full textFan, Liang-tseng, Mahendra Moreshwar Gharpuray, and Yong-Hyun Lee. Cellulose Hydrolysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3.
Full textHamad, Wadood Y. Cellulose Nanocrystals. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118675601.
Full textMuthu, Subramanian Senthilkannan, and R. Rathinamoorthy. Bacterial Cellulose. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9581-3.
Full textKumar, Vinod, Saurabh Saran, Ashok Pandey, and Carlos Ricardo Soccol. Bacterial Cellulose. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003355434.
Full textBook chapters on the topic "Cellulose"
Kopp, Victória Vieira, Vânia Queiroz, Mariliz Gutterres, and João Henrique Zimnoch dos Santos. "Application of Cellulose in Leather." In Cellulose, 277–85. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-19.
Full textIndarti, Eti, Zalniati Fonna Rozali, Dewi Yunita, Laila Sonia, and Marwan Mas. "Characteristics of Cellulose Nanocrystals from Sugarcane Bagasse Isolated from Various Methods." In Cellulose, 201–15. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-14.
Full textYahya, Mohammad Harris M., and Noor Azrimi Umor. "Challenges and State of the Art of Allium Pulp Development for Papermaking." In Cellulose, 269–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-18.
Full textMeng, Tan Kean, Muaz Mohd Zaini Makhtar, Muhammed Aidiel Asyraff Mohmad Hatta, and Mohd Asyraf Kassim. "Biorefinery of Biofuel Production." In Cellulose, 45–70. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-4.
Full textAziz, Siti Ayu, and Mohd Sani Sarjadi. "A Brief Overview of the Use of Bamboo Biomass in the Asian Region's Energy Production." In Cellulose, 7–26. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-2.
Full textRaymond, Rozelyn Ignesia, and Khim Phin Chong. "Review on the Current Updates on Palm Oil Industry and Its Biomass Recycling to Fertilizer in Malaysia." In Cellulose, 71–81. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-5.
Full textPromie, Ahsan Rajib, Afroza Akter Liza, Md Nazrul Islam, Atanu Kumar Das, Md Omar Faruk, Sumaya Haq Mim, and Kallol Sarker. "Cellulose-Based Bioadhesive for Wood-Based Composite Applications." In Cellulose, 163–73. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-11.
Full textUmor, Noor Azrimi, Nurul Hidayah Adenan, Nadya Hajar, Nurul Ain Mat Akil, Nor Haniah A. Malik, Shahrul Ismail, and Zaim Hadi Meskam. "Comparing Properties and Potential of Pinewood, Dried Tofu, and Oil Palm Empty Fruit Bunch (EFB) Pellet as Cat Litter." In Cellulose, 301–7. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-21.
Full textAziz, Siti Ayu, Sabrina Soloi, Mohd Hafiz Abd Majid, Juferi Idris, Md Lutfor Rahman, and Mohd Sani Sarjadi. "Pre-Treatment of Oil Palm Empty Fruit Bunches with Sea Water Improves the Qualities of Lignocellulose Biomass." In Cellulose, 27–43. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-3.
Full textTanpichai, Supachok. "All-Cellulose Composites." In Cellulose, 145–62. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003358084-10.
Full textConference papers on the topic "Cellulose"
Ding, H., and F. Xu. "CELLULOSE-ACCESSIBILITY OF CELLULASES." In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.770.
Full textZhang, P. F., and Z. J. Pei. "Effects of Ultrasonic Treatments on Cellulose in Cellulosic Biofuel Manufacturing: A Literature Review." In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34180.
Full textAtalla, Rajai H. "Studies of Polymorphy in Native Cellulose." In Papermaking Raw Materials, edited by V. Punton. Fundamental Research Committee (FRC), Manchester, 1985. http://dx.doi.org/10.15376/frc.1985.1.59.
