Journal articles on the topic 'Cellular automaton SLEUTH'

To see the other types of publications on this topic, follow the link: Cellular automaton SLEUTH.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Cellular automaton SLEUTH.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rienow, Andreas, and Roland Goetzke. "Supporting SLEUTH – Enhancing a cellular automaton with support vector machines for urban growth modeling." Computers, Environment and Urban Systems 49 (January 2015): 66–81. http://dx.doi.org/10.1016/j.compenvurbsys.2014.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mallouk, A., H. Elhadrachi, M. E. I. Malaainine, and H. Rhinane. "USING THE SLEUTH URBAN GROWTH MODEL COUPLED WITH A GIS TO SIMULATE AND PREDICT THE FUTURE URBAN EXPANSION OF CASABLANCA REGION, MOROCCO." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W12 (February 26, 2019): 139–45. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w12-139-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> The rapid and sometimes uncontrolled acceleration of urban growth, particularly in developing countries, places increasing pressure on environment and urban population well-being, making it a primary concern for managers. In Casablanca city, Morocco’s economic capital, the rapid urbanization was a result of population explosion, rural exodus and the emergence of new urban centers. Therefore, a system for urban growth simulation and prediction to anticipate infrastructural needs became indispensable to optimize urban planning. The main aim of this work is to study the urban extension of the Grand Casablanca region from 1984 to 2022 and to predict urban growth in 2040 using the SLEUTH cellular automaton model. The methodology consists of calibrating the model using data extracted from a time series of satellite images with a resolution of 30 m acquired between 1984 and 2018, as well as vector data relating to the urban projects planned on the horizon of 2022. The supervised classification and digitization of these images, together with a DEM of the study area, provided the input data required by the model, including Slope, Land use, Exclusion, Transportation and Hillshade. This data was introduced into the model using ArcSLEUTH, a custom extension of ArcGIS to compile the SLEUTH model. The result is synthetic maps of urban growth in the study area up to 2040, as well as the expected percentage indicators of change. The result is an effective decision-support tool for decision-makers and planners to develop more informed development strategies for the region and its people.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Jie, Xinyu Fu, Yue Gu, Yujun Deng, and Zhong-Ren Peng. "An examination of land use impacts of flooding induced by sea level rise." Natural Hazards and Earth System Sciences 17, no. 3 (March 7, 2017): 315–34. http://dx.doi.org/10.5194/nhess-17-315-2017.

Full text
Abstract:
Abstract. Coastal regions become unprecedentedly vulnerable to coastal hazards that are associated with sea level rise. The purpose of this paper is therefore to simulate prospective urban exposure to changing sea levels. This article first applied the cellular-automaton-based SLEUTH model (Project Gigalopolis, 2016) to calibrate historical urban dynamics in Bay County, Florida (USA) – a region that is greatly threatened by rising sea levels. This paper estimated five urban growth parameters by multiple-calibration procedures that used different Monte Carlo iterations to account for modeling uncertainties. It then employed the calibrated model to predict three scenarios of urban growth up to 2080 – historical trend, urban sprawl, and compact development. We also assessed land use impacts of four policies: no regulations; flood mitigation plans based on the whole study region and on those areas that are prone to experience growth; and the protection of conservational lands. This study lastly overlaid projected urban areas in 2030 and 2080 with 500-year flooding maps that were developed under 0, 0.2, and 0.9 m sea level rise. The calibration results that a substantial number of built-up regions extend from established coastal settlements. The predictions suggest that total flooded area of new urbanized regions in 2080 would be more than 25 times that under the flood mitigation policy, if the urbanization progresses with few policy interventions. The joint model generates new knowledge in the domain between land use modeling and sea level rise. It contributes to coastal spatial planning by helping develop hazard mitigation schemes and can be employed in other international communities that face combined pressure of urban growth and climate change.
APA, Harvard, Vancouver, ISO, and other styles
4

Varquez, Alvin Christopher G., Sifan Dong, Shinya Hanaoka, and Manabu Kanda. "Improvement of an Urban Growth Model for Railway-Induced Urban Expansion." Sustainability 12, no. 17 (August 21, 2020): 6801. http://dx.doi.org/10.3390/su12176801.

Full text
Abstract:
Increasing population in urban areas drives urban cover expansion and spatial growth. Developing urban growth models enables better understanding and planning of sustainable urban areas. The SLEUTH model is an urban growth simulation model which uses the concept of cellular automata to predict land cover change using six spatial inputs of historical data (slope, land use, exclusion, urban, transportation, and hill-shade). This study investigates the potential of SLEUTH to capture railway-induced urban growth by testing methods that can consider railways as input to the model, namely (1) combining the exclusion layer with a station map; (2) creating a new input layer representing stations in addition to the default six inputs. Districts in Tsukuba, Japan and Gurugram, India which historically showed evidence of urban growth by railway construction are investigated. Results reveal that both proposed methods can capture railway impact on urban growth, while the former algorithm under the right settings may perform better than the latter at finer resolutions. Coarser resolution representation (300-m grid-spacing) eventually reduces the differences in accuracy among the default SLEUTH model and the proposed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
5

Ayazli, I. E. "USING THE TOTAL EXPLORATORY FACTOR ANALYSIS (T-EFA) AS A CALIBRATION TECHNIQUE FOR SLEUTH MODEL." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W3-2020 (November 23, 2020): 85–88. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w3-2020-85-2020.

Full text
Abstract:
Abstract. Developments in information technologies (IT) allow to modelling dynamic and complex form of cities and several studies have been implemented since 1990s. The cellular automata based urban growth simulation model, SLEUTH is the most well-known one among the simulation models. Calibration is the most important stage of the model created in three stages such as test, calibration, prediction. The more precise the calibration is completed, the more accurate the model generates. Several methods have been developed for the calibration step in which growth coefficients values are calculated by metrics. The study aims to investigate success of the Total Exploratory Factor Analysis (T-EFA) technique, which provides using the 13 metrics all together, in rapid grown settlement areas using high resolution data. In this context, the Sancaktepe district of Istanbul was selected as the study area and a simulation model was generated for the year 2050. The obtained results are promising to apply the T-EFA method in different studies.
APA, Harvard, Vancouver, ISO, and other styles
6

Eslahi, Mojtaba, Rani El Meouche, and Anne Ruas. "Using building types and demographic data to improve our understanding and use of urban sprawl simulation." Proceedings of the ICA 2 (July 10, 2019): 1–8. http://dx.doi.org/10.5194/ica-proc-2-28-2019.

Full text
Abstract:
<p><strong>Abstract.</strong> Many studies, using various modeling approaches and simulation tools have been made in the field of urban growth. A multitude of models, with common or specific features, has been developed to reconstruct the spatial occupation and changes in land use. However, today most of urban growth techniques just use the historical geographic data such as urban, road and excluded maps to simulate the prospective urban maps. In this paper, adding buildings and population data as urban fabric factors, we define different urban growth simulation scenarios. Each simulation corresponds to policies that are more or less restrictive of space considering what these territories can accommodate as a type of building and as a global population.</p><p>Among the urban growth modeling techniques, dynamic models, those based on Cellular Automata (CA) are the most common for their applications in urban areas. CA can be integrated with Geographical Information Systems (GIS) to have a high spatial resolution model with computational efficiency. The SLEUTH model is one of the cellular automata models, which match the dynamic simulation of urban expansion and could be adapted to morphological model of the urban configuration and fabric.</p><p>Using the SLEUTH model, this paper provides different simulations that correspond to different land priorities and constraints. We used common data (such as topographic, buildings and demography data) to improve the realism of each simulation and their adequacy with the real world. The findings allow having different images of the city of tomorrow to choose and reflect on urban policies.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Abubakar, Ghali Abdullahi, Jiexia Wu, Amir Reza Shahtahmassebi, and Ke Wang. "Necessity of a Multifaceted Approach in Analyzing Growth of Impervious Surfaces." Sustainability 12, no. 10 (May 18, 2020): 4109. http://dx.doi.org/10.3390/su12104109.

Full text
Abstract:
While substantial efforts have been devoted to the remote sensing of impervious surfaces, few studies have developed frameworks to connect impervious surfaces’ growth with spatial planning decisions. To this end, this paper develops a multifaceted approach with three components: Visualization, numerical analysis, and simulation at the sub-pixel level. First, the growth of impervious surfaces was visualized through write function memory (WFM) insertion for the period of 1974–2009 of Cixi County in Zhejiang Province, China. Second, anomaly detection, statistical analysis, and landscape metrics were used to quantify changes in impervious surfaces over time. Finally, a slope, land use, exclusion, urban extent, transportation, and hill shade (SLEUTH) cellular automata model was employed to simulate the impervious surface growth until 2015 under four specific spatial decision scenarios: Current trends, environmental protection growth, business growth, and Chinese policy for protecting rural regions. The results show that Cixi County experienced compact growth due to expansion and internal intensification. Interestingly, the SLEUTH reveals that the projected space of impervious surfaces’ growth was consistent with reality in 2015. The framework established in this study holds considerable potential for improving our understanding of the interaction between impervious surfaces’ growth and planning aspects.
APA, Harvard, Vancouver, ISO, and other styles
8

Harb, Mostapha, Matthias Garschagen, Davide Cotti, Elke Krätzschmar, Hayet Baccouche, Karem Ben Khaled, Felicitas Bellert, et al. "Integrating Data-Driven and Participatory Modeling to Simulate Future Urban Growth Scenarios: Findings from Monastir, Tunisia." Urban Science 4, no. 1 (February 27, 2020): 10. http://dx.doi.org/10.3390/urbansci4010010.

Full text
Abstract:
Current rapid urbanization trends in developing countries present considerable challenges to local governments, potentially hindering efforts towards sustainable urban development. To effectively anticipate the challenges posed by urbanization, participatory modeling techniques can help to stimulate future-oriented decision-making by exploring alternative development scenarios. With the example of the coastal city of Monastir, we present the results of an integrated urban growth analysis that combines the SLEUTH (slope, land use, exclusion, urban extent, transportation, and hill shade) cellular automata model with qualitative inputs from relevant local stakeholders to simulate urban growth until 2030. While historical time-series of Landsat data fed a business-as-usual prediction, the quantification of narrative storylines derived from participatory scenario workshops enabled the creation of four additional urban growth scenarios. Results show that the growth of the city will occur at different rates under all scenarios. Both the “business-as-usual” (BaU) prediction and the four scenarios revealed that urban expansion is expected to further encroach on agricultural land by 2030. The various scenarios suggest that Monastir will expand between 127–149 hectares. The information provided here goes beyond simply projecting past trends, giving decision-makers the necessary support for both understanding possible future urban expansion pathways and proactively managing the future growth of the city.
APA, Harvard, Vancouver, ISO, and other styles
9

Sekovski, I., C. Armaroli, L. Calabrese, F. Mancini, F. Stecchi, and L. Perini. "Coupling scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy)." Natural Hazards and Earth System Sciences 15, no. 10 (October 14, 2015): 2331–46. http://dx.doi.org/10.5194/nhess-15-2331-2015.

Full text
Abstract:
Abstract. The extent of coastline urbanization reduces their resilience to flooding, especially in low-lying areas. The study site is the coastline of the Emilia-Romagna region (Italy), historically affected by marine storms and floods. The main aim of this study is to investigate the vulnerability of this coastal area to marine flooding by considering the dynamics of the forcing component (total water level) and the dynamics of the receptor (urban areas). This was done by comparing the output of the three flooding scenarios (10, 100 and > 100 year return periods) to the output of different scenarios of future urban growth up to 2050. Scenario-based marine flooding extents were derived by applying the Cost–Distance tool of ArcGIS® to a high-resolution digital terrain model. Three scenarios of urban growth (similar-to-historic, compact and sprawled) up to 2050 were estimated by applying the cellular automata-based SLEUTH model. The results show that if the urban growth progresses compactly, flood-prone areas will largely increase with respect to similar-to-historic and sprawled growth scenarios. Combining the two methodologies can be useful for identification of flood-prone areas that have a high potential for future urbanization, and is therefore crucial for coastal managers and planners.
APA, Harvard, Vancouver, ISO, and other styles
10

Sekovski, I., C. Armaroli, L. Calabrese, F. Mancini, F. Stecchi, and L. Perini. "Coupling scenarios of urban growth and flood hazard along the Emilia-Romagna coast (Italy)." Natural Hazards and Earth System Sciences Discussions 3, no. 4 (April 1, 2015): 2149–89. http://dx.doi.org/10.5194/nhessd-3-2149-2015.

Full text
Abstract:
Abstract. The extent of coastline urbanization reduces their resilience to flooding, especially in low lying areas. The study site is the Emilia-Romagna Region coastline (Italy), historically affected by marine storms and floods. The main aim of this study is to investigate the vulnerability of this coastal area to marine flooding by considering the dynamics of the forcing component (Total Water Level) and the dynamics of the receptor (urban areas). This was done by comparing the output of the three flooding scenarios (10, 100 and >100 year return periods) to the output of different scenarios of future urban growth up to 2050. Scenario-based marine flooding extents were derived by applying the Cost-Distance tool of ArcGIS® to a high resolution Digital Terrain Model. Three scenarios of urban growth (similar-as-historic, compact and sprawled) up to 2050 were estimated by applying the cellular automata based SLEUTH model. The results show that, if the urban growth is compact-like, flood-prone areas will largely increase with respect to similar-as-historic and sprawled growth scenarios. Combining the two methodologies can be useful for identify flood-prone areas that have a high potential for future urbanization, and is therefore crucial for coastal managers and planners.
APA, Harvard, Vancouver, ISO, and other styles
11

Gómez, Jairo Alejandro, ChengHe Guan, Pratyush Tripathy, Juan Carlos Duque, Santiago Passos, Michael Keith, and Jialin Liu. "Analyzing the Spatiotemporal Uncertainty in Urbanization Predictions." Remote Sensing 13, no. 3 (February 1, 2021): 512. http://dx.doi.org/10.3390/rs13030512.

Full text
Abstract:
With the availability of computational resources, geographical information systems, and remote sensing data, urban growth modeling has become a viable tool for predicting urbanization of cities and towns, regions, and nations around the world. This information allows policy makers, urban planners, environmental and civil organizations to make investments, design infrastructure, extend public utility networks, plan housing solutions, and mitigate adverse environmental impacts. Despite its importance, urban growth models often discard the spatiotemporal uncertainties in their prediction estimates. In this paper, we analyzed the uncertainty in the urban land predictions by comparing the outcomes of two different growth models, one based on a widely applied cellular automata model known as the SLEUTH CA and the other one based on a previously published machine learning framework. We selected these two models because they are complementary, the first is based on human knowledge and pre-defined and understandable policies while the second is more data-driven and might be less influenced by any a priori knowledge or bias. To test our methodology, we chose the cities of Jiaxing and Lishui in China because they are representative of new town planning policies and have different characteristics in terms of land extension, geographical conditions, growth rates, and economic drivers. We focused on the spatiotemporal uncertainty, understood as the inherent doubt in the predictions of where and when will a piece of land become urban, using the concepts of certainty area in space and certainty area in time. The proposed analyses in this paper aim to contribute to better urban planning exercises, and they can be extended to other cities worldwide.
APA, Harvard, Vancouver, ISO, and other styles
12

Sarica, Gizem Mestav, Tinger Zhu, Wei Jian, Edmond Yat-Man Lo, and Tso-Chien Pan. "Spatio-temporal dynamics of flood exposure in Shenzhen from present to future." Environment and Planning B: Urban Analytics and City Science 48, no. 5 (February 16, 2021): 1011–24. http://dx.doi.org/10.1177/2399808321991540.

Full text
Abstract:
The Pearl River Delta metropolitan region is one of the most densely urbanized megapolises worldwide with high exposure to weather-related disasters such as storms, storm surges and river floods. Shenzhen megacity has been the fastest growing city in the Pearl River Delta region with a significant increase of resident population from 0.32 million in 1980 to 13.03 million in 2018. Being a flood-prone city, Shenzhen’s rapid urbanization has further exacerbated potential flood losses and forthcoming risk. Thus, evaluating the changes in its exposure from present to future is essential for flood risk assessment, mitigation and management purposes. The main objective of this study is to present a methodology to assess the spatio-temporal dynamics of flood exposure from present to future using high-resolution and open-source data with a particular focus on the built-up area. To achieve this, the SLEUTH model, a cellular automata-based urban growth model, was employed for predicting the built-up area in Shenzhen in 2030. An almost threefold increase was observed in total built-up area from 421 km2 in 1995 to 1166 km2 in 2030, with the 2016 built-up area being 858 km2. Built-up areas, both present (2016) and projected (2030), were then used as the land cover input for flood hazard assessment based on a fuzzy comprehensive evaluation model, which classified the flood hazard into five levels. The analysis indicates that the built-up area subjected to the two highest flood hazard levels will increase by almost 88% (212 km2) from present to future. The approach presented here can be leveraged by policymakers to identify critical areas that should be prioritized for flood mitigation and protection actions to minimize potential losses.
APA, Harvard, Vancouver, ISO, and other styles
13

Yakubu, Bashir Ishaku, Shua’ib Musa Hassan, and Sallau Osisiemo Asiribo. "AN ASSESSMENT OF SPATIAL VARIATION OF LAND SURFACE CHARACTERISTICS OF MINNA, NIGER STATE NIGERIA FOR SUSTAINABLE URBANIZATION USING GEOSPATIAL TECHNIQUES." Geosfera Indonesia 3, no. 2 (August 28, 2018): 27. http://dx.doi.org/10.19184/geosi.v3i2.7934.

Full text
Abstract:
Rapid urbanization rates impact significantly on the nature of Land Cover patterns of the environment, which has been evident in the depletion of vegetal reserves and in general modifying the human climatic systems (Henderson, et al., 2017; Kumar, Masago, Mishra, & Fukushi, 2018; Luo and Lau, 2017). This study explores remote sensing classification technique and other auxiliary data to determine LULCC for a period of 50 years (1967-2016). The LULCC types identified were quantitatively evaluated using the change detection approach from results of maximum likelihood classification algorithm in GIS. Accuracy assessment results were evaluated and found to be between 56 to 98 percent of the LULC classification. The change detection analysis revealed change in the LULC types in Minna from 1976 to 2016. Built-up area increases from 74.82ha in 1976 to 116.58ha in 2016. Farmlands increased from 2.23 ha to 46.45ha and bared surface increases from 120.00ha to 161.31ha between 1976 to 2016 resulting to decline in vegetation, water body, and wetlands. The Decade of rapid urbanization was found to coincide with the period of increased Public Private Partnership Agreement (PPPA). Increase in farmlands was due to the adoption of urban agriculture which has influence on food security and the environmental sustainability. The observed increase in built up areas, farmlands and bare surfaces has substantially led to reduction in vegetation and water bodies. The oscillatory nature of water bodies LULCC which was not particularly consistent with the rates of urbanization also suggests that beyond the urbanization process, other factors may influence the LULCC of water bodies in urban settlements. Keywords: Minna, Niger State, Remote Sensing, Land Surface Characteristics References Akinrinmade, A., Ibrahim, K., & Abdurrahman, A. (2012). Geological Investigation of Tagwai Dams using Remote Sensing Technique, Minna Niger State, Nigeria. Journal of Environment, 1(01), pp. 26-32. Amadi, A., & Olasehinde, P. (2010). Application of remote sensing techniques in hydrogeological mapping of parts of Bosso Area, Minna, North-Central Nigeria. International Journal of Physical Sciences, 5(9), pp. 1465-1474. Aplin, P., & Smith, G. (2008). Advances in object-based image classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B7), pp. 725-728. Ayele, G. T., Tebeje, A. K., Demissie, S. S., Belete, M. A., Jemberrie, M. A., Teshome, W. M., . . . Teshale, E. Z. (2018). Time Series Land Cover Mapping and Change Detection Analysis Using Geographic Information System and Remote Sensing, Northern Ethiopia. Air, Soil and Water Research, 11, p 1178622117751603. Azevedo, J. A., Chapman, L., & Muller, C. L. (2016). Quantifying the daytime and night-time urban heat island in Birmingham, UK: a comparison of satellite derived land surface temperature and high resolution air temperature observations. Remote Sensing, 8(2), p 153. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., . . . van Coillie, F. (2014). Geographic object-based image analysis–towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, pp. 180-191. Bukata, R. P., Jerome, J. H., Kondratyev, A. S., & Pozdnyakov, D. V. (2018). Optical properties and remote sensing of inland and coastal waters: CRC press. Camps-Valls, G., Tuia, D., Bruzzone, L., & Benediktsson, J. A. (2014). Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE signal processing magazine, 31(1), pp. 45-54. Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., . . . Lu, M. (2015). Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, pp. 7-27. Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), pp. 171-209. Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE transactions on geoscience and remote sensing, 53(8), pp. 4238-4249. Cheng, G., Han, J., Zhou, P., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing, 98, pp. 119-132. Coale, A. J., & Hoover, E. M. (2015). Population growth and economic development: Princeton University Press. Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: principles and practices: CRC press. Corner, R. J., Dewan, A. M., & Chakma, S. (2014). Monitoring and prediction of land-use and land-cover (LULC) change Dhaka megacity (pp. 75-97): Springer. Coutts, A. M., Harris, R. J., Phan, T., Livesley, S. J., Williams, N. S., & Tapper, N. J. (2016). Thermal infrared remote sensing of urban heat: Hotspots, vegetation, and an assessment of techniques for use in urban planning. Remote Sensing of Environment, 186, pp. 637-651. Debnath, A., Debnath, J., Ahmed, I., & Pan, N. D. (2017). Change detection in Land use/cover of a hilly area by Remote Sensing and GIS technique: A study on Tropical forest hill range, Baramura, Tripura, Northeast India. International journal of geomatics and geosciences, 7(3), pp. 293-309. Desheng, L., & Xia, F. (2010). Assessing object-based classification: advantages and limitations. Remote Sensing Letters, 1(4), pp. 187-194. Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), pp. 390-401. Dronova, I., Gong, P., Wang, L., & Zhong, L. (2015). Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sensing of Environment, 158, pp. 193-206. Duro, D. C., Franklin, S. E., & Dubé, M. G. (2012). A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, pp. 259-272. Elmhagen, B., Destouni, G., Angerbjörn, A., Borgström, S., Boyd, E., Cousins, S., . . . Hambäck, P. (2015). Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society, 20(1) Farhani, S., & Ozturk, I. (2015). Causal relationship between CO 2 emissions, real GDP, energy consumption, financial development, trade openness, and urbanization in Tunisia. Environmental Science and Pollution Research, 22(20), pp. 15663-15676. Feng, L., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2017). The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China. Journal of Cleaner Production, 163, pp. S322-S328. Fensham, R., & Fairfax, R. (2002). Aerial photography for assessing vegetation change: a review of applications and the relevance of findings for Australian vegetation history. Australian Journal of Botany, 50(4), pp. 415-429. Ferreira, N., Lage, M., Doraiswamy, H., Vo, H., Wilson, L., Werner, H., . . . Silva, C. (2015). Urbane: A 3d framework to support data driven decision making in urban development. Visual Analytics Science and Technology (VAST), 2015 IEEE Conference on. Garschagen, M., & Romero-Lankao, P. (2015). Exploring the relationships between urbanization trends and climate change vulnerability. Climatic Change, 133(1), pp. 37-52. Gokturk, S. B., Sumengen, B., Vu, D., Dalal, N., Yang, D., Lin, X., . . . Torresani, L. (2015). System and method for search portions of objects in images and features thereof: Google Patents. Government, N. S. (2007). Niger state (The Power State). Retrieved from http://nigerstate.blogspot.com.ng/ Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric engineering and remote sensing, 60(3), pp. 331-337. Gu, W., Lv, Z., & Hao, M. (2017). Change detection method for remote sensing images based on an improved Markov random field. Multimedia Tools and Applications, 76(17), pp. 17719-17734. Guo, Y., & Shen, Y. (2015). Quantifying water and energy budgets and the impacts of climatic and human factors in the Haihe River Basin, China: 2. Trends and implications to water resources. Journal of Hydrology, 527, pp. 251-261. Hadi, F., Thapa, R. B., Helmi, M., Hazarika, M. K., Madawalagama, S., Deshapriya, L. N., & Center, G. (2016). Urban growth and land use/land cover modeling in Semarang, Central Java, Indonesia: Colombo-Srilanka, ACRS2016. Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2015). A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sensing, 7(3), pp. 2668-2691. Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), pp. 117-124. Henderson, J. V., Storeygard, A., & Deichmann, U. (2017). Has climate change driven urbanization in Africa? Journal of development economics, 124, pp. 60-82. Hu, L., & Brunsell, N. A. (2015). A new perspective to assess the urban heat island through remotely sensed atmospheric profiles. Remote Sensing of Environment, 158, pp. 393-406. Hughes, S. J., Cabral, J. A., Bastos, R., Cortes, R., Vicente, J., Eitelberg, D., . . . Santos, M. (2016). A stochastic dynamic model to assess land use change scenarios on the ecological status of fluvial water bodies under the Water Framework Directive. Science of the Total Environment, 565, pp. 427-439. Hussain, M., Chen, D., Cheng, A., Wei, H., & Stanley, D. (2013). Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80, pp. 91-106. Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y.-H. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128(1-2), pp. 109-120. Jiang, L., Wu, F., Liu, Y., & Deng, X. (2014). Modeling the impacts of urbanization and industrial transformation on water resources in China: an integrated hydro-economic CGE analysis. Sustainability, 6(11), pp. 7586-7600. Jin, S., Yang, L., Zhu, Z., & Homer, C. (2017). A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment, 195, pp. 44-55. Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., . . . Mitchard, E. T. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), p 70. Kaliraj, S., Chandrasekar, N., & Magesh, N. (2015). Evaluation of multiple environmental factors for site-specific groundwater recharge structures in the Vaigai River upper basin, Tamil Nadu, India, using GIS-based weighted overlay analysis. Environmental earth sciences, 74(5), pp. 4355-4380. Koop, S. H., & van Leeuwen, C. J. (2015). Assessment of the sustainability of water resources management: A critical review of the City Blueprint approach. Water Resources Management, 29(15), pp. 5649-5670. Kumar, P., Masago, Y., Mishra, B. K., & Fukushi, K. (2018). Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundwater for Sustainable Development, 6, pp. 227-234. Lang, S. (2008). Object-based image analysis for remote sensing applications: modeling reality–dealing with complexity Object-based image analysis (pp. 3-27): Springer. Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47(1), pp. 389-411. Liddle, B. (2014). Impact of population, age structure, and urbanization on carbon emissions/energy consumption: evidence from macro-level, cross-country analyses. Population and Environment, 35(3), pp. 286-304. Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation: John Wiley & Sons. Liu, Y., Wang, Y., Peng, J., Du, Y., Liu, X., Li, S., & Zhang, D. (2015). Correlations between urbanization and vegetation degradation across the world’s metropolises using DMSP/OLS nighttime light data. Remote Sensing, 7(2), pp. 2067-2088. López, E., Bocco, G., Mendoza, M., & Duhau, E. (2001). Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landscape and urban planning, 55(4), pp. 271-285. Luo, M., & Lau, N.-C. (2017). Heat waves in southern China: Synoptic behavior, long-term change, and urbanization effects. Journal of Climate, 30(2), pp. 703-720. Mahboob, M. A., Atif, I., & Iqbal, J. (2015). Remote sensing and GIS applications for assessment of urban sprawl in Karachi, Pakistan. Science, Technology and Development, 34(3), pp. 179-188. Mallinis, G., Koutsias, N., Tsakiri-Strati, M., & Karteris, M. (2008). Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing, 63(2), pp. 237-250. Mas, J.-F., Velázquez, A., Díaz-Gallegos, J. R., Mayorga-Saucedo, R., Alcántara, C., Bocco, G., . . . Pérez-Vega, A. (2004). Assessing land use/cover changes: a nationwide multidate spatial database for Mexico. International Journal of Applied Earth Observation and Geoinformation, 5(4), pp. 249-261. Mathew, A., Chaudhary, R., Gupta, N., Khandelwal, S., & Kaul, N. (2015). Study of Urban Heat Island Effect on Ahmedabad City and Its Relationship with Urbanization and Vegetation Parameters. International Journal of Computer & Mathematical Science, 4, pp. 2347-2357. Megahed, Y., Cabral, P., Silva, J., & Caetano, M. (2015). Land cover mapping analysis and urban growth modelling using remote sensing techniques in greater Cairo region—Egypt. ISPRS International Journal of Geo-Information, 4(3), pp. 1750-1769. Metternicht, G. (2001). Assessing temporal and spatial changes of salinity using fuzzy logic, remote sensing and GIS. Foundations of an expert system. Ecological modelling, 144(2-3), pp. 163-179. Miller, R. B., & Small, C. (2003). Cities from space: potential applications of remote sensing in urban environmental research and policy. Environmental Science & Policy, 6(2), pp. 129-137. Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, pp. 200-206. Mohammed, I., Aboh, H., & Emenike, E. (2007). A regional geoelectric investigation for groundwater exploration in Minna area, north west Nigeria. Science World Journal, 2(4) Morenikeji, G., Umaru, E., Liman, S., & Ajagbe, M. (2015). Application of Remote Sensing and Geographic Information System in Monitoring the Dynamics of Landuse in Minna, Nigeria. International Journal of Academic Research in Business and Social Sciences, 5(6), pp. 320-337. Mukherjee, A. B., Krishna, A. P., & Patel, N. (2018). Application of Remote Sensing Technology, GIS and AHP-TOPSIS Model to Quantify Urban Landscape Vulnerability to Land Use Transformation Information and Communication Technology for Sustainable Development (pp. 31-40): Springer. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), pp. 1145-1161. Nemmour, H., & Chibani, Y. (2006). Multiple support vector machines for land cover change detection: An application for mapping urban extensions. ISPRS Journal of Photogrammetry and Remote Sensing, 61(2), pp. 125-133. Niu, X., & Ban, Y. (2013). Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. International journal of remote sensing, 34(1), pp. 1-26. Nogueira, K., Penatti, O. A., & dos Santos, J. A. (2017). Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognition, 61, pp. 539-556. Oguz, H., & Zengin, M. (2011). Analyzing land use/land cover change using remote sensing data and landscape structure metrics: a case study of Erzurum, Turkey. Fresenius Environmental Bulletin, 20(12), pp. 3258-3269. Pohl, C., & Van Genderen, J. L. (1998). Review article multisensor image fusion in remote sensing: concepts, methods and applications. International journal of remote sensing, 19(5), pp. 823-854. Price, O., & Bradstock, R. (2014). Countervailing effects of urbanization and vegetation extent on fire frequency on the Wildland Urban Interface: Disentangling fuel and ignition effects. Landscape and urban planning, 130, pp. 81-88. Prosdocimi, I., Kjeldsen, T., & Miller, J. (2015). Detection and attribution of urbanization effect on flood extremes using nonstationary flood‐frequency models. Water resources research, 51(6), pp. 4244-4262. Rawat, J., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), pp. 77-84. Rokni, K., Ahmad, A., Solaimani, K., & Hazini, S. (2015). A new approach for surface water change detection: Integration of pixel level image fusion and image classification techniques. International Journal of Applied Earth Observation and Geoinformation, 34, pp. 226-234. Sakieh, Y., Amiri, B. J., Danekar, A., Feghhi, J., & Dezhkam, S. (2015). Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Journal of Housing and the Built Environment, 30(4), pp. 591-611. Santra, A. (2016). Land Surface Temperature Estimation and Urban Heat Island Detection: A Remote Sensing Perspective. Remote Sensing Techniques and GIS Applications in Earth and Environmental Studies, p 16. Shrivastava, L., & Nag, S. (2017). MONITORING OF LAND USE/LAND COVER CHANGE USING GIS AND REMOTE SENSING TECHNIQUES: A CASE STUDY OF SAGAR RIVER WATERSHED, TRIBUTARY OF WAINGANGA RIVER OF MADHYA PRADESH, INDIA. Shuaibu, M., & Sulaiman, I. (2012). Application of remote sensing and GIS in land cover change detection in Mubi, Adamawa State, Nigeria. J Technol Educ Res, 5, pp. 43-55. Song, B., Li, J., Dalla Mura, M., Li, P., Plaza, A., Bioucas-Dias, J. M., . . . Chanussot, J. (2014). Remotely sensed image classification using sparse representations of morphological attribute profiles. IEEE transactions on geoscience and remote sensing, 52(8), pp. 5122-5136. Song, X.-P., Sexton, J. O., Huang, C., Channan, S., & Townshend, J. R. (2016). Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sensing of Environment, 175, pp. 1-13. Tayyebi, A., Shafizadeh-Moghadam, H., & Tayyebi, A. H. (2018). Analyzing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanization in the mega-city of Tehran. Land Use Policy, 71, pp. 459-469. Teodoro, A. C., Gutierres, F., Gomes, P., & Rocha, J. (2018). Remote Sensing Data and Image Classification Algorithms in the Identification of Beach Patterns Beach Management Tools-Concepts, Methodologies and Case Studies (pp. 579-587): Springer. Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, pp. 22-36. Tuholske, C., Tane, Z., López-Carr, D., Roberts, D., & Cassels, S. (2017). Thirty years of land use/cover change in the Caribbean: Assessing the relationship between urbanization and mangrove loss in Roatán, Honduras. Applied Geography, 88, pp. 84-93. Tuia, D., Flamary, R., & Courty, N. (2015). Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions. ISPRS Journal of Photogrammetry and Remote Sensing, 105, pp. 272-285. Tzotsos, A., & Argialas, D. (2008). Support vector machine classification for object-based image analysis Object-Based Image Analysis (pp. 663-677): Springer. Wang, L., Sousa, W., & Gong, P. (2004). Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International journal of remote sensing, 25(24), pp. 5655-5668. Wang, Q., Zeng, Y.-e., & Wu, B.-w. (2016). Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China. Renewable and Sustainable Energy Reviews, 54, pp. 1563-1579. Wang, S., Ma, H., & Zhao, Y. (2014). Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecological Indicators, 45, pp. 171-183. Weitkamp, C. (2006). Lidar: range-resolved optical remote sensing of the atmosphere: Springer Science & Business. Wellmann, T., Haase, D., Knapp, S., Salbach, C., Selsam, P., & Lausch, A. (2018). Urban land use intensity assessment: The potential of spatio-temporal spectral traits with remote sensing. Ecological Indicators, 85, pp. 190-203. Whiteside, T. G., Boggs, G. S., & Maier, S. W. (2011). Comparing object-based and pixel-based classifications for mapping savannas. International Journal of Applied Earth Observation and Geoinformation, 13(6), pp. 884-893. Willhauck, G., Schneider, T., De Kok, R., & Ammer, U. (2000). Comparison of object oriented classification techniques and standard image analysis for the use of change detection between SPOT multispectral satellite images and aerial photos. Proceedings of XIX ISPRS congress. Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., . . . Young, S. A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11), pp. 2310-2323. Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E., & Tucker III, C. J. (2015). Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations: Springer. Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7), pp. 799-811. Zhou, D., Zhao, S., Zhang, L., & Liu, S. (2016). Remotely sensed assessment of urbanization effects on vegetation phenology in China's 32 major cities. Remote Sensing of Environment, 176, pp. 272-281. Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., . . . Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sensing of Environment, 185, pp. 243-257.
APA, Harvard, Vancouver, ISO, and other styles
14

Agyemang, Felix S. K., Elisabete Silva, and Sean Fox. "Modelling and simulating ‘informal urbanization’: An integrated agent-based and cellular automata model of urban residential growth in Ghana." Environment and Planning B: Urban Analytics and City Science, January 12, 2022, 239980832110688. http://dx.doi.org/10.1177/23998083211068843.

Full text
Abstract:
The global urban population is expected to grow by 2.5 billion over the next three decades, and 90% of this growth will occur in African and Asian countries. Urban expansion in these regions is often characterised by ‘informal urbanization’ whereby households self-build without planning permission in contexts of ambiguous, insecure or disputed property rights. Despite the scale of informal urbanization, it has received little attention from scholars working in the domains of urban analytics and city science. Towards addressing this gap, we introduce TI-City, an urban growth model designed to predict the locations, legal status and socio-economic status of future residential developments in an African city. In a bottom-up approach, we use agent-based and cellular automata modelling techniques to predict the geospatial behaviour of key urban development actors, including households, real estate developers and government. We apply the model to the city-region of Accra, Ghana, drawing on local data collection, including a household survey, to parameterise the model. Using a multi-spatial-scale validation technique, we compare TI-City’s ability to simulate historically observed built-up patterns with SLEUTH, a highly popular urban growth model. Results show that TI-City outperforms SLEUTH at each scale, suggesting the model could offer a valuable decision support tool in similar city contexts.
APA, Harvard, Vancouver, ISO, and other styles
15

Ramly, Salwa, Wardah Tahir, Janmaizatulriah Jani, Soroosh Sharifi, and Jazuri Abdullah. "Coupling of Cellular Automata Urban Growth Model and HEC-HMS to Predict Future Flood Extents in the Upper Klang Ampang Catchment." International Journal of Integrated Engineering 14, no. 5 (September 6, 2022). http://dx.doi.org/10.30880/ijie.2022.14.05.018.

Full text
Abstract:
Urban areas in tropical regions have higher flood risks due to the more frequent occurrence of intense convective rainfalls. The rising urbanization process have caused more surfaces to be covered with impervious materials, resulting in increased runoff. Modelling urban growth and its impact on urban hydrology is essential to ensure informed decision in the sustainable management and planning of cities in developing country like Malaysia. The aim of this research is to develop an integrated system for simulating future flood extents by coupling flood and urban growth models for the Upper Klang Ampang catchment which includes Kuala Lumpurcapital city. HEC-HMS was used for flood modelling while SLEUTH cellular automata model was employed to analyse urban growth in the catchment. The results indicate that using historical satellite images from 1990, 2000, 2010 and 2016 as input data layers alongwith slope, land use, hill shade, road and restricted area layers, a slight increase in urban growth from 2020 until 2050 is predicted which can cause the peak discharge to increase by about 11-15%. The integrated flood estimation-urban growth system can be used as an effective tool in urban planning and management for the city.
APA, Harvard, Vancouver, ISO, and other styles
16

Mesta, Carlos, Gemma Cremen, and Carmine Galasso. "Urban growth modelling and social vulnerability assessment for a hazardous Kathmandu Valley." Scientific Reports 12, no. 1 (April 12, 2022). http://dx.doi.org/10.1038/s41598-022-09347-x.

Full text
Abstract:
AbstractIn our rapidly urbanizing world, many hazard-prone regions face significant challenges regarding risk-informed urban development. This study addresses this issue by investigating evolving spatial interactions between natural hazards, ever-increasing urban areas, and social vulnerability in Kathmandu Valley, Nepal. The methodology considers: (1) the characterization of flood hazard and liquefaction susceptibility using pre-existing global models; (2) the simulation of future urban built-up areas using the cellular-automata SLEUTH model; and (3) the assessment of social vulnerability, using a composite index tailored for the case-study area. Results show that built-up areas in Kathmandu Valley will increase to 352 km2 by 2050, effectively doubling the equivalent 2018 figure. The most socially vulnerable villages will account for 29% of built-up areas in 2050, 11% more than current levels. Built-up areas in the 100-year and 1000-year return period floodplains will respectively increase from 38 km2 and 49 km2 today to 83 km2 and 108 km2 in 2050. Additionally, built-up areas in liquefaction-susceptible zones will expand by 13 km2 to 47 km2. This study illustrates how, where, and to which extent risks from natural hazards can evolve in socially vulnerable regions. Ultimately, it emphasizes an urgent need to implement effective policy measures for reducing tomorrow's natural-hazard risks.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography