Academic literature on the topic 'Cellular Polymer Foams'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellular Polymer Foams.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellular Polymer Foams"
Du, Changling, David Anthony Fikhman, and Mary Beth Browning Monroe. "Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant Properties." Antioxidants 11, no. 6 (June 1, 2022): 1105. http://dx.doi.org/10.3390/antiox11061105.
Full textWoolley, W. D. "Are Foams a Fire Hazard?" Cellular Polymers 4, no. 2 (March 1985): 81–115. http://dx.doi.org/10.1177/026248938500400201.
Full textSuethao, Supitta, Darshil U. Shah, and Wirasak Smitthipong. "Recent Progress in Processing Functionally Graded Polymer Foams." Materials 13, no. 18 (September 13, 2020): 4060. http://dx.doi.org/10.3390/ma13184060.
Full textHamdi, Ouassim, and Denis Rodrigue. "Auxetic Polymer Foams: Production, Modeling and Applications." Current Applied Polymer Science 4, no. 3 (December 2021): 159–74. http://dx.doi.org/10.2174/2452271604666211130123921.
Full textKishimoto, Satoshi, Toru Shimizu, Fu Xing Yin, Kimiyoshi Naito, and Yoshihisa Tanaka. "Mechanical Properties of Metallic Closed Cellular Materials Containing Polymer Fabricated by Polymer Penetration." Materials Science Forum 654-656 (June 2010): 2628–31. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2628.
Full textFan, Zhi Geng, Chang Qing Chen, and Wen Jun Hu. "A Numerical Study on the Large Deformations of Polymer Foams with Spherical Pores." Advanced Materials Research 295-297 (July 2011): 1581–85. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1581.
Full textLagzdiņš, Aivars, Alberts Zilaucs, Ilze Beverte, and Jānis Andersons. "Modeling the Nonlinear Deformation of Highly Porous Cellular Plastics Filled with Clay Nanoplatelets." Materials 15, no. 3 (January 28, 2022): 1033. http://dx.doi.org/10.3390/ma15031033.
Full textRomán-Lorza, S., M. A. Rodriguez-Perez, and J. A. De Saja Sáez. "Cellular Structure of Halogen-Free Flame Retardant Foams Based on LDPE." Cellular Polymers 28, no. 4 (July 2009): 249–68. http://dx.doi.org/10.1177/026248930902800402.
Full textSoriano-Corral, F., L. A. Calva-Nava, J. F. Hernández-Gámez, E. Hernández-Hernández, P. González-Morones, C. A. Ávila-Orta, G. Soria-Arguello, Heidi A. Fonseca-Florido, Carlos A. Covarrubias-Gordillo, and Ramón E. Díaz de León-Gómez. "Influence of Ethylene Plasma Treatment of Agave Fiber on the Cellular Morphology and Compressive Properties of Low-Density Polyethylene/Ethylene Vinyl Acetate Copolymer/Agave Fiber Composite Foams." International Journal of Polymer Science 2021 (March 25, 2021): 1–13. http://dx.doi.org/10.1155/2021/9150310.
Full textHarikrishnan, S., Kamlesh Kumar, V. Venkateswara Rao, and Ajay Misra. "Shock Wave Behaviour of Polymeric Materials for Detonation Waveshapers." Defence Science Journal 71, no. 6 (October 22, 2021): 730–36. http://dx.doi.org/10.14429/dsj.71.16943.
Full textDissertations / Theses on the topic "Cellular Polymer Foams"
Forest, Charlène. "Preparation of nano-cellular foams from nanostructured polymer materials by means of CO2 foaming process." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10250.
Full textThis work focuses on the fabrication of nano-cellular polymer materials by means of a CO2 batch foaming process. To produce such materials, the foaming has to be induced in nano-structured polymer materials in order to favour heterogeneous nucleation and thus to obtain high nucleation rate and high cell density. The foaming of ABS terpolymers and nanostructured PMMAs was investigated, with the aim of producing nano-cellular foams with low density (lower than 0.3 g.cm-3) and an average cell size of 100 nm, which corresponds to required foam morphologies for super thermal insulating applications. It has been shown that nucleation, and thus cell density, directly depends on the content and morphology of nucleating agents, corresponding to dispersed polymer immiscible phases. The production of nano-cellular materials required the understanding of cell growth mechanisms, the role of CO2 as blowing agent and plasticiser and process optimisation. Specifically, the influence of viscoelastic behaviour of polymer materials and surface forces on cell formation was also investigated. It was found that the foaming occurred in viscoelastic media, with transitional behaviour between solid and liquid, depending on foaming temperature and molar mass of polymers
Režnáková, Ema. "Příprava a charakterizace lehčených polymerních materiálů s hierarchickou celulární strukturou." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-414127.