Full textGraham, William D., Stephanie L. Mathews, Christina Stolarchuk, Andrew Moore, Sunkyu Park, Joel J. Pawlak, and Amy Grunden. "Investigation into the Structural and Thermal Behavior of Bacterial Cellulose Fbers after Biologically Relevant Purification." In Advances in Pulp and Paper Research, Cambridge 2013, edited by S. J. I’ Anson. Fundamental Research Committee (FRC), Manchester, 2013. http://dx.doi.org/10.15376/frc.2013.2.785.
Full textSINGH ROHEWAL, SARGUN SINGH, JIHO SEO, NIHAL KANBARGI, and AMIT K. NASKAR. "RECYCLABLE CELLULOSE FIBER REINFORCED VITRIMER COMPOSITE." In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36699.
Full textHospodarova, Viola, Nadezda Stevulova, Vojtech Vaclavik, Tomas Dvorsky, and Jaroslav Briancin. "Cellulose Fibres as a Reinforcing Element in Building Materials." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.104.
Full textChen, Xiao-Quan, Xue-Yan Deng, Wen-Hao Shen, and Meng-Yu Jia. "Preparation and Characterization of Spherical Nanosized Cellulose by Enzymatic Hydrolysis of Pulp Fibers." In Advances in Pulp and Paper Research, Oxford 2017. Fundamental Research Committee (FRC), Manchester, 2017. http://dx.doi.org/10.15376/frc.2017.2.785.
Full textLiu, Yu-San, Yonghua Luo, John O. Baker, Yining Zeng, Michael E. Himmel, Steve Smith, and Shi-You Ding. "A single molecule study of cellulase hydrolysis of crystalline cellulose." In BiOS, edited by Jörg Enderlein, Zygmunt K. Gryczynski, and Rainer Erdmann. SPIE, 2010. http://dx.doi.org/10.1117/12.840975.
Full textYu, Laipu, and Gil Garnier. "Mechanism of Internal Sizing with Alkyl Ketene Dimers: The Role of Vapour Deposition." In The Fundamentals of Papermaking Materials, edited by C. F. Baker. Fundamental Research Committee (FRC), Manchester, 1997. http://dx.doi.org/10.15376/frc.1997.2.1021.
Full textLindström, Tom. "Some Fundamental Chemical Aspects on Paper Forming." In Fundamentals of Papermaking, edited by C. F. Baker and V. Punton. Fundamental Research Committee (FRC), Manchester, 1989. http://dx.doi.org/10.15376/frc.1989.1.311.
Full textReports on the topic "Cellulose"
Morrison, Mark, and Joshuah Miron. Molecular-Based Analysis of Cellulose Binding Proteins Involved with Adherence to Cellulose by Ruminococcus albus. United States Department of Agriculture, November 2000. http://dx.doi.org/10.32747/2000.7695844.bard.
Full textDelmer, Deborah, Nicholas Carpita, and Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Full textBartscherer, K. A., J. J. de Pablo, M. C. Bonnin, and J. M. Prausnitz. Purification of aqueous cellulose ethers. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6084196.
Full textAlan R. White and Ann G. Matthysse. Cellulose Synthesis in Agrobacterium tumefaciens. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/840242.
Full textCuzens, J. E. Conversion of bagasse cellulose into ethanol. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/674641.
Full textStipanovic, Arthur. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1163897.
Full textBarnes, Eftihia, Jennifer Jefcoat, Erik Alberts, Hannah Peel, L. Mimum, J, Buchanan, Xin Guan, et al. Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42132.
Full textHeintz, C. E., K. A. Rainwater, L. M. Swift, D. L. Barnes, and L. A. Worl. Enzymatic degradation of plutonium-contaminated cellulose products. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/350862.
Full textWood, Devon, Hang Liu, and Carol J. Salusso. Production and characterization of bacterial cellulose fabrics. Ames: Iowa State University, Digital Repository, November 2015. http://dx.doi.org/10.31274/itaa_proceedings-180814-130.
Full textHarmon, Jennifer. Homegrown: Investigating Design Potential of Bacterial Cellulose. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-216.
Full text