Journal articles on the topic 'Cellular deconvolution'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cellular deconvolution.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Main, Martin J., and Andrew X. Zhang. "Advances in Cellular Target Engagement and Target Deconvolution." SLAS DISCOVERY: Advancing the Science of Drug Discovery 25, no. 2 (January 20, 2020): 115–17. http://dx.doi.org/10.1177/2472555219897269.
Full textMenden, Kevin, Mohamed Marouf, Sergio Oller, Anupriya Dalmia, Daniel Sumner Magruder, Karin Kloiber, Peter Heutink, and Stefan Bonn. "Deep learning–based cell composition analysis from tissue expression profiles." Science Advances 6, no. 30 (July 2020): eaba2619. http://dx.doi.org/10.1126/sciadv.aba2619.
Full textSosina, Olukayode A., Matthew N. Tran, Kristen R. Maynard, Ran Tao, Margaret A. Taub, Keri Martinowich, Stephen A. Semick, et al. "Strategies for cellular deconvolution in human brain RNA sequencing data." F1000Research 10 (August 4, 2021): 750. http://dx.doi.org/10.12688/f1000research.50858.1.
Full textDiaz, Michael, Jasmine Tran, Nicole Natarelli, Akash Sureshkumar, and Mahtab Forouzandeh. "Cellular Deconvolution Reveals Unique Findings in Several Cell Type Fractions Within the Basal Cell Carcinoma Tumor Microenvironment." SKIN The Journal of Cutaneous Medicine 7, no. 6 (November 13, 2023): 1170–73. http://dx.doi.org/10.25251/skin.7.6.15.
Full textKim, Boyoung. "DVDeconv: An Open-Source MATLAB Toolbox for Depth-Variant Asymmetric Deconvolution of Fluorescence Micrographs." Cells 10, no. 2 (February 15, 2021): 397. http://dx.doi.org/10.3390/cells10020397.
Full textTurner, J. N., B. Roysam, T. J. Holmes, D. H. Szarowski, W. Lin, S. Bhattacharyya, H. Ancin, R. Mackin, and D. Becker. "Visualization and quantitation of cellular and tissue anatomy by 3D light microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 928–29. http://dx.doi.org/10.1017/s0424820100172371.
Full textAbbas, Alexander R., Kristen Wolslegel, Dhaya Seshasayee, and Hilary F. Clark. "Deconvolution of Blood Microarray Data Elucidates Cellular Activation Patterns in SLE." Clinical Immunology 123 (2007): S125—S126. http://dx.doi.org/10.1016/j.clim.2007.03.536.
Full textUdpa, L., V. M. Ayres, Yuan Fan, Qian Chen, and S. A. Kumar. "Deconvolution of atomic force microscopy data for cellular and molecular imaging." IEEE Signal Processing Magazine 23, no. 3 (May 2006): 73–83. http://dx.doi.org/10.1109/msp.2006.1628880.
Full textBlum, Yuna, Marie-Claude Jaurand, Aurélien De Reyniès, and Didier Jean. "Unraveling the cellular heterogeneity of malignant pleural mesothelioma through a deconvolution approach." Molecular & Cellular Oncology 6, no. 4 (May 7, 2019): 1610322. http://dx.doi.org/10.1080/23723556.2019.1610322.
Full textPoirier, Christopher C., Win Pin Ng, Douglas N. Robinson, and Pablo A. Iglesias. "Deconvolution of the Cellular Force-Generating Subsystems that Govern Cytokinesis Furrow Ingression." PLoS Computational Biology 8, no. 4 (April 26, 2012): e1002467. http://dx.doi.org/10.1371/journal.pcbi.1002467.
Full textMahon, Kerry P., Terra B. Potocky, Derek Blair, Marc D. Roy, Kelly M. Stewart, Thomas C. Chiles, and Shana O. Kelley. "Deconvolution of the Cellular Oxidative Stress Response with Organelle-Specific Peptide Conjugates." Chemistry & Biology 14, no. 8 (August 2007): 923–30. http://dx.doi.org/10.1016/j.chembiol.2007.07.011.