Full textKhunniteekool, Chonlada. "Structure/property relationships of cross-linked polyethylene and ethylene vinyl acetate copolymer foams." Thesis, University of Manchester, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390453.
Full textHanna, Richard Matthew 1979. "Viscoelastic polymer analysis : experimental, data analysis, and modeling techniques applied to cellular silicone foam." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/89357.
Full textSharudin, Rahida Wati Binti. "Carbon Dioxide Physical Foaming of Polymer Blends:-Blend Morphology and Cellular Structure-." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/161019.
Full textHána, Tomáš. "Funkční polymerní pěny." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2018. http://www.nusl.cz/ntk/nusl-376873.
Full textSen, Indraneel. "Degradation Mechanism of Expanded Polystyrene (EPS) Foam in Lost Foam Casting, PIPS Approach for Synthesis and Novel Expansion Techniques for Cellular Foam." 2007. http://trace.tennessee.edu/utk_graddiss/299.
Full textPinto, Susana Cristina dos Santos. "Development and characterization of multifunctional hybrid structures based on cellular metals." Doctoral thesis, 2020. http://hdl.handle.net/10773/28911.
Full textO interesse em materiais celulares aumentou significativamente nas últimas duas décadas, refletindo a crescente procura por estruturas leves e multifuncionais. A relação entre baixo peso e elevado desempenho mecânico, acústico e térmico, torna-os atrativos para aplicações em engenharia tais como civil, automóvel, aeroespacial, entre outras. As espumas metálicas de porosidade aberta (OCF) são materiais funcionais promissores caracterizados por baixo peso, elevada área superficial interna, reciclabilidade e inflamabilidade, no entanto são mecanicamente fracas. Os investigadores descobriram neste tópico uma oportunidade na exploração destes materiais, reforçando-os com polímeros de modo a melhorar o seu desempenho e diversificar a sua aplicação. No entanto, o trabalho desenvolvido neste campo ainda é escasso e focado principalmente no preenchimento dos poros das OCF com polímeros densos e na sua caracterização mecânica. O objetivo deste trabalho incidiu no fabrico de diversas espumas híbridas tendo como base o preenchimento de OCF com diversos nanocompósitos poliméricos de modo a obter materiais multifuncionais, de preferência leves, fornecendo alternativas promissoras aos materiais que já existem no mercado. Foram selecionados para o preenchimento, celulose bacteriana (BC) e poliuretana (PUF) na forma de espumas, cortiça aglomerada e polidimetilsiloxano (PDMS) e epóxido (EP) como materiais densos. Antes da incorporação na OCF, os materiais de preenchimento foram reforçados com materiais à base de grafeno (GBMs) nomeadamente óxido de grafeno (GO), óxido de grafeno reduzido (rGO) ou nanoplaquetas de grafeno (GNPs) de modo a melhorar as propriedades mecânicas, térmicas e acústicas e conferir a propriedade retardamento de chama. Globalmente, a adição de GBMs melhorou as propriedades mecânicas das espumas de BC e de PUF, mas diminuiu a resistência mecânica dos polímeros densos devido aos espaços vazios criados nas matrizes poliméricas. Adicionalmente, os GBMs utilizados não aumentaram consideravelmente a condutividade térmica, o que, para aplicações de isolamento pode ser uma mais valia. De referir a eficiência da presença dos GBMs como agentes de retardação de chama dos nanocompósitos. Dada a variedade de propriedades dos materiais produzidos, as suas aplicações poderão ser múltiplas. As estruturas híbridas constituídas por OCF e materiais mais densos (PDMS ou EP) poderão ter aplicações como componentes estruturais, pois apresentam elevada resistência e boa capacidade de absorção de energia. As espumas híbridas resultantes do preenchimento das OCF com espumas nanocompósitas de BC ou PUF ou ainda aglomerados de cortiça com boas propriedades de isolamento acústico e térmico leveza poderão encontrar aplicações onde estas propriedades são requeridas.
Programa Doutoral em Engenharia Mecânica
Books on the topic "Cellular Polymer Foams"
Symposium on Cellular Metals and Polymers (2004 Fürth, Germany). Cellular metals and polymers: CMaP : proceedings of the Symposium on Cellular Metals and Polymers : sponsored by the Deutsche Forschungsgemeinschaft (DFG) : held October 12-14, 2004, in Fürth, Germany. Uetikon-Zuerich, Switzerland: Trans Tech Publications Ltd, 2005.
Find full textVipin, Kumar, Advani Suresh G, American Society of Mechanical Engineers. Materials Division., and American Society of Mechanical Engineers. Winter Meeting, eds. Cellular polymers: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York: ASME, 1992.
Find full text(Editor), J. M. Buist, S. J. Grayson (Editor), and W. D. Woolley (Editor), eds. Fire and Cellular Polymers. Elseview Applied Science, 1986.
Find full text(Editor), R. F. Singer, C. Korner (Editor), V. Altstadt (Editor), and H. Munstedt (Editor), eds. Cellular Metals And Polymers 2004. Trans Tech Publications, 2005.
Find full textGa.) American Society of Mechanical Engineers. Winter Meeting (1991 : Atlanta. Cellular Polymers Presented at the Winter Annual Meeting of the Amse: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, ... November 8-13, 1992 (MD (Series), V. 38.). American Society of Mechanical Engineers, 1994.
Find full textBook chapters on the topic "Cellular Polymer Foams"
Paul, K. T. "Fire, Foams and Furniture." In Fire and Cellular Polymers, 135–63. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_9.
Full textWoolley, W. D. "Are Foams a Fire Hazard?" In Fire and Cellular Polymers, 25–59. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-3443-6_3.
Full textVirr, L. "Fire and Foams in Transport Applications — Aircraft." In Fire and Cellular Polymers, 165–73. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_10.
Full textHitch, M. J., and D. C. Rolph. "PVC Foams: Their Use and Fire Behaviour." In Fire and Cellular Polymers, 219–37. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_14.
Full textWiedermann, R. "Fire Properties of Isocyanate Based Rigid Foams." In Fire and Cellular Polymers, 239–49. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_15.
Full textTroitzsch, J. H. "How Do Foams Perform Under Fire Conditions?" In Fire and Cellular Polymers, 77–91. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_5.
Full textGrayson, S. J., J. Hume, and D. A. Smith. "Multifunctional Smoke- and Gas-Suppressant Systems for Polyurethane Foams." In Fire and Cellular Polymers, 289–313. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_19.
Full textCunningham, A., and N. C. Hilyard. "Physical behaviour of polymeric foams — an overview." In Low density cellular plastics, 1–21. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1256-7_1.
Full textCreyf, H., and J. Fishbein. "Advance of Flexible Polyurethane Foam Technology." In Fire and Cellular Polymers, 279–88. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_18.
Full textBriggs, P. J. "Fire Behaviour of Rigid Foam Insulation Boards." In Fire and Cellular Polymers, 117–33. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-3443-6_8.
Full textConference papers on the topic "Cellular Polymer Foams"
Kishimoto, Satoshi, Kimiyoshi Naito, Toru Shimizu, and Fuxing Yin. "Mechanical Properties of Metallic Cellular Materials With Polymer." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3725.
Full textKishimoto, Satoshi, Kimiyoshi Naito, Toru Shimizu, and Fuxing Yin. "Mechanical Properties of Closed Cellular Materials Containing Polymer." In ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2009. http://dx.doi.org/10.1115/smasis2009-1273.
Full textHanda, Y. Paul, and Zhiyi Zhang. "New Pathways to Microcellular and Ultramicrocellular Polymeric Foams." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0917.
Full textDupe`re, Iain D. J., Ann P. Dowling, and Tian J. Lu. "The Absorption of Sound in Cellular Foams." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60618.
Full textQiu, Xunlin, Werner Wirges, Reimund Gerhard, Ming Ren, Mattewos Tefferi, and Yang Cao. "Electrical-insulation behavior of cellular polymer foams in comparison to their piezoelectret properties." In 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). IEEE, 2016. http://dx.doi.org/10.1109/ichve.2016.7800761.
Full textMiyamoto, Ryoma, Tatsumi Utano, Shunya Yasuhara, Shota Ishihara, and Masahiro Ohshima. "Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams." In PROCEEDINGS OF PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918399.
Full textMcRae, Joe D., Hani E. Naguib, and Noureddine Atalla. "Mechanical and Acoustic Performance of Compression Molded Open Cell Polypropylene Foams." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-447.
Full textPetrossian, Gayaneh, and Amir Ameli. "Preparation of Highly Loaded Piezo-Composite Foams With High Expansion and Low Permittivity." In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3807.
Full textCafiero, Livia, Luigi Sorrentino, and Salvatore Iannace. "Improving the cellular morphology in high performance thermoplastics foams through blending." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876879.
Full textVerdolotti, Letizia, Barbara Liguori, Ilaria Capasso, Domenico Caputo, Marino Lavorgna, and Salvatore Iannace. "Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix." In TIMES OF POLYMERS (TOP) AND COMPOSITES 2014: Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4876819.
Full text