Academic literature on the topic 'Cellular control mechanisms – Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cellular control mechanisms – Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cellular control mechanisms – Mathematical models"
Lomeli, Luis Martinez, Abdon Iniguez, Prasanthi Tata, Nilamani Jena, Zhong-Ying Liu, Richard Van Etten, Arthur D. Lander, Babak Shahbaba, John S. Lowengrub, and Vladimir N. Minin. "Optimal experimental design for mathematical models of haematopoiesis." Journal of The Royal Society Interface 18, no. 174 (January 2021): 20200729. http://dx.doi.org/10.1098/rsif.2020.0729.
Full textPedersen, Morten Gram, Gianna M. Toffolo, and Claudio Cobelli. "Cellular modeling: insight into oral minimal models of insulin secretion." American Journal of Physiology-Endocrinology and Metabolism 298, no. 3 (March 2010): E597—E601. http://dx.doi.org/10.1152/ajpendo.00670.2009.
Full textDRASDO, DIRK. "COARSE GRAINING IN SIMULATED CELL POPULATIONS." Advances in Complex Systems 08, no. 02n03 (June 2005): 319–63. http://dx.doi.org/10.1142/s0219525905000440.
Full textAdams, DS. "Mechanisms of cell shape change: the cytomechanics of cellular response to chemical environment and mechanical loading." Journal of Cell Biology 117, no. 1 (April 1, 1992): 83–93. http://dx.doi.org/10.1083/jcb.117.1.83.
Full textEdwards, Aurélie. "Modeling transport in the kidney: investigating function and dysfunction." American Journal of Physiology-Renal Physiology 298, no. 3 (March 2010): F475—F484. http://dx.doi.org/10.1152/ajprenal.00501.2009.
Full textGoryachev, Andrew B., and Marcin Leda. "Compete or Coexist? Why the Same Mechanisms of Symmetry Breaking Can Yield Distinct Outcomes." Cells 9, no. 9 (September 1, 2020): 2011. http://dx.doi.org/10.3390/cells9092011.
Full textTallarida, R. J. "Receptor discrimination and control of agonist-antagonist binding." American Journal of Physiology-Endocrinology and Metabolism 269, no. 2 (August 1, 1995): E379—E391. http://dx.doi.org/10.1152/ajpendo.1995.269.2.e379.
Full textDawn Parente, Jacquelyn, Knut Möller, Sabine Hensler, Claudia Kühlbach, Margareta M. Mueller, Paola Belloni, and J. Geoffrey Chase. "Technical Support of Wound Healing Processes: Project Status." Current Directions in Biomedical Engineering 5, no. 1 (September 1, 2019): 521–23. http://dx.doi.org/10.1515/cdbme-2019-0131.
Full textSánchez-Jiménez, F., R. Montañez, F. Correa-Fiz, P. Chaves, C. Rodríguez-Caso, J. L. Urdiales, J. F. Aldana, and M. A. Medina. "The usefulness of post-genomics tools for characterization of the amine cross-talk in mammalian cells." Biochemical Society Transactions 35, no. 2 (March 20, 2007): 381–85. http://dx.doi.org/10.1042/bst0350381.
Full textAlmeida, S., M. Chaves, and F. Delaunay. "Control of synchronization ratios in clock/cell cycle coupling by growth factors and glucocorticoids." Royal Society Open Science 7, no. 2 (February 2020): 192054. http://dx.doi.org/10.1098/rsos.192054.
Full textDissertations / Theses on the topic "Cellular control mechanisms – Mathematical models"
Thomson, Susmita. "Local feedback regulation of salt & water transport across pumping epithelia : experimental & mathematical investigations in the isolated abdominal skin of Bufo marinus." University of Western Australia. Dept. of Physiology, 2003. http://theses.library.uwa.edu.au/adt-WU2003.0022.
Full textSchultz, Joshua Andrew. "Mathematical modeling and control of a piezoelectric cellular actuator exhibiting quantization and flexibility." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45776.
Full textThomson, Susmita. "Local feedback regulation of salt & water transport across pumping epithelia : experimental & mathematical investigations in the isolated abdominal skin of Bufo marinus /." Connect to this title, 2002. http://theses.library.uwa.edu.au/adt-WU2003.0022.
Full textNilsson, Karin. "Intracellular regulation in bacteria : control of initiation of chromosome replication; macrolide antibiotics, resistance mechanisms and bi-stable growth rates /." Uppsala : Dept. of Biometry and Engineering, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/200672.pdf.
Full textConradie, Riaan. "A comparative analysis of the G1/S transition control in kinetic models of the eukaryotic cell cycle." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/1236.
Full textENGLISH ABSTRACT: The multiplication of cells proceeds through consecutive phases of growth and division (G1, S, G2 and M phases), in a process known as the cell cycle. The transition between these phases is regulated by so-called checkpoints, which are important to ensure proper functioning of the cell cycle. For instance, mutations leading to faulty regulation of the G1/S transition point are seen as one of the main causes of cancer. Traditionally, models for biological systems that show rich dynamic behavior, such as the cell cycle, are studied using dynamical systems analysis. However, using this analysis method one cannot quantify the extent of control of an individual process in the system. To understand system properties at the process level, one needs to employ methods such as metabolic control analysis (MCA). MCA was, however, developed for steady-state systems, and is thus limited to the analysis of such systems, unless the necessary extensions would be made to the framework. The central question of this thesis focuses on quantifying the control in mathematical models of the G1/S transition by the individual cell cycle processes. Since MCA was never applied to the cell cycle, several new methods needed to be added to the framework. The most important extension made it possible to follow and quantify, during a single cell cycle, the control properties of the individual system processes. Subsequently, these newly developed methods were used to determine the control by the individual processes of an important checkpoint in mammalian cells, the restriction point. The positioning of the restriction point in the cell cycle was distributed over numerous system processes, but the following processes carried most of the control: reactions involved in the interplay between retinoblastoma protein (Rb) and E2F transcription factor, reactions responsible for the synthesis of Delayed Response Genes and Cyclin D/Cdk4 in response to growth signals, the E2F dependent Cyclin E/Cdk2 synthesis reaction, as well as the reactions involved in p27 formation. In addition it was shown that these reactions exhibited their control on the restriction point via the Cyclin E/Cdk2/p27 complex. Any perturbation of the system leading to a change in the restriction point could be explained via its e ect on the Cyclin E/Cdk2/p27 complex, showing a causal relation between restriction point positioning and the concentration of the Cyclin E/Cdk2/p27 complex. Finally, we applied the new methods, with a modular approach, to compare a number of cell cycle models for Saccharomyces cerevisiae (budding yeast) and mammalian cells with respect to the existence of a mass checkpoint. Such a checkpoint ensures that cells would have a critical mass at the G1/S transition point. Indeed, in budding yeast, a correction mechanism was observed in the G1 phase, which stabilizes the size of cells at the G1/S transition point, irrespective of changes in the specific growth rate. This in contrast to the mammalian cell cycle models in which no such mass checkpoint could be observed in the G1 phase. In this thesis it is shown that by casting specific questions on the regulation and control of cell cycle transition points in the here extended framework of MCA, it is possible to derive consensus answers for subsets of mathematical models.
AFRIKAANSE OPSOMMING: Die selsiklus bestaan uit agtereenvolgende groei- en delingsiklusse wat tot selvermeerdering lei. Die siklus word gekenmerk deur onderskeie fases (G1, S, G2 en M) wat deur sogenaamde beheerpunte gereguleer word. Hierdie beheerpunte verseker dat selvermeerdering nie ongekontroleerd kan plaasvind nie en mutasies wat lei tot foutiewe regulering van die G1/S transisiepunt word as een van die hoofoorsake van kanker beskou. Die hoofdoel van hierdie studie was om die beheer wat selsiklusprosesse op die G1/S transisie uitoefen met behulp van wiskundige modelle te kwantifiseer. Omdat biologiese sisteme soos die selsiklus ryk dinamiese gedrag vertoon, word hulle tradisioneeldeur middel van dinamiese sisteemanalise bestudeer. Die analisemetode beskik egter nie oor die vermoë om die hoeveelheid beheer wat afsonderlike sisteemprosesse op 0n sisteemeienskap uitoefen te kwantifiseer nie. Om sisteemeienskappe op prosesvlak te verstaan moet metodes soos metaboliese kontrole analise (MKA) ingespan word. MKA was egter ontwikkel om sisteme in 0n bestendige toestand te analiseer en aangesien MKA nog nooit vantevore vir selsiklus analises gebruik was nie, moes nuwe MKA tegnieke gedurende die studie ontwikkel word. Die belangrikste van die metodes maak dit moontlik om beheer (soos uitgeoefen deur die onderskeie sisteemprosesse) oor 0n enkele selsiklus na te volg en te kwantifiseer. Die nuut-ontwikkelde metodes was vervolgens gebruik om te bepaal hoe een so 0n beheerpunt in soogdierselle - die restriksiepunt - deur die onderskeie sisteemprosesse beheer word. Die studie het aangedui dat die posisie van die restriksiepunt tydens die selsiklus deur ’n verskeidenheid sisteemprosesse beheer word. Die bevinding was dat vier prosesse beduidend meer beheer op die posisie van die restriksiepunt uitoefen: Reaksies wat betrekking het op die wisselwerking tussen retinoblastoma proteïen (Rb) en E2F transkripsiefaktor; reaksies verantwoordelik vir die sintese van vertraagde responsgene en Siklien D/Cdk4 in respons tot groeiseine; die E2F afhanklike Siklien E/Cdk2 sintesereaksie; sowel as die reaksies betrokke in p27 vorming. Daar was ook aangetoon dat hierdie reaksies hul beheer op die posisie van die restriksiepunt deur die Siklien E/Cdk2/p27 kompleks uitoefen, siende enige sisteemversteuringe (wat tot veranderinge in die restriksiepuntposisie aanleiding gee) deur veranderinge in die kompleks verklaar kon word - 0n observasie wat aandui dat daar 0n kousale verhouding is tussen die posisie van die restriksiepunt en die Siklien E/Cdk2/p27 kompleks. Die nuut-ontwikkelde metodes was verder gebruik om 0n verskeidenheid selsiklusmodelle van Saccharomyces cerevisiae (bakkersgis) en soogdierselle met 0n modulêre aanpak te vergelyk om te bepaal of daar 0n massa beheerpunt in beide soogdier- en bakkersgisselle bestaan. Daar word gepostuleer dat hierdie beheerpunt verseker dat selle 0n kritiese massa by die G1/S transisiepunt bereik. Die resultate van die studie dui daarop dat bakkersgis, anders as soogdierselle, oor so 0n korreksiemeganisme beskik. Die meganisme stabiliseer die grootte van selle in die G1 fase ondanks veranderinge in die groeitempo van die selle, sodat massa homeostaties by die G1/S transisiepunt gehandhaaf word. Die studie het getoon dat moeilike vrae met betrekking tot die selsiklus beantwoord kan word deur van wiskundige modelle gebruik te maak en die probleme in die nuut-ontwikkelde metaboliese kontrole analise raamwerk te giet.
Campbell, Amanda Marie. "Investigation of the action of phosphatase of regenerating liver on PTEN using murine models." Thesis, 2014. http://hdl.handle.net/1805/6220.
Full textThe addition and removal of phosphate groups is a key regulatory mechanism for many cellular processes. The balance between phosphorylation and dephosphorylation is delicate and must be maintained in order for proper cell functions to be carried out. Protein kinases and phosphatases are the keepers of this balance with kinases adding phosphate groups and phosphatases removing them. As such, mutation and/or altered regulation of these proteins can be the driving factor in disease. Phosphatase of Regenerating Liver (PRL) is a family novel of three dual specificity phosphatases (DSPs) first discovered in the regenerating liver tissue of rats. PRLs have also been shown to act as oncogenes in cell culture and in animal models. However, the physiological substrate and mechanisms of the PRLs are not yet known. Recently, our lab has developed a PRL 2 knockout mouse and found several striking phenotypes all of which correspond to a significant increase in PTEN. We also found that PRL 2 is targetable by small molecular inhibitors that can potentially be used to disrupt tumor growth and spermatogenesis. Furthermore, a PTEN heterozygous mouse model crossed into our PRL 2 knockout line was generated to investigate the relevance of PRL interaction with PTEN in cancer.
Books on the topic "Cellular control mechanisms – Mathematical models"
Aguda, B. Models of cellular regulation. Oxford: Oxford University Press, 2008.
Find full textP, Singh R. Organizational control mechanisms. New Delhi: Northern Book Centre, 1988.
Find full textHeinrich, Reinhart. The regulation of cellular systems. New York: Chapman & Hall, 1996.
Find full textservice), SpringerLink (Online, ed. Introduction to Modeling Biological Cellular Control Systems. Milano: Springer Milan, 2012.
Find full textZhao, Jingshan. Ji qi ren ji gou zi you du fen xi li lun =: Analytical theory of degrees of freedom for robot mechanisms. Bei jing: Ke xue chu ban she, 2009.
Find full textHameroff, Stuart R. Ultimate computing: Biomolecular consciousness and nanotechnology. Amsterdam: North-Holland, 1987.
Find full textUltimatecomputing: Biomolecular consciousness and nano technology. Amsterdam: North-Holland, 1987.
Find full textCommittee on the Use of Animals in Research (U.S.), National Academy of Sciences (U.S.), and Institute of Medicine (U.S.), eds. Science, medicine, and animals. Washington, D.C: National Academy Press, 1991.
Find full textFunction and regulation of cellular systems. Basel: Birkhäuser Verlag, 2004.
Find full text1960-, Deutsch Andreas, ed. Function and regulation of cellular systems. Basel: Birkhauser Verlag, 2004.
Find full textBook chapters on the topic "Cellular control mechanisms – Mathematical models"
Knuesel, Jeremie, Jean-Marie Cabelguen, and Auke Ijspeert. "Decoding the Mechanisms of Gait Generation and Gait Transition in the Salamander Using Robots and Mathematical Models." In Motor Control, 417–46. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780195395273.003.0018.
Full textDuman, Ronald S. "Molecular and Cellular Pathogenesis of Depression and Mechanisms for Treatment Response." In Neurobiology of Mental Illness, edited by Helen S. Mayberg, 425–37. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0032.
Full textRanganathan, Prakash, and Kendall Nygard. "Design Models for Resource Allocation in Cyber-Physical Energy Systems." In Sustainable ICTs and Management Systems for Green Computing, 111–30. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-4666-1839-8.ch005.
Full textMonnot, Gwennaëlle C., and Pedro Romero. "Immunotherapy and tumour resistance to immune-mediated control and elimination." In Oxford Textbook of Cancer Biology, edited by Francesco Pezzella, Mahvash Tavassoli, and David J. Kerr, 423–37. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198779452.003.0029.
Full textWerner, Erika F., and Errol R. Norwitz. "Parturition." In Oxford Textbook of Endocrinology and Diabetes, 1287–98. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199235292.003.0905.
Full textAlferov, G. V., G. G. Ivanov, P. A. Efimova, and A. S. Sharlay. "Stability of Linear Systems With Multitask Right-Hand Member." In Stochastic Methods for Estimation and Problem Solving in Engineering, 74–112. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5045-7.ch004.
Full textOjha, Rudra Pratap, Pramod Kumar Srivastava, and Goutam Sanyal. "Pre-Vaccination and Quarantine Approach for Defense Against Worms Propagation of Malicious Objects in Wireless Sensor Networks." In Sensor Technology, 1233–51. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2454-1.ch059.
Full textBulatov, Vasily, and Wei Cai. "Introduction To Crystal Dislocations." In Computer Simulations of Dislocations. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198526148.003.0004.
Full textConference papers on the topic "Cellular control mechanisms – Mathematical models"
Penninger, Charles L., Andrés Tovar, Glen L. Niebur, and John E. Renaud. "High Fidelity Computational Model of Bone Remodeling Cellular Mechanisms." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19464.
Full textPenninger, Charles L., Neal M. Patel, and Andrés Tovar. "A Novel HCA Framework for Simulating the Cellular Mechanisms of Bone Remodeling." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70613.
Full textSmychkova, Anna, and Dmitry Zhukov. "Complex of Description Models for Analysis and Control Group Behavior Based on Stochastic Cellular Automata with Memory and Systems of Differential Kinetic Equations." In 2019 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). IEEE, 2019. http://dx.doi.org/10.1109/summa48161.2019.8947537.
Full textMayalu, Michaëlle N., and H. Harry Asada. "Integrated Mechanistic-Empirical Modeling of Cellular Response Based on Intracellular Signaling Dynamics." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3806.
Full textKhulief, Y. A., and F. A. Al-Sulaiman. "Experimentally-Tuned Mathematical Model for Drillstring Vibrations." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35057.
Full textWagner, John, Cecil Huey, and Katie Knaub. "Clock Mechanism Fundamentals for Education: Modeling and Analysis." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2100.
Full textFarahat, Waleed A., and H. Harry Asada. "Control of Eukaryotic Cell Migration Through Modulation of Extracellular Chemoattractant Gradients." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4190.
Full textCelik, Ismail B., Asaf Varol, Coskun Bayrak, and Jagannath R. Nanduri. "A One Dimensional Mathematical Model for Urodynamics." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37647.
Full textBayly, Philip V., and Kate S. Wilson. "Unstable Oscillations and Wave Propagation in Flagella." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46920.
Full textXydas, Evagoras G., Loucas S. Louca, and Andreas Mueller. "Analysis and Passive Control of a Four-Bar Linkage for the Rehabilitation of Upper-Limb Motion." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9916.
Full text