Full textAlonso-Moreda, Natalia, Alberto Berral-González, Enrique De La Rosa, Oscar González-Velasco, José Manuel Sánchez-Santos, and Javier De Las Rivas. "Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells." International Journal of Molecular Sciences 24, no. 13 (June 28, 2023): 10765. http://dx.doi.org/10.3390/ijms241310765.
Full textQin, Yufang, Weiwei Zhang, Xiaoqiang Sun, Siwei Nan, Nana Wei, Hua-Jun Wu, and Xiaoqi Zheng. "Deconvolution of heterogeneous tumor samples using partial reference signals." PLOS Computational Biology 16, no. 11 (November 30, 2020): e1008452. http://dx.doi.org/10.1371/journal.pcbi.1008452.
Full textMir, Mustafa, S. Derin Babacan, Michael Bednarz, Minh N. Do, Ido Golding, and Gabriel Popescu. "Visualizing Escherichia coli Sub-Cellular Structure Using Sparse Deconvolution Spatial Light Interference Tomography." PLoS ONE 7, no. 6 (June 28, 2012): e39816. http://dx.doi.org/10.1371/journal.pone.0039816.
Full textAbbas, Alexander R., Kristen Wolslegel, Dhaya Seshasayee, Zora Modrusan, and Hilary F. Clark. "Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus." PLoS ONE 4, no. 7 (July 1, 2009): e6098. http://dx.doi.org/10.1371/journal.pone.0006098.
Full textMarquardt, Jens U. "Deconvolution of the cellular origin in hepatocellular carcinoma: Hepatocytes take the center stage." Hepatology 64, no. 4 (July 27, 2016): 1020–23. http://dx.doi.org/10.1002/hep.28671.
Full textRosasco, Mario G., Chi-Sing Ho, Tianyou Luo, Michelle M. Stein, Luca Lonini, Martin C. Stumpe, Jagadish Venkataraman, Sonal Khare, and Ameen A. Salahudeen. "Abstract 4692: Comparison of interassay similarity and cellular deconvolution in spatial transcriptomics data using Visum CytAssist." Cancer Research 83, no. 7_Supplement (April 4, 2023): 4692. http://dx.doi.org/10.1158/1538-7445.am2023-4692.
Full textFisher, Cody, Jordan Krull, Aditya Bhagwate, Kerryl Greenwood-Quaintance, Matthew P. Abdel, and Robin Patel. "Predicted Cellularity using RNASeq-Based Cellular Deconvolution Differentiates Periprosthetic Joint Infection from Non-Infectious Arthroplasty Failure." Journal of Immunology 208, no. 1_Supplement (May 1, 2022): 170.28. http://dx.doi.org/10.4049/jimmunol.208.supp.170.28.
Full textCurtin, Lee, Kamila Bond, Sebastian Velez, Andrea Hawkins-Daarud, Javier C. Urcuyo, Gustavo De Leon, Jazlynn Langworthy, et al. "BULK RNA-SEQ DECONVOLUTION OF IMAGE-LOCALIZED HIGGRADE GLIOMA BIOPSIES REVEALS MEANINGFUL CELLULAR STATES." Neuro-Oncology 25, Supplement_3 (September 16, 2023): iii2. http://dx.doi.org/10.1093/neuonc/noad147.005.
Full textShah, Nameeta, Hyun Jung Park, Pranali Sonpatki, Kyung Yeon Han, Hyeon Jong Yu, Shin Wook Kim, Tamrin Chowdhury, et al. "TMIC-20. A SPATIALLY RESOLVED HUMAN GLIOBLASTOMA ATLAS REVEALS DISTINCT CELLULAR AND MOLECULAR PATTERNS OF ANATOMICAL NICHES." Neuro-Oncology 25, Supplement_5 (November 1, 2023): v282. http://dx.doi.org/10.1093/neuonc/noad179.1086.
Full textBornot, Aurelie, Carolyn Blackett, Ola Engkvist, Clare Murray, and Claus Bendtsen. "The Role of Historical Bioactivity Data in the Deconvolution of Phenotypic Screens." Journal of Biomolecular Screening 19, no. 5 (January 17, 2014): 696–706. http://dx.doi.org/10.1177/1087057113518966.
Full textHendriksen, Josephine, Aidan Flynn, Simone Maarup, Hans Poulsen, Ulrik Lassen, and Joachim Weischenfeldt. "TAMI-68. DECONVOLUTION OF IMMUNOTHERAPY-TREATED GLIOBLASTOMA IDENTIFIES CELLULAR HETEROGENEITY AND PLASTICITY AT THE SINGLE-CELL LEVEL." Neuro-Oncology 23, Supplement_6 (November 2, 2021): vi212. http://dx.doi.org/10.1093/neuonc/noab196.850.
Full textHendriksen, J. D., A. Flynn, S. B. Maarup, H. S. Poulsen, U. Lassen, and J. Weischenfeldt. "P06.01.A Deconvolution of immunotherapy-treated glioblastoma identifies cellular heterogeneity and plasticity at the single-cell level." Neuro-Oncology 24, Supplement_2 (September 1, 2022): ii37. http://dx.doi.org/10.1093/neuonc/noac174.125.
Full textMorilla, Ian, and Juan A. Ranea. "Mathematical deconvolution uncovers the genetic regulatory signal of cancer cellular heterogeneity on resistance to paclitaxel." Molecular Genetics and Genomics 292, no. 4 (April 6, 2017): 857–69. http://dx.doi.org/10.1007/s00438-017-1316-2.
Full textWang, Linghua. "Developmental Deconvolution Suggests New Tumor Biology and a Tool for Predicting Cancer Origin." Cancer Discovery 12, no. 11 (November 2, 2022): 2498–500. http://dx.doi.org/10.1158/2159-8290.cd-22-0943.
Full textChu, Tinyi, Edward Rice, Hans Salamanca, Zhong Wang, Sharon Longo, Robert Corona, Mariano Viapiano, Lawrence Chin, and Charles Danko. "COMP-14. MOLECULAR PROFILING AND CELLULAR DECONVOLUTION OF GLIOBLASTOMA BRAIN TUMORS USING CHROMATIN RUN-ON AND SEQUENCING." Neuro-Oncology 21, Supplement_6 (November 2019): vi64. http://dx.doi.org/10.1093/neuonc/noz175.257.
Full textVallania, Francesco, Karen Assayag, Peter Ulz, Adam Drake, Hayley Warsinske, John St John, Girish Putcha, et al. "Plasma-derived cfDNA to reveal potential biomarkers of response prediction and monitoring in non-small cell lung cancer (NSCLC) patients on immunotherapy." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): 9588. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.9588.
Full textWang, Kun, Sushant Patkar, Joo Sang Lee, E. Michael Gertz, Welles Robinson, Fiorella Schischlik, David R. Crawford, Alejandro A. Schäffer, and Eytan Ruppin. "Deconvolving Clinically Relevant Cellular Immune Cross-talk from Bulk Gene Expression Using CODEFACS and LIRICS Stratifies Patients with Melanoma to Anti–PD-1 Therapy." Cancer Discovery 12, no. 4 (January 4, 2022): 1088–105. http://dx.doi.org/10.1158/2159-8290.cd-21-0887.
Full textMahoney, Rebecca, Cathal Seoighe, and Derek W. Morris. "2. USING CELLULAR DECONVOLUTION TO INVESTIGATE CELL SUBTYPE PROPORTIONS IN CORTICAL GENE EXPRESSION DATA IN SCHIZOPHRENIA." European Neuropsychopharmacology 51 (October 2021): e41. http://dx.doi.org/10.1016/j.euroneuro.2021.07.095.
Full textHåkanson, Maria, Stefan Kobel, Matthias P. Lutolf, Marcus Textor, Edna Cukierman, and Mirren Charnley. "Controlled Breast Cancer Microarrays for the Deconvolution of Cellular Multilayering and Density Effects upon Drug Responses." PLoS ONE 7, no. 6 (June 29, 2012): e40141. http://dx.doi.org/10.1371/journal.pone.0040141.
Full textFriman, Tomas. "Mass spectrometry-based Cellular Thermal Shift Assay (CETSA®) for target deconvolution in phenotypic drug discovery." Bioorganic & Medicinal Chemistry 28, no. 1 (January 2020): 115174. http://dx.doi.org/10.1016/j.bmc.2019.115174.
Full textKirita, Yuhei, Haojia Wu, Kohei Uchimura, Parker C. Wilson, and Benjamin D. Humphreys. "Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury." Proceedings of the National Academy of Sciences 117, no. 27 (June 22, 2020): 15874–83. http://dx.doi.org/10.1073/pnas.2005477117.
Full textHara, Toshiro, Rony Chanoch-Myers, Nathan Mathewson, Chad Myskiw, Lyla Atta, Lillian Bussema, Stephen Eichhorn, et al. "TAMI-12. CANCER-IMMUNE CELL INTERACTIONS DRIVE TRANSITIONS TO MESENCHYMAL-LIKE STATES IN GLIOBLASTOMA." Neuro-Oncology 23, Supplement_6 (November 2, 2021): vi200. http://dx.doi.org/10.1093/neuonc/noab196.796.
Full textLAI, DARONG, HONGTAO LU, MARIO LAURIA, DIGEO DI BERNARDO, and CHRISTINE NARDINI. "MANIA: A GENE NETWORK REVERSE ALGORITHM FOR COMPOUNDS MODE-OF-ACTION AND GENES INTERACTIONS INFERENCE." Advances in Complex Systems 13, no. 01 (February 2010): 83–94. http://dx.doi.org/10.1142/s0219525910002451.
Full textDilip, Deepika, Pallavi Galera, David Nemirovsky, Morgan Lallo, Kamal Menghrajani, Andriy Derkach, Ross L. Levine, Richard Koche, Wenbin Xiao, and Jacob Glass. "Precision Lineage Deconvolution in Mixed Phenotype Acute Leukemia Using Cite-Seq Derived Hematopoietic Stages Identifies Lineage Dynamics Associated with Treatment Response." Blood 142, Supplement 1 (November 28, 2023): 4324. http://dx.doi.org/10.1182/blood-2023-188871.
Full textFriedrich, Johannes, Pengcheng Zhou, and Liam Paninski. "Fast online deconvolution of calcium imaging data." PLOS Computational Biology 13, no. 3 (March 14, 2017): e1005423. http://dx.doi.org/10.1371/journal.pcbi.1005423.
Full textPatel, Riya Jayesh, Spencer Rosario, Sahithi Sonti, Ankita Kapoor, Deepak Vadehra, Sarbajit Mukherjee, Kannan Thanikachalam, and Renuka V. Iyer. "Genomic predictors of sensitivity to chemotherapy and immunotherapy in cholangiocarcinoma." Journal of Clinical Oncology 42, no. 3_suppl (January 20, 2024): 540. http://dx.doi.org/10.1200/jco.2024.42.3_suppl.540.
Full textMukashyaka, Patience, Pooja Kumar, David J. Mellert, Shadae Nicholas, Javad Noorbakhsh, Mattia Brugiolo, Olga Anczukow, Edison T. Liu, and Jeffrey H. Chuang. "Abstract A032: Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology." Cancer Research 84, no. 3_Supplement_2 (February 1, 2024): A032. http://dx.doi.org/10.1158/1538-7445.canevol23-a032.
Full textGuo, Shuai, Xuesen Cheng, Andrew Koval, Shuangxi Ji, Qingnan Liang, Yumei Li, Leah A. Owen, et al. "Abstract 4273: Integration with benchmark data of paired bulk and single-cell RNA sequencing data substantially improves the accuracy of bulk tissue deconvolution." Cancer Research 83, no. 7_Supplement (April 4, 2023): 4273. http://dx.doi.org/10.1158/1538-7445.am2023-4273.
Full textNishikawa, Toui, Masatoshi Lee, and Masataka Amau. "New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution." Scientific Reports 14, no. 1 (February 20, 2024). http://dx.doi.org/10.1038/s41598-024-54798-z.
Full textZhang, Zheyang, and Jialiang Huang. "Cellular deconvolution with continuous transitions." Nature Computational Science, July 13, 2023. http://dx.doi.org/10.1038/s43588-023-00489-0.
Full textCai, Manqi, Molin Yue, Tianmeng Chen, Jinling Liu, Erick Forno, Xinhua Lu, Timothy Billiar, et al. "Robust and accurate estimation of cellular fraction from tissue omics data via ensemble deconvolution." Bioinformatics, April 19, 2022. http://dx.doi.org/10.1093/bioinformatics/btac279.
Full textCroxford, Matthew, Michael Elbaum, Muthuvel Arigovindan, Zvi Kam, David Agard, Elizabeth Villa, and John Sedat. "Entropy-regularized deconvolution of cellular cryotransmission electron tomograms." Proceedings of the National Academy of Sciences 118, no. 50 (December 7, 2021). http://dx.doi.org/10.1073/pnas.2108738118.
Full textVellame, Dorothea Seiler, Gemma Shireby, Ailsa MacCalman, Emma L. Dempster, Joe Burrage, Tyler Gorrie-Stone, Leonard S. Schalkwyk, Jonathan Mill, and Eilis Hannon. "Uncertainty quantification of reference-based cellular deconvolution algorithms." Epigenetics, December 20, 2022, 1–15. http://dx.doi.org/10.1080/15592294.2022.2137659.
Full textBell-Glenn, Shelby, Jeffrey A. Thompson, Lucas A. Salas, and Devin C. Koestler. "A Novel Framework for the Identification of Reference DNA Methylation Libraries for Reference-Based Deconvolution of Cellular Mixtures." Frontiers in Bioinformatics 2 (March 21, 2022). http://dx.doi.org/10.3389/fbinf.2022.835591.
Full textHannon, Eilis, Emma L. Dempster, Jonathan P. Davies, Barry Chioza, Georgina E. T. Blake, Joe Burrage, Stefania Policicchio, et al. "Quantifying the proportion of different cell types in the human cortex using DNA methylation profiles." BMC Biology 22, no. 1 (January 25, 2024). http://dx.doi.org/10.1186/s12915-024-01827-y.
Full textKwon, Yong-Jun, Hi Chul Kim, Nam Youl Kim, Seo Yeon Choi, Sungyong Jung, and Auguste Genovesio. "High content cellular microarray for automated drug target deconvolution." BMC Proceedings 5, S1 (January 10, 2011). http://dx.doi.org/10.1186/1753-6561-5-s1-p76.
Full textSutton, Gavin J., Daniel Poppe, Rebecca K. Simmons, Kieran Walsh, Urwah Nawaz, Ryan Lister, Johann A. Gagnon-Bartsch, and Irina Voineagu. "Comprehensive evaluation of deconvolution methods for human brain gene expression." Nature Communications 13, no. 1 (March 15, 2022). http://dx.doi.org/10.1038/s41467-022-28655-4.
Full textCai, Manqi, Jingtian Zhou, Chris McKennan, and Jiebiao Wang. "scMD facilitates cell type deconvolution using single-cell DNA methylation references." Communications Biology 7, no. 1 (January 2, 2024). http://dx.doi.org/10.1038/s42003-023-05690-5.
Full textBagka, Meropi, Hyeonyi Choi, Margaux Héritier, Hanna Schwaemmle, Quentin T. L. Pasquer, Simon M. G. Braun, Leonardo Scapozza, Yibo Wu, and Sascha Hoogendoorn. "Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1." Nature Communications 14, no. 1 (July 1, 2023). http://dx.doi.org/10.1038/s41467-023-39657-1.
Full text