Academic literature on the topic 'Cellule tumorali K-ras'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellule tumorali K-ras.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cellule tumorali K-ras"

1

Morioka, C. Y., F. P. Costa, S. Saito, E. M. Lima, A. Watanabe, and C. C. Huang. "Can antisense oligonucleotides targeted K-ras gene downregulate the expression of MMP-2 and MMP-9 in orthotopically implanted pancreatic cancer in Syrian golden hamsters." Journal of Clinical Oncology 25, no. 18_suppl (June 20, 2007): 14147. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.14147.

Full text
Abstract:
14147 Background: Matrix metalloproteinases (MMP), especially MMP-2 and MMP-9, are thought to play major roles in pancreatic cancer growth and metastasis.Ras activates a multitude of downstream activities with roles in cellular processing, including invasion and metastasis.Therefore, antisense oligonucleotides (ASO) targeting K-ras gene may be a therapeutic approach. Aim: To elucidate the effectiveness of this gene therapy in growth, invasiveness,and expression of MMPs,in hamster experimental pancreatic cancer model. Materials and Methods: HaP-T1,a cell line derived from BHP-induced pancreatic cancer was used.Transfection with ASO were performed.MTT and MTT agarose assays were performed.MMP-2 and MMP-9 production by HaP-T1 was determined by gelatin zymography.For in vivo experiments,subcutaneously resected tumors were implanted orthotopically in Syrian golden hamsters,which were divided in 3 groups:Positive control (PC),Sense treated hamsters (STH), and Antisense treated hamsters (ATH).Follow up was done.Animals of each group were sacrificed at Days 10,17,24,31,and 38,to study local response and metastatic sites.Survival time was studied. Specimens were studied histopathologically.Orthotopic pancreatic tumor MMP production was measured by gelatin zymography. Results: ASO inhibited the tumoral growth.They downregulated active forms of MMP-2 and MMP-9 in a dose dependent manner in vitro.PC,STH,and ATH survived in average 72.7, 74,3, and 82,7 days,respectively.Spontaneous lymph node metastases were found from 31 days in ATH group,while PC and STH groups showed metastases and direct invasion to adjacent organs from 17 days.After death,metastatic sites were similar in the 3 groups.ASO downregulated the activation of MMP-9, more than MMP-2 in vivo. Conclusions: ASO targeted K-ras gene suppressed tumor growth in vitro and in vivo.ASO also downregulated the activation of MMP-2 and MMP-9 in vitro.However, it downregulated more MMP-9 than MMP-2 in vivo.Nevertheless, it can be a good choice in management of pancreatic cancer because MMP play an important role in the process of metastasis. No significant financial relationships to disclose.
APA, Harvard, Vancouver, ISO, and other styles
2

Molina, Jennifer R., Joseph M. Gozgit, Melissa M. Vasbinder, Ryan P. Abo, Kaiko kunii, Kristy G. Kuplast-Barr, Bin Gui, et al. "Abstract 2154: PARP7 inhibitor RBN-2397 increases tumoral IFN signaling leading to various tumor cell intrinsic effects and tumor regressions in mouse models." Cancer Research 82, no. 12_Supplement (June 15, 2022): 2154. http://dx.doi.org/10.1158/1538-7445.am2022-2154.

Full text
Abstract:
Abstract Targeting cytosolic nucleic acid sensing pathways to activate the Type I interferon (IFN) response is an emerging therapeutic strategy being explored in oncology. The PARP family consists of seventeen enzymes that regulate fundamental biological processes including response to cellular stress. PARP7 (TIPARP) is a stress-induced mono-ART that catalyzes the transfer of a single unit of ADP-ribose onto substrates (MARylation) to regulate their function and plays a role in suppressing the Type I IFN response in tumor cells (Gozgit 2021 Cancer Cell). RBN-2397 is the first potent and selective small molecule inhibitor of PARP7 catalytic function. To investigate the cell autonomous effects of PARP7 inhibition, we performed a cell line screen to identify PARP7 dependent cancer cell lines. We found that treatment of a subset of lines across several cancers led to a robust decrease in cell viability. Additionally, dosing of tumor bearing mice led to complete regressions in NCI-H1373 lung cancer xenografts. To investigate the mechanism of action (MOA) leading to decreased cell viability, we treated NCI-H1373 cells with RBN-2397 and found accumulation of cells in the G0/G1 phase of the cell cycle indicative of a cell cycle arrest. This arrest in NCI-H1373 cells was associated with the induction of senescence and increased mRNA expression of senescence associated secretory phenotype (SASP) genes. To evaluate the in vivo MOA, we performed an NCI-H1373 xenograft study and collected tumors after 7 days of RBN-2397 treatment. PARP7 inhibition led to decreased expression of Ki67, and increased expression of P21 and cleaved caspase-3, suggesting decreased proliferation and increased apoptosis. Increased expression of SASP genes was also observed in RBN-2397 treated tumors. Finally, we investigated transcriptional changes after RBN-2397 treatment by RNA sequencing. In addition to the effects observed in Type I IFN signaling, we also observed differential expression of genes associated with other pathways including autophagy and energy metabolism. Further evaluation of key autophagy proteins revealed that RBN-2397 affects autophagy flux and leads to a decrease in the oxygen consumption rate of cells and reduced ATP production from the mitochondria, suggesting that a change in energy metabolism may be related to the tumor intrinsic effect of RBN-2397. In summary, we show treatment of cancer cells with RBN-2397 not only leads to activation of tumor cell IFN signaling, but also causes G1 arrest and senescence, and changes in cancer cell autophagy and energy metabolism. In vivo, RBN-2397 treatment leads to complete tumor regressions in xenografts accompanied by decreased proliferation and increased apoptosis of tumor cells. RBN-2397 is currently being evaluated in the clinic as single agent in selected cancer types (NCT04053673) and in combination with anti-PD-1 therapies. Citation Format: Jennifer R. Molina, Joseph M. Gozgit, Melissa M. Vasbinder, Ryan P. Abo, Kaiko kunii, Kristy G. Kuplast-Barr, Bin Gui, Sunaina P. Nayak, Elena Minissale, Kerren K. Swinger, Tim J. Wigle, Alvin Z. Lu, Danielle J. Blackwell, Christina R. Majer, Yue Ren, Ellen Bamberg, Mario Niepel, Jan-Rung Mo, William D. Church, Ahmed S. Mady, Jeff Song, Zacharenia A. Varsamis, Luke Utley, Patricia E. Rao, Timoty J. Mitchison, Kevin W. Kuntz, Victoria M. Richon, Kristen McEachern, Heike Keilhack. PARP7 inhibitor RBN-2397 increases tumoral IFN signaling leading to various tumor cell intrinsic effects and tumor regressions in mouse models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2154.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cellule tumorali K-ras"

1

PALORINI, ROBERTA. "K-ras cancer cell fate under glucose deprivation is influenced by alteration of bioenergetic metabolism." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/41975.

Full text
Abstract:
Molte cellule tumorali, al fine di generare ATP e sostenere i processi anabolici, si servono principalmente della glicolisi piuttosto che della respirazione mitocondriale. Di conseguenza, il glucosio assume un ruolo critico per la sopravvivenza e la proliferazione delle cellule tumorali. Inoltre, attraverso la via dei pentosi fosfati, il glucosio porta alla formazione di NADPH, contribuendo al mantenimento nelle cellule dell’equilibrio ossidativo. Nondimeno, il glucosio può entrare anche nel pathway biosintetico delle esosammine (HBP), sostenendo la N- e O-glicosilazione di lipidi e proteine, importante per lo sviluppo tumorale. Considerando l’essenziale ruolo del glucosio, un possibile approccio per la terapia antitumorale è l’utilizzo del metabolismo del glucosio come target, non solo attraverso la glicolisi ma sfruttando anche gli altri processi glucosio-dipendenti. A tal proposito, la deprivazione di glucosio e la seguente analisi del destino cellulare a livello fenotipico e molecolare possono costituire una strategia utile per smascherare tutti i meccanismi mediati dal glucosio che partecipano alla crescita e alla sopravvivenza delle cellule tumorali. Tale strategia potrebbe essere poi sfruttata per offrire nuovi target e progettare nuove terapie antitumorali. Sebbene alcuni dati indichino che i tumori originino da cellule con persistenti difetti alla catena respiratoria mitocondriale, l’inibizione della fosforilazione ossidativa (OXPHOS) sembra una condizione di adattamento più che una causa della riprogrammazione metabolica delle cellule tumorali. In questo scenario, i meccanismi di regolazione post-traduzionali, di natura essenzialmente reversibile, a carico di proteine mitocondriali potrebbero assumere un importante ruolo regolatorio. Una delle principali modificazioni post-traduzionali è la fosforilazione dei residui Ser/Thr e, a tal proposito, la chinasi PKA presenta numerosi target a livello mitocondriale ed è coinvolta nella regolazione di biogenesi, trasporto e attività dei Complessi I e IV e della morfologia mitocondriale. Poiché è stato osservato che K-ras può causare la diminuzione dell’espressione di geni codificanti per componenti della via cAMP/PKA, nelle cellule K-ras-trasformate la deregolazione di tale via potrebbe portare alla disfunzione mitocondriale ed allo switch metabolico caratteristico delle cellule tumorali. A conferma di questa ipotesi, le cellule K-ras-trasformate mostrano minori livelli di attività dell’enzima PKA rispetto alle cellule normali. Inoltre, la stimolazione esogena della attività della PKA, ottenuta mediante trattamento con forskolina (FSK), protegge le cellule K-ras-trasformate, sia murine sia umane, dalla morte indotta dalla deplezione di glucosio. Tale protezione è dovuta alla stimolazione dell’attività del Complesso I, all’aumento dell’ATP intracellulare e della fusione mitocondriale e alla riduzione dei livelli di ROS. L’inibizione specifica di PKA previene quasi completamente molti di questi effetti. Inoltre, il breve trattamento con Mdivi-1, molecola in grado di favorire la fusione mitocondriale, riduce fortemente i livelli di ROS specialmente nelle cellule trasformate, indicando una stretta relazione tra morfologia e attività mitocondriale. Queste osservazioni supportano l’idea che l’apoptosi indotta dalla deprivazione di glucosio nelle cellule K-ras-trasformate è associata alla deregolazione della via cAMP/PKA che a sua volta causa la diminuzione dell’attività del Complesso I, la riduzione della produzione di ATP e la prevalenza della fissione mitocondriale rispetto alla fusione. Tale scoperta può aprire nuovi scenari per lo sviluppo di farmaci antitumorali. Poiché la carenza di glucosio si può riscontrare nell’ambiente in cui cresce e si sviluppa il tumore, tale condizione può essere sfruttata per potenziare l’azione di specifici agenti, come alcuni modulatori dell’OXPHOS. Infatti, l’inibizione delle funzioni mitocondriali in condizioni di deprivazione di glucosio potrebbe risultare letale per le cellule tumorali. In accordo, in questo lavoro viene mostrato che la deprivazione di glucosio e gli inibitori del Complesso I, come rotenone, piericidina A e capsaicina, hanno un effetto sinergico nell’indurre la morte delle cellule tumorali. Nello specifico, basse dosi d’inibitori del Complesso I, inefficaci sulle cellule normali e su cellule cresciute in alto glucosio, diventano citotossiche per le cellule tumorali cresciute in basso glucosio. L’effetto citotossico degli inibitori del Complesso I sulle cellule tumorali è ulteriormente e fortemente aumentato quando l’attività OXPHOS viene stimolata tramite il trattamento con FSK. Queste osservazioni dimostrano che la riattivazione della funzione mitocondriale associata alla deplezione di glucosio e al trattamento con basse dosi di inibitori del Complesso I riduce fortemente la sopravvivenza delle cellule tumorali e potrebbe quindi essere valutato come approccio terapeutico. Come indicato in precedenza, nelle cellule tumorali il glucosio è implicato in numerosi processi. L’analisi trascrittomica e proteomica di cellule murine K-ras-trasformate e della loro controparte normale mostra che la deprivazione di glucosio modula l’espressione di molti geni legati allo stress del reticolo endoplasmatico e all’Unfolded Protein Response (UPR). L’attivazione di tale risposta si osserva in entrambe le linee cellulari ma più fortemente nelle cellule trasformate, dove è associata anche alla morte cellulare. Infatti, la sua attenuazione tramite l’inibitore della traduzione proteica, cicloesimide, o lo chaperone chimico, 4-fenil-butirrato, protegge specificatamente le cellule trasformate dalla morte cellulare in basso glucosio. Anche l’inibizione della chinasi proapoptotica JNK, attivata a valle dell’UPR, previene specificatamente la morte delle cellule trasformate. Questa osservazione è in accordo col fatto che in basso glucosio le cellule trasformate mostrano una maggiore attivazione di JNK rispetto alle cellule normali. Inoltre, l’attivazione dell’UPR e la morte glucosio-dipendente delle cellule trasformate è completamente prevenuta dall’aggiunta nel terreno di coltura di un substrato dell’HBP, N-Acetyl-D-glucosammina, cosa che suggerisce una stretta relazione tra i due processi. È interessante notare che anche cellule umane esprimenti l’oncogene K-ras e caratterizzate da un fenotipo iperglicolitico mostrano simili effetti in seguito alla modulazione dell’UPR o dell’HBP. Quindi, la deprivazione di glucosio nelle cellule K-ras-trasformate può indurre un meccanismo di morte cellulare UPR-dipendente, attivato dall’eccessivo accumulo di proteine mal foldate, probabilmente come conseguenza della riduzione della N-glicosilazione delle proteine. La piena delucidazione di questa risposta potrebbe essere importante per progettare nuove strategie terapeutiche antitumorali. Oggi la nuova sfida della ricerca e della terapia antitumorale è il totale sradicamento del tumore, uccidendo anche le cellule staminali tumorali (cancer stem cells, CSCs). Considerando l’importante ruolo del metabolismo e della sua riprogrammazione nello sviluppo tumorale, la caratterizzazione del metabolismo delle CSCs può essere considerata un importante mezzo per lo sviluppo di nuove strategie antitumorali. Recentemente, è stata ottenuta la linea cellulare staminale di osteosarcoma umano, 3AB-OS. In questo lavoro di tesi ho svolto una prima caratterizzazione del suo profilo metabolico, paragonato a quello delle cellule tumorali MG63, da cui le cellule 3AB-OS sono state selezionate. Si è osservato che le cellule 3AB-OS dipendono più fortemente dalla glicolisi rispetto alle cellule MG63. Infatti, quando cresciute in presenza di galattosio e piruvato (substrati mitocondriali) le cellule 3AB-OS riducono maggiormente la propria capacità proliferativa rispetto alle cellule MG63. Esse risultano anche essere fortemente sensibili alla deprivazione di glucosio e al trattamento con inibitori della glicolisi mentre sono insensibili all’inibizione della catena respiratoria. Inoltre, diversamente dalle cellule MG63, le cellule 3AB-OS presentano principalmente mitocondri frammentati, in particolare in basso glucosio. Tutte queste osservazioni suggeriscono che il metabolismo energetico delle cellule 3AB-OS presenti caratteristiche paragonabili a quello delle cellule staminali normali e delle cellule tumorali caratterizzate da un metabolismo glicolitico. Può essere interessante notare che il profilo trascrizionale delle cellule 3AB-OS è simile a quello delle cellule K-ras-trasformate, confermando la similitudine tra le CSCs e le cellule tumorali glicolitiche. Quindi, alcune strategie sviluppate per il trattamento delle cellule tumorali glucosio-dipendenti potrebbero essere usate anche per trattare specifiche CSCs.
Several cancer cells, in order to generate ATP and sustain different anabolic processes, rely mainly on glycolysis instead of Oxidative Phosphorylation (OXPHOS). Thus, glucose assumes a critical role for cancer cell survival and proliferation. Moreover, through the penthose phospate pathway glucose leads to production of NADPH contributing to maintenance of cellular oxidative equilibrium. Besides, glucose can also enter Hexosamine Biosynthesis Pathway (HBP), sustaining lipid and protein N- and O-glycosylation that cover an important role in cancer development. Taking in consideration the essential role of glucose in cancer, one important anticancer therapeutic approach is to target its metabolism namely glycolysis and the other processes in which it is involved. On this regard, glucose deprivation and consequent analysis of cancer cell fate both at phenotypical and molecular level can be a useful strategy to unmask all mechanisms that participate to glucose-mediated cancer cell growth and survival. Such a strategy could be subsequently exploited to provide new targets and to set new anticancer therapies. Although there is evidence that tumors originate from cells with persistent defects in the mitochondrial respiratory system, inhibition of OXPHOS activity seems to be an adaptation to cancer metabolism reprogramming rather than a cause. In this scenario, reversible post-translational modifications of mitochondrial components could assume an important regulatory role. Among the most important post-translational modifications there is Ser/Thr phosphorylation and, on this regard, the protein kinase PKA has numerous mitochondrial targets being involved in the regulation of the biogenesis, the import and the activity of mitochondrial Complex I or IV as well as of mitochondrial morphology. Since it has been observed that oncogenic K-ras may lead to a depression of genes encoding for components of the cAMP/PKA signaling pathway, in K-ras-transformed cells the deregulation of cAMP/PKA pathway could cause OXPHOS depression and “glucose addiction” of cancer cells. In agreement with such a hypothesis, K-ras-transformed cells show lower PKA activity as compared to normal cells. Moreover, exogenous stimulation of PKA activity, achieved by Forskolin (FSK) treatment, protects mouse and human K-ras-transformed cells from apoptosis induced by glucose deprivation, by enhancing Complex I activity, intracellular ATP levels and mitochondrial fusion and by decreasing intracellular ROS levels. Worth noting, several of these effects are almost completely prevented by inhibition of PKA activity. Moreover, short time treatment with Mdivi-1, a molecule that favors mitochondrial fusion, strongly decreases the cellular ROS levels especially in transformed cells, indicating a close relationship between mitochondrial morphology and activity. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial Complex I decrease, reduction of ATP formation and prevalence of mitochondrial fission over fusion. Such a discovery can thereby open new approaches for the development of anticancer drugs. Given that glucose shortage is often encountered in the tumor microenvironment, it can be exploited to potentiate the action of specific agents, such as the mitochondrial OXPHOS activity modulators, that in condition of glucose deprivation could be lethal for cancer cells. Accordingly, it is shown that glucose deprivation and Complex I inhibitors, i.e., rotenone, piericidin A and capsaicin, synergize in inducing cancer cell death. In particular, low doses of Complex I inhibitors, ineffective on normal cells and on cells grown in high glucose, become specifically cytotoxic on cancer cells cultured in low glucose. Importantly, the cytotoxic effect of Complex I inhibitors is strongly enhanced when mitochondrial OXPHOS activity is stimulated by FSK. These findings demonstrate that the reactivation of the mitochondrial function associated with glucose depletion and low doses of mitochondrial Complex I inhibitors strongly affect cancer cell survival. This therapeutic approach might be valuable to eradicate cancer cells. As above indicated, glucose is implicated in numerous processes in cancer cells. Transcriptomic and proteomic analyses applied to mouse K-ras-transformed cells as compared to normal cells show that glucose deprivation modulates the expression of several genes linked to endoplasmic reticulum stress and the Unfolded Protein Response (UPR). The activation of such a response, as confirmed by mRNA and protein expression, is observed in both cell lines, but only in transformed cells is strictly associated to their death. In fact, its attenuation by protein translation inhibitor cycloheximide or chemical chaperone 4-Phenyl-butyrate specifically rescues transformed cells from death. Moreover, glucose deprivation-induced transformed cell death is also prevented by inhibition of an UPR downstream pro-apoptotic kinase, JNK, whose activation is observed specifically in transformed cells as compared to normal cells. Interestingly, UPR activation and death of transformed cells is completely prevented by addition of a specific HBP substrate, namely N-Acetyl-D-glucosamine, suggesting a strict relation between the two processes. Notably, also oncogenic K-ras expressing human glycolytic cells show similar effects after UPR modulating treatments. Thus, we show that glucose deprivation can induce an UPR-dependent transformed cell death mechanism, which is activated by harmful accumulation of unfolded proteins, probably as consequence of N-glycosylation protein reduction. The full elucidation of this response could be relevant to design new therapeutic strategies. Today the new challenge of anticancer research and therapy is the total eradication of the cancer, targeting cancer stem cells (CSCs). Considering the important role of metabolism and metabolic reprogramming in cancer development, also the definition of CSCs metabolism can be considered an important tool for future strategies targeting these cells. Recently, a human osteosarcoma 3AB-OS CSC-like line has been developed. Therefore we have decided to characterize its metabolic features as compared to the parental osteosarcoma MG63 cells, from which 3AB-OS cells were previously selected. 3AB-OS cells depend on glycolytic metabolism more strongly than MG63 cells. Indeed, addition to the growth medium of galactose and pyruvate -mitochondrial specific substrates- instead of glucose markedly reduces 3AB-OS growth, as compared to MG63 cells. In line with these findings 3AB-OS cells, compared to MG63 cells, are strongly sensitive to glucose depletion, glycolysis inhibition and less sensitive to respiratory inhibitors. Additionally, in contrast to MG63 cells, 3AB-OS display mainly fragmented mitochondria, particularly in low glucose. Overall, these findings suggest that 3AB-OS energy metabolism is more similar either to normal stem cells or to cancer cells characterized by a glycolytic metabolism. Interestingly, the transcriptional profile of CSCs is similar to that of K-ras-transformed cells, confirming a possible similarity to glycolytic cancer cells. Therefore, some strategies developed for glucose addicted cancer cells could be used also to treat specific CSCs.
APA, Harvard, Vancouver, ISO, and other styles
2

Chirica, Mircea. "Analyse de la réponse immunitaire anti-tumorale selon les caractéristiques oncogénétiques du cancer colorectal." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC082.

Full text
Abstract:
Les cancers colorectaux (CCR) se développent en face d'un système immunitaire important associé à la muqueuse intestinale. Les avancées récentes en immunologie tumorale ont mis en évidence le rôle de la réponse immunitaire dans le développement, l'évolution et le pronostic des cancers. Le système immunitaire est capable de modifier activement les cellules précancéreuses à fur et à mesure qu'elles apparaissent dans les tissus. La qualité de la réponse immunitaire contre la tumeur est un facteur pronostique important chez les patients atteints de CCR. Différents types de mutations génétiques impliqués dans le CCR ont étés décrites. Certaines sont associées à un meilleur pronostic (instabilité des microsatellites, MSI) et d'autres à un mauvais pronostic (BRAF). Ces résultats s'expliquent par la capacité de la tumeur à modeler la réponse immunitaire anti tumorale. D'autres biomarqueurs prédictifs ont été décrits tels les mutations des gènes KRAS, NRAS, PIK3CA et TP53 mais leur rôle pronostique reste incertain. Dans ce travail, nous avons étudié de façon comparative les lymphocytes T infiltrant la tumeur (TIL), la muqueuse non tumorale et les lymphocytes T du sang périphérique. Nous avons observé que les TIL ont un phénotype activé, avec engagement de la voie NKG2D dans des LT CD8. Nous montrons l'expansion d'une sous population de LT CD4 exprimant NKG2D qui présentent des fonctions cytotoxiques parmi les TIL et dans la muqueuse non tumorale. Enfin, nous montrons que les caractéristiques ontogénétiques des CCR influencent la réponse immunitaire à l'intérieur de la tumeur car les populations de TIL différent selon le statut MSI et de la présence d'une mutation KRAS ou NRAS
Colorectal cancers (CRC) develop in the face of an important immune system associated with the intestinal mucosal tissue. Recent advances in tumor immunology have highlighted the role of the immune response in the development, evolution and outcome of cancers. The immune system is thought to actively edit out pre-cancerous tells in tissues as they appear. The quality of the immune response against the tumor has emerged as an important prognostic factor in patients with CRC. Several studies have highlighted the different type of mutations and developmental processes involved in CRC. Some of these mutations are associated with better prognosis (microsatellite instability, MSI) and other with poor outcome (BRAF mutations). Some studies suggest that part of these differential outcomes is driven by the capacity of the tumor to induce a strong immune response. Several other predictive biomarkers have been described including mutations of the KRAS, NRAS, PIK3CA and TP53 genes but their prognostic role remains uncertain. In this study T tells infiltrating the tumor were compared to tells populating the unaffected neighboring mucosal tissue and tells from the peripheral blood. We observed that T tells from the tumor harbor an activated phenotype, with engagement of the NKG2D pathway in CD8 T tells. We show that mucosal and tumor-infiltrating T tells are enriched in NKG2D CD4 T tells, which exhibit cytotoxic functions. Finally, the oncogenic status of the cancer appears to influence the immune response within the tumor as T tell populations differ in MSI compared to MSS tumors and KRAS/NRAS mutated tumors compared to their wild type counterparts
APA, Harvard, Vancouver, ISO, and other styles
3

Regina, Sandra. "Expression du facteur tissulaire dans le cancer bronchique non à petites cellules : relation avec l'angiogenèse tumorale et les mutations des gènes K-RAS, p53, PTEN ET LKB1." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR3115.

Full text
Abstract:
Le facteur tissulaire (FT), protéine centrale de la coagulation plasmatique, joue un rôle direct dans le développement tumoral. Nous avons étudié l’expression génique et protéique du FT dans des échantillons de cancer bronchique non à petites cellules (CBNPC) et avons recherché une relation entre le niveau d’expression du FT, l’angiogénèse tumorale, les mutations de K- RAS, p53, PTEN et LKB1 et l’expression de l’héparanase. Nos résultats montrent que l’expression de FT est plus importante dans les tumeurs de grande taille et dans les stades avancés. Aucune relation n’a été retrouvée entre l’expression de FT, de VEGF165, de VEGF189, d’héparanase ou avec la microdensité vasculaire. Par contre, l’expression génique de FT était plus importante en cas de mutations touchant l’oncogène K-RAS ou les gènes suppresseurs de tumeur p53 et PTEN et l’expression du FT augmentait avec le nombre de lésions géniques. Enfin, la survie des patients était plus courte quand l’expression tumorale de FT était élevée et quand p53 était muté. Dans le CBNPC, l’expression tumorale de FT est donc régulée par les altérations géniques, caractéristiques du cancer et est un facteur pronostic
Tissue Factor (TF), the main initiator of blood coagulation, is also a signaling protein that regulates tumour development. In this study, we studied TF gene and protein expressions in biopsies of patients with non-small cell lung cancer (NSCLC). We also looked for a relationship between TF expression and tumour angiogenesis, heparanase gene expression and the status of K-RAS, p53, PTEN and LKB1 genes. TF expression was significantly higher in T3-T4 tumours and in stages III-IV. No relationship was evidenced between TF, VEGF165, VEGF189 and heparanase gene expressions or with tumour microvessel density. TF tumour gene expression was higher when K-RAS, p53 and PTEN were mutated and tumour TF mRNA levels increased progressively with the number of gene alterations. Finally, the median survival time was shorter in patients with tumour TF mRNA levels above the median value and when p53 was mutated. In conclusion, these results provide clear evidence that combined oncogene events affecting TSG dramatically increase TF gene expression. Moreover, the results of this study indicate that TF expression could be used as a prognostic marker in NSCLC
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography