Academic literature on the topic 'Cell membrane ion transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell membrane ion transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cell membrane ion transport"

1

Dubyak, George R. "Ion homeostasis, channels, and transporters: an update on cellular mechanisms." Advances in Physiology Education 28, no. 4 (December 2004): 143–54. http://dx.doi.org/10.1152/advan.00046.2004.

Full text
Abstract:
The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction pathways? 3) How does the specific lipid composition of the local membrane microenvironment modulate the function of an ion transport protein? 4) How can the basic functional properties of a ubiquitously expressed ion transport protein vary depending on the cell type in which it is expressed?
APA, Harvard, Vancouver, ISO, and other styles
2

Martinez, J. R. "Ion Transport and Water Movement." Journal of Dental Research 66, no. 1_suppl (February 1987): 638–47. http://dx.doi.org/10.1177/00220345870660s106.

Full text
Abstract:
Secretion of water and electrolytes in salivary glands occurs by a dual process involving the formation of a plasma-like, isotonic primary-secretion in salivary acini and its subsequent modification in salivary-ducts by the removal and addition of specific ions. The mechanisms underlying the formation of primary acinar secretion have been investigated with a number of experimental approaches such as electrophysiology, the measurement of ion transport in gland fragments and dispersed acinar cells, and the evaluation of the ionic requirements for secretion in isolated, perfused gland preparations. The accumulated evidence suggests that salivary secretion is formed by a complex interaction between passive and active ion movements across acinar cell membranes, resulting in the trans-acinar movement of CI and Na+ and, by the osmotic gradient which develops, of water. A major consequence of stimulation is the release of K + through Ca++ -and voltage-sensitive channels and its subsequent recycling back into the cells by ouabain- and furosemide-sensitive transport systems. This results in NaCl uptake across the basolateral cell membrane and the subsequent efflux of CI through luminal membrane channels, which also appear to be sensitive to cellular Ca + +. The rates of these various ion movements appear to be, therefore, closely linked and interdependent. Ductal modification of the primary secretion has been studied in microperfused duct preparations. The evidence likewise indicates that it involves interactions between complex conductance pathways in the luminal cell membrane and a Na, K pump present in the basolateral cell membrane and that it is under autonomic and hormonal control. Activation of ductal transport mechanisms results in NaCl reabsorption and KHCO3 secretion. Final saliva thus differs from primary secretion in electrolyte composition and, because water permeability is low in the duct epithelium, becomes hypotonic. Alterations in fluid and electrolyte secretion such as those observed in disease can result, therefore, from disturbances in one or more of these complex transport processes in acinar or duct cells.
APA, Harvard, Vancouver, ISO, and other styles
3

Martinez, J. R. "Ion Transport and Water Movement." Journal of Dental Research 66, no. 2_suppl (February 1987): 638–47. http://dx.doi.org/10.1177/00220345870660s206.

Full text
Abstract:
Secretion of water and electrolytes in salivary glands occurs by a dual process involving the formation of a plasma-like, isotonic primary-secretion in salivary acini and its subsequent modification in salivary-ducts by the removal and addition of specific ions. The mechanisms underlying the formation of primary acinar secretion have been investigated with a number of experimental approaches such as electrophysiology, the measurement of ion transport in gland fragments and dispersed acinar cells, and the evaluation of the ionic requirements for secretion in isolated, perfused gland preparations. The ac-cumulated evidence suggests that salivary secretion is formed by a complex interaction between passive and active ion movements across acinar cell membranes, resulting in the trans-acinar movement of Cl and Na* and, by the osmotic gradient which develops, of water. A major consequence of stimulation is the release of K+ through Ca++ -and voltage-sensitive channels and its subsequent recycling back into the cells by ouabain- and furosemide-sensitive transport systems. This results in NaCl uptake across the basolateral cell membrane and the subsequent efflux of Cl through luminal membrane channels, which also appear to be sensitive to cellular Ca++. The rates of these various ion movements appear to be, therefore, closely linked and interdependent. Ductal modification of the primary secretion has been studied in microperfused duct preparations. The evidence likewise indicates that it involves interactions between complex conductance pathways in the luminal cell membrane and a Na, K pump present in the basolateral cell membrane and that it is under autonomic and hormonal control. Activation of ductal transport mechanisms results in NaCl reabsorption and KHCO3 secretion. Final saliva thus differs from primary secretion in electrolyte composition and, because water permeability is low in the duct epithelium, becomes hypotonic. Alterations in fluid and electrolyte secretion such as those observed in disease can result, therefore, from disturbances in one or more of these complex transport processes in acinar or duct cells.
APA, Harvard, Vancouver, ISO, and other styles
4

Brône, Bert, and Jan Eggermont. "PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes." American Journal of Physiology-Cell Physiology 288, no. 1 (January 2005): C20—C29. http://dx.doi.org/10.1152/ajpcell.00368.2004.

Full text
Abstract:
PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 288: C20–C29, 2005; doi:10.1152/ajpcell.00368.2004.—The plasma membrane of epithelial cells is subdivided into two physically separated compartments known as the apical and basolateral membranes. To obtain directional transepithelial solute transport, membrane transporters (i.e., ion channels, cotransporters, exchangers, and ion pumps) need to be targeted selectively to either of these membrane domains. In addition, the transport properties of an epithelial cell will be maintained only if these membrane transporters are retained and properly regulated in their specific membrane compartments. Recent reports have indicated that PDZ domain-containing proteins play a dual role in these processes and, in addition, that different apical and basolateral PDZ proteins perform similar tasks in their respective membrane domains. First, although PDZ-based interactions are dispensable for the biosynthetic targeting to the proper membrane domain, the PDZ network ensures that the membrane proteins are efficiently retained at the cell surface. Second, the close spatial positioning of functionally related proteins (e.g., receptors, kinases, channels) into a signal transduction complex (transducisome) allows fast and efficient control of membrane transport processes.
APA, Harvard, Vancouver, ISO, and other styles
5

Bianchi, G. "Ion transport across blood cell membrane in essential hypertension." Current Opinion in Cardiology 1, no. 5 (September 1986): 634–40. http://dx.doi.org/10.1097/00001573-198609000-00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shennan, D. B., and C. A. R. Boyd. "Ion transport by the placenta: a review of membrane transport systems." Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 906, no. 3 (October 1987): 437–57. http://dx.doi.org/10.1016/0304-4157(87)90019-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kourie, Joseph I. "Interaction of reactive oxygen species with ion transport mechanisms." American Journal of Physiology-Cell Physiology 275, no. 1 (July 1, 1998): C1—C24. http://dx.doi.org/10.1152/ajpcell.1998.275.1.c1.

Full text
Abstract:
The use of electrophysiological and molecular biology techniques has shed light on reactive oxygen species (ROS)-induced impairment of surface and internal membranes that control cellular signaling. These deleterious effects of ROS are due to their interaction with various ion transport proteins underlying the transmembrane signal transduction, namely, 1) ion channels, such as Ca2+ channels (including voltage-sensitive L-type Ca2+currents, dihydropyridine receptor voltage sensors, ryanodine receptor Ca2+-release channels, andd- myo-inositol 1,4,5-trisphosphate receptor Ca2+-release channels), K+ channels (such as Ca2+-activated K+ channels, inward and outward K+ currents, and ATP-sensitive K+ channels), Na+ channels, and Cl− channels; 2) ion pumps, such as sarcoplasmic reticulum and sarcolemmal Ca2+pumps, Na+-K+-ATPase (Na+ pump), and H+-ATPase (H+ pump); 3) ion exchangers such as the Na+/Ca2+exchanger and Na+/H+exchanger; and 4) ion cotransporters such as K+-Cl−, Na+-K+-Cl−, and Pi-Na+cotransporters. The mechanism of ROS-induced modifications in ion transport pathways involves 1) oxidation of sulfhydryl groups located on the ion transport proteins, 2) peroxidation of membrane phospholipids, and 3) inhibition of membrane-bound regulatory enzymes and modification of the oxidative phosphorylation and ATP levels. Alterations in the ion transport mechanisms lead to changes in a second messenger system, primarily Ca2+ homeostasis, which further augment the abnormal electrical activity and distortion of signal transduction, causing cell dysfunction, which underlies pathological conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Morachevskaya, Elena A., and Anastasia V. Sudarikova. "Actin dynamics as critical ion channel regulator: ENaC and Piezo in focus." American Journal of Physiology-Cell Physiology 320, no. 5 (May 1, 2021): C696—C702. http://dx.doi.org/10.1152/ajpcell.00368.2020.

Full text
Abstract:
Ion channels in plasma membrane play a principal role in different physiological processes, including cell volume regulation, signal transduction, and modulation of membrane potential in living cells. Actin-based cytoskeleton, which exists in a dynamic balance between monomeric and polymeric forms (globular and fibrillar actin), can be directly or indirectly involved in various cellular responses including modulation of ion channel activity. In this mini-review, we present an overview of the role of submembranous actin dynamics in the regulation of ion channels in excitable and nonexcitable cells. Special attention is focused on the important data about the involvement of actin assembly/disassembly and some actin-binding proteins in the control of the epithelial Na+ channel (ENaC) and mechanosensitive Piezo channels whose integral activity has a potential impact on membrane transport and multiple coupled cellular reactions. Growing evidence suggests that actin elements of the cytoskeleton can represent a “converging point” of various signaling pathways modulating the activity of ion transport proteins in cell membranes.
APA, Harvard, Vancouver, ISO, and other styles
9

Bing, Robert F., Anthony M. Heagerty, Herbert Thurston, and John D. Swales. "Ion transport in hypertension: are changes in the cell membrane responsible?" Clinical Science 71, no. 3 (September 1, 1986): 225–30. http://dx.doi.org/10.1042/cs0710225.

Full text
Abstract:
Disturbances in several, distinct cell membrane ion transport processes have been demonstrated in essential hypertension but their variable relationship to blood pressure in different populations has made it difficult to achieve a unifying hypothesis. We suggest that altered composition of the lipid fraction of the cell membrane is the common underlying factor. This would produce many of the reported perturbations of cell membrane properties and function, not all of which relate directly to the development of hypertension, but which act as markers for the underlying abnormality. However, functions such as phosphoinositol turnover, calcium binding and Ca2+,Mg2+-ATPase dependent calcium efflux, which are influenced by the lipid composition of the membrane, provide a possible link between the membrane disturbance, intracellular calcium, vascular smooth muscle contraction and blood pressure. Alteration in the lipid content of the cell membrane not only provides an explanation for the variability in the ion transport abnormalities between populations but perhaps also for some of the variability in blood pressure within a single population. It also provides a potential means of influencing blood pressure by dietary intervention.
APA, Harvard, Vancouver, ISO, and other styles
10

Muallem, Shmuel, Woo Young Chung, Archana Jha, and Malini Ahuja. "Lipids at membrane contact sites: cell signaling and ion transport." EMBO reports 18, no. 11 (October 13, 2017): 1893–904. http://dx.doi.org/10.15252/embr.201744331.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cell membrane ion transport"

1

Jenkins, Richard J. "The mechanisms whereby the sodium, potassium-ATPhase undergoes adaptive changes in human lymphocytes in response to lithium." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Stephanie Ann. "Mathematical models of ion transport through nafion membranes in modified electrodes and fuel cells without electroneutrality." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/734.

Full text
Abstract:
Electrodes are modified with polymer films to grant novel permeability. Often, redox probes partition from solution into film and are electrolyzed at the electrode. This creates a flux of probe into the polymer film and a flux of electrolyzed probe out of the polymer film. Transport of the probe through the film is governed by diffusion and migration, mathematically described from the Nernst-Planck equation as J_{i}=-D_{i}((∂C_{i}(x,t))/(∂x))-((z_{i}F)/(RT))D_{i}C_{i}(x,t)((∂Φ(x,t))/(∂x)) where x is the distance from the electrode, t is time, C_{i}(x,t) is space and time dependant concentration of the probe i, z_{i} is the charge of the probe i, F is Faraday's constant, R is the gas constant, T is absolute temperature, J_{i} is the flux of the probe i, D_{i} is the diffusion constant of the probe i and Φ(x,t) is the space and time dependant potential. In most natural systems, charge accumulation is not appreciably noticed, the system behaves in such a way that a charged ion is neutralized by a counterion. This is called electroneutrality and is mathematically represented by Laplace's condition on the potential, ((∂²Φ)/(∂x²))=0. In some systems, it is not clear if counterions are readily available to neutralize an ion. In such a system, there may not be electroneutrality, giving Poisson's equation to replace Laplace's condition as ((∂²Φ)/(∂x²))=-(F/ɛ)∑_{i}z_{i}C_{i}(x,t) where ɛ is the relative permittivity. The addition of Poisson's condition makes the system nonsolvable. In addition, the magnitude of F/ɛ creates difficulty simulating the system using standard techniques. The first system investigated determines the concentration and potential profiles over the polymer membrane of a fuel cell without electroneutrality. In some systems, the probes can not easily diffuse around each other, certain polymer film environments prevent such a swap of location as diffusion is commonly thought to occur. A more generalized form of the Nernst-Planck equation describes spatially varying diffusion coefficient as J=-D(x,t)((∂C(x,t))/(∂x))-((zF)/(RT))D(x,t)C(x,t)((∂Φ(x,t))/(∂x)). D(x,t) is space and time dependent diffusion, usually thought of with a physical diffusion term and an ion hopping term. The second system this thesis investigates is a modified electrode system where electron hopping is responsible for a majority of the probe transport within the film. Lastly, the beginnings of a method are presented to easily determine the physical diffusion rate of a probe within a modified electrode system based on known system parameters.
APA, Harvard, Vancouver, ISO, and other styles
3

Hsu, Viktoria R. T. "Ion transport through biological cell membranes : from electro-diffusion to Hodgkin-Huxley via a quasi steady-state approach /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/6755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

García, Gamuz José Antonio. "Caracterización hidrodinámica y fenomenológica de membranas selectivas." Doctoral thesis, Universidad de Murcia, 2009. http://hdl.handle.net/10803/10842.

Full text
Abstract:
El objetivo principal de este trabajo es desarrollar un modelo sencillo que permita la caracterización hidrodinámica de membranas selectivas integradas en sistemas bi-iónicos, mediante la determinación de coeficientes de difusión y de espesores de las capas límite alrededor de la membrana. A tal fin, se empleó una célula de difusión rotatoria (CDR), que permite el establecimiento de condiciones hidrodinámicas bien definidas para el sistema de membrana, dado que la variación de la frecuencia de giro del cilindro interior (ω), permite disminuir el espesor de la capa límite sobre la membrana, lo que favorece el intercambio iónico a su través. Se puede comprobar éste comportamiento, mediante consideraciones en torno al coeficiente de difusión de los cationes en el sistema de membrana y del cálculo del propio espesor de la capa límite. El mencionado coeficiente se obtendrá a partir del flujo iónico en la membrana, determinado a partir de medidas de pH, junto a medidas de conductividad, en la fase externa (receptora), a diferentes temperaturas y a distintas valores de ω.La medida de los flujos, una vez establecida su dependencia con ω, permite obtener los coeficientes de difusión catiónicos en el sistema de membrana, en función de la temperatura y de ω. Las medidas de la conductividad permiten testar el modelo propuesto, mediante su correlación con los valores de pH obtenidos, proporcionando información adicional acerca de los coeficientes de difusión de los cationes.
From the experimental study of the ionic transport through selective membranes in biionic systems, a simple model which allows the characterising hydrodynamic of the membrane systems through the determination of diffusion coefficients and the thickness of the limit layer has been developed. With this purpose, a rotating diffusion cell that allows the setting of hydrodynamic conditions clearly for the membrane system has been used, studying the variation of the conductivity and the pH in the external phase (receiving) at different temperatures from 20ºC to 50ºC and at different rotating velocities ω. The measurement of the fluxes, once set its dependence with ω, allows obtained the diffusion coefficients cationics in the membrane system in accordance with the temperature and ω. The measurements of the conductivity allow the testing of this model, through its correlation with the values of the pH measured, obtaining additional data about the diffusion coefficient of the cations in the receiving phase.
APA, Harvard, Vancouver, ISO, and other styles
5

Touchard, Pascale. "Propriétés d'échange et de transport ioniques des parois végétales isolées de cals de lin." Rouen, 1988. http://www.theses.fr/1988ROUES017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Winschel, Christine A. "Accurate Methodology for Monitoring Biomembrane Events." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2860.

Full text
Abstract:
Abstract ACCURATE METHODOLOGY FOR MONITORING BIOMEMBRANE EVENTS By Christine A. Winschel, Ph.D. A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctorate of Philosophy in Chemistry at Virginia Commonwealth University. Virginia Commonwealth University, 2012 Major Director: Dr. Vladimir A. Sidorov ASSOCIATE PROFESSOR, DEPARTMENT OF CHEMISTRY This study describes the synthesis and characterization of a new receptor (cyclen 1) capable of strong selective binding of pyrene-based anionic dyes under near-physiological conditions. This receptor comprises four naphthylthiourea groups tethered to a cyclen core via an ester linkage. The most important finding was the ability of cyclen 1 to bind efficiently to a pH-sensitive pyranine dye, a dye that is commonly used in various biomembrane assays. The high affinity of cyclen 1 to pyranine, its impermeability to the lipid bilayer membrane, fast kinetics of binding, and ability to quench pyranine’s fluorescence were used as a basis for a new membrane leakage assay. This membrane leakage assay is fully compatible with the commonly applied pH-stat transport assay, and therefore it allows for differentiation of ion transport and nonselective leakage mechanisms within a single set of experiments. In the second part of this study a new methodology for the detection of lipid flip was developed. This methodology relies on the quenching of the fluorescence of a newly synthesized cascade-blue-labeled lipid through complex formation with cyclen 1. This receptor-dye complexation also has high affinity for binding at micromolar concentrations and can be reversed by either competitive displacement of the lipid probe or by enzymatic degradation of the receptor leading to the label release and fluorescence dequenching. This new methodology is suitable for the study of lipid flip in both model spherical bilayer membranes and in-vitro experiments, and is less invasive to the model and cell membranes than the commonly utilized 7-nitro-1,2,3-benzoxadiazol-4-yl (NBD)-dithionite methodology. Lastly, new pH-sensitive lipids were synthesized and utilized in the formulation of liposomes suitable for controlled drug release. These liposomes contain various amounts of internal NaCl and undergo internal acidification upon the exogenous addition of an HCl co-transporter in a physiologically relevant NaCl solution. Therefore, acidification ultimately leads to the hydrolysis of the pH-sensitive lipids and subsequent contents release. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be non-toxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug release model potentially suitable for in vivo applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Agostinelli, Simone. "A compartmentalised microchip platform with charged hydrogel to study protein diffusion for Single Cell Analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20333/.

Full text
Abstract:
Within one tumor, cancer cells exist as different sub-populations due to the variations in expression of crucial bio-markers. The prevalence of even minor cell sub-populations can determine overall cancer progression and treatment response. Single-cell protein analysis is a way to identify these cell sub-populations; therefore we developed a microfluidic platform with ultrahigh-sensitivity for single-cell protein analysis. As the key step to develop such a platform, protein migration under the application of an electric field has to be understood. COMSOL multi-physics software is used as a tool to understand the protein migration in microfluidic channels, which contain ion-selective hydrogels as the separation matrix. The objective of this thesis work, is to minimize the protein losses to diffusion and to maximize the fluorescent signal in order to quantify the protein expression in single cells. The novelty of this work lies in the use of ion-selective hydrogels to eliminate the diffusional losses and separate the proteins based on their mass and charge. This thesis project has been performed thanks to an Erasmus fellowship at MCS Department of the University of Twente.
APA, Harvard, Vancouver, ISO, and other styles
8

Monedero, Alonso David. "Characterization of cationic conductances of human erythrocytes and their involvement in health and disease." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS554.

Full text
Abstract:
La membrane des globules rouges est dotée de plusieurs canaux ioniques. Normalement silencieux, ils peuvent dissiper rapidement les gradients ioniques une fois activés. Lors de cette étude, l'utilisation du NS3623 à des concentrations supérieures à celles requises pour l'inhibition des voies de conductances anioniques montre que ce composé active les canaux cationiques non sélectifs permettant ainsi leur étude y compris en conditions hyperpolarisantes. Le suivi en temps réel du potentiel membranaire à l'aide de l'ionophore à protons CCCP permet d’observer directement l'activité des canaux ioniques lorsque leur ouverture modifie le potentiel membranaire. Cette méthode a été utilisée pour décrire l'homéostasie cationique dysfonctionnelle dans des cellules de patients affectés par différentes mutations sur les canaux Gárdos ou Piezo1. Elle pourrait constituer un outil de diagnostic alternatif. L'activité des canaux ioniques a été caractérisée tout au long de la période de stockage réglementaire des globules rouges stockés à 4 °C (42 jours), afin de mieux comprendre les lésions de stockage. Il a été démontré que l’activité du NSC augmentait avec le temps, devenant spectaculaire la dernière semaine de stockage. En conclusion, les canaux cationiques non sélectifs jouent un rôle dans l'homéostasie des globules rouges matures. Ils contribuent ou peuvent constituer l'origine de la fuite de cations. Ils sont à l'origine de maladies en cas de dysfonctionnement et la compréhension de leur fonctionnement dans ces conditions peut fournir des stratégies thérapeutiques. Enfin, ils sont impliqués dans les lésions de stockage compromettant par leur activité l'efficacité transfusionnelle
Red cell membranes are endowed with several ion channels. Normally silent, they will rapidly dissipate ionic gradients once activated. I present a pharmacological means (NS3623) for the enhancement of NSC channels in hyperpolarizing conditions with concomitant chloride conductance inhibition in freshly drawn healthy mature RBCs. Membrane potential estimation aided by proton ionophore CCCP allows the recording of membrane potential changes in real time, enabling the observation of ion channel activity as their opening alters the membrane potential. This method was used to describe dysfunctional cation homeostasis in hereditary anemia using patient cells affected by different mutations on Gárdos or Piezo1 channels. The technique is fast, reliable and inexpensive providing an alternative diagnostic tool with the added advantage of producing ion channel activity information. Ion channel activity was characterized throughout 42-day storage period of RBCs stored at 4 C in CPD-SAGM according to French regulations to address the issue of storage lesions, which reduce transfusion efficacy. NSC activity was shown to increase over time during storage and dramatic ion channel activity was observed during the last week. Consequently, NSC activity may jeopardize cell volume and morphology upon reinfusion. In conclusion, Non-Selective Cation channels play an important role in mature RBCs. They contribute or may constitute the origin of cation leak. They cause disease when malfunctioning and insight into their operation in these conditions may supply with therapeutic strategies. They are involved in the storage lesion, and may account for RBCs demise once back in the circulation
APA, Harvard, Vancouver, ISO, and other styles
9

Schaumann-Gaudinet, Annick. "Perturbation par les ions lithium de caractéristiques ioniques des suspensions cellulaires d'Acer pseudoplatanus L." Rouen, 1988. http://www.theses.fr/1988ROUES018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ermolayeva, Elena. "Plasma membrane ion transport in phytochrome signal transduction." Thesis, University of York, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319767.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cell membrane ion transport"

1

Christoph, Lüttgau Hans, ed. Membrane control of cellular activity. Stuttgart: Fischer, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Simon, Sidney A. Current topics in membranes: Mechanosensitive Ion Channels : Part A. Burlington: Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Clapham David, and Ehrlich Barbara E, eds. Organellar ion channels and transporters. New York: Rockefeller University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giulio, Milazzo, and Blank Martin 1933-, eds. Bioelecrochemistry III: Charge separation across biomembranes. New York: Plenum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Garrahan Patricio, ed. The Ca2+ pump of plasma membranes. Boca Raton, Fla: CRC Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yuan, Jason X.-J., 1963- and Ward Jeremy P. T, eds. Membrane receptors, channels, and transporters in pulmonary circulation. Dordrecht: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murdoch, Ritchie J., Keynes R. D, and Bolis Liana, eds. Ion channels in neural membranes: Proceedings of the 11th International Conference on Biological Membranes held at Crans-sur-Sierre, Switzerland, June 10-14, 1985. New York: A.R. Liss, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Mandel Lazaro, and Eaton Douglas C, eds. Cell calcium and the control of membrane transport: Society of General Physiologists, 40th Annual Symposium. New York: Rockefeller University Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yudilevich, David L., Rosa Devés, Salvador Perán, and Z. Ioav Cabantchik, eds. Cell Membrane Transport. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9601-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kotyk, Arnošt, and Karel Janáček. Cell Membrane Transport. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-0718-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cell membrane ion transport"

1

García-Díaz, J. Fernando, and Fernando Giráldez. "The Use of Ion-Selective Microelectrodes to Study Cellular Transport Processes." In Cell Membrane Transport, 189–214. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9601-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Petersen, Ole. "Single-Channel and Whole-Cell Patch-Clamp Experiments on Gland Cells: Activation of Ion Channels Via Internal Messengers." In Cell Membrane Transport, 437–50. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9601-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sachs, George, John Cuppoletti, Robert D. Gunther, Jonathan Kaunitz, John Mendlein, Edwin C. Rabon, and Bjorn Wallmark. "Ion Pumps, Ion Pathways, Ion Sites." In New Insights into Cell and Membrane Transport Processes, 75–95. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5062-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bennekou, Poul, and Palle Christophersen. "Ion Channels." In Red Cell Membrane Transport in Health and Disease, 139–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05181-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kulbacka, Julita, Anna Choromańska, Joanna Rossowska, Joanna Weżgowiec, Jolanta Saczko, and Marie-Pierre Rols. "Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes." In Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy, 39–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56895-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bentrup, Friedrich-Wilhelm. "Cell Electrophysiology and Membrane Transport." In Progress in Botany, 70–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-75154-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bentrup, Friedrich-Wilhelm. "Cell Electrophysiology and Membrane Transport." In Progress in Botany, 66–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-45607-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lever, J. E. "Cell and Molecular Biology of Na+/Glucose Symport." In Membrane Transport in Biology, 56–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76983-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Omasta, Travis J., and William E. Mustain. "Water and Ion Transport in Anion Exchange Membrane Fuel Cells." In Anion Exchange Membrane Fuel Cells, 1–31. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71371-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

English, Leigh, Benjamin White, and Lewis Cantley. "Comparison of the Na+ Pump and the Ouabain-Resistant K+ Transport System with Other Metal Ion Transport ATPases." In New Insights into Cell and Membrane Transport Processes, 249–59. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5062-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cell membrane ion transport"

1

Romero, T., and W. Me´rida. "Transient Water Transport in Nafion Membranes Under Activity Gradients." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33317.

Full text
Abstract:
Transient water transport experiments on Nafion of different thicknesses were carried out in the temperature range of 30 to 70 °C. These experiments report on water transport measurements under activity gradients in the time domain for liquid and vapour equilibrated Nafion membranes. Using a permeability test rig with a gated valve, the water crossover was measured as a function of time. The typical response is shown as a time dependent flux, and it shows the dynamic transport from an initially dry condition up to the final steady state. Contrarily to previous reports from dynamic water transport measurements, where the activity gradient across the membrane is absent; in this work, the membrane was subjected to an activity gradient acting as the driving force to transport water from an environment with higher water activity to an environment with lower water activity through the membrane’s structure. Measurements explored temperature and membrane thickness variation effect on the transient response. Results showed dependency on temperature and a slower water transport rate across the vapour-membrane interface than for the liquid-membrane interface. These measurements showed the transport dependency on water content at the beginning of the experiment when the membrane was in a close-to-dry condition suggesting a transport phenomenon transition due to a reached critical water content value. The new protocol for transient measurements proposed here will allow the characterization of water transport dependency on membrane water content with a more rational representation of the membrane-environment interface.
APA, Harvard, Vancouver, ISO, and other styles
2

Sundaresan, Vishnu Baba, and Donald J. Leo. "Modeling and Characterization of a Chemomechanical Actuator Based on Protein Transporters." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43712.

Full text
Abstract:
Plants and animal cells are naturally occurring actuators that exhibit force and motion driven by fluid transport through the cell membrane. The protein transporters embedded in the cell membrane serve as the selective gateway for ion and fluid transport. The actuator presented in this work generates force and deformation from mass transport through an artificial membrane with protein transporters extracted from plant cell membranes. The artificial membrane is formed from purified 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine (POPE) lipids and supported on a porous substrate. The protein transporter used in the actuator membrane is a proton-sucrose cotransporter, SUT4, extracted from yeast cells that genetically modified to grow the cotransporter in their cell membranes. The SUT4 transporter conducts proton and sucrose from the side of the membrane with higher concentration and carries water molecules across the membrane. It is observed from transport characterization experiments that fluid flux through the membrane varies with the applied sucrose concentration and hence is chosen as the control stimulus in the actuator. A modified four-state facilitated diffusion model is applied to the transport characterization data to compute the two characteristic parameters for fluid transport, saturation concentration and translocation rate, through the membrane. The flux rate through the membrane is observed to increase with the concentration till a particular value and saturates at a higher concentration. The concentration at which the flux rate through the membrane saturates is referred to as the saturation concentration. The saturation concentration for the actuator is experimentally found to be 6±0.6mM sucrose on the side with lower pH. The corresponding maximum translocation rate is found to be 9.6±1.2 nl/μ.cm2.min. The maximum steady state deformation produced by the actuator is observed at 30 mM sucrose that corresponds to a force of 0.89 mN.
APA, Harvard, Vancouver, ISO, and other styles
3

Hery, Travis M., and Vishnu-Baba Sundaresan. "Pore-Spanning PPy(DBS) as a Voltage-Gated Synthetic Membrane Ion Channel." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9193.

Full text
Abstract:
The transport of monovalent cations across a suspended PPy(DBS) polymer membrane in an aqueous solution as a function of its redox state is investigated. Maximum ion transport is found to occur when PPy(DBS) is in the reduced state, and minimum transport in the oxidized state. No deviation in the dynamics of ion transport based on the direction of the applied electrical field is observed. Additionally, it is found that ion transport rates linearly increased proportional to the state of reduction until a steady state is reached when the polymer is fully reduced. Therefore controlled, bidirectional ion transport is for the first time demonstrated. The effect of aqueous Li+ concentration on ion transport in the fully reduced state of the polymer is studied. It is found that ion transport concentration dependence follows Michaelis-Menten kinetics (which models protein reaction rates, such as those forming ion channels in a cell membrane) with an r2 value of 0.99. For the given PPy(DBS) polymer charge density and applied potential across the membrane, the maximum possible ion transport rate per channel is found to be 738 ions per second and the Michaelis constant, representing the concentration at which half the maximum ion transport rate occurs, is 619.5mM.
APA, Harvard, Vancouver, ISO, and other styles
4

Liu, JuanFang, Nobuyuki Oshima, Eru Kurihara, and LitanKumar Saha. "Water Transport in the MEA of a PEM Fuel Cell." In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85061.

Full text
Abstract:
In the paper, a one-dimensional model of water transport across the entire cell is presented for the proton exchange membrane fuel cell. In the model, the catalyst layer is treated as a separate computing domain, not an interface between the gas diffusion layer and membrane. Meanwhile, in the membrane mechanisms of back diffusion and electro-osmotic drag are considered, while pure diffusion process is taken into account for the gas-phase flow in the cell. In the catalyst layer, except for Knudsen diffusion, water vapor in the pore is coupled with liquid water in the ionomor phase by the isotherm sorption and in equilibrium with each other. The results indicate both the operating pressure and mean current density are the important factors to affect the water transport process in the cell. Moreover, it is found that the liquid water diffusivity dependent on water content in the ionomer phase would lead to the water content distribution at the different degree nonuniformity. Additionally, the thinner membranes result in the higher and more uniform distribution of water content in the membrane phase. Furthermore, the concentration-gradient driven water flux based on Henry’law is exposed on the anode surface of the membrane as the boundary condition, which is more appropriate to present the reality of water content in the ionomer phase. The numerical results imply that it is very necessary to investigate the interaction among different components of a cell, so as to predict correctly the coupled transport phenomena occurred in the entire fuel cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Baschuk, J., and Xianguo Li. "Applying the Generalized Stefan-Maxwell Equations to Ion and Water Transport in the Polymer Electrolyte of a PEM Fuel Cell." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41660.

Full text
Abstract:
Ion and water transport phenomena in the polymer electrolyte plays a significant role in the energy conversion process of a polymer electrolyte membrane (PEM) fuel cell. A mathematical model for ion and water transport in the polymer electrolyte is presented, based on non-equilibrium thermodynamics and the Generalized Stefan-Maxwell equations. The physical constants of the model, such as the binary diffusion coefficients of the Generalized Stefan-Maxwell equations, are obtained from published, experimental data for membrane water diffusion and conductivity. The electrolyte transport model is incorporated into a model of an entire PEM fuel cell; water transport in the electrolyte and gas phase are coupled and solved in a single domain.
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jianbo, and Hao Lin. "The Role of Ion Electrophoresis in Electroporation-Mediated Molecular Delivery." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18495.

Full text
Abstract:
Electroporation is a widely applied technique to deliver active molecules into the cellular compartment, to perform tasks such as gene therapy and directed stem cell differentiation, among many others. In this technique, an electric field transiently permeabilizes the cellular membrane to facilitate molecular exchange. While the permeabilization process is relatively well understood, the transport mechanisms for molecular delivery are still under debate. In this work, the role of ion electrophoresis in electroporation-mediated molecular delivery is investigated using numerical simulation. The Nernst-Planck equations for ionic transport in the extracellular and intracellular spaces are solved, respectively, and are coupled through a permeabilization model on the membrane. For the latter, an asymptotic Smoluchowski equation system is adopted, following the work of Krassowska and co-authors. The simulation is used to investigate the delivery of calcium ions into Chinese hamster ovary cells. The results indicate that ion electrophoresis is the dominant mode of transport in the delivery of small charged molecules. Furthermore, the achievable intracellular concentration is strongly influenced by the conductivity difference between the cytoplasm and the buffer, a phenomenon known as “field-amplified sample stacking”. The results agree qualitatively with the fluorescence measurements by Gabriel and Teissie´ (1999), and suggest a new possibility to simultaneously improve cell viability and efficiency in electroporation-mediated molecular delivery.
APA, Harvard, Vancouver, ISO, and other styles
7

Myles, Timothy D., Kyle N. Grew, Aldo A. Peracchio, and Wilson K. S. Chiu. "Examination of Water Diffusion Process Within a Low Temperature Polymer Fuel Cell Membrane." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11341.

Full text
Abstract:
Water transport in fuel cells is of interest since the hydration state of the electrolyte is strong related to its conductivity. This study focuses on one part of water transport in fuel cell membranes, namely diffusion. In order to study diffusion processes in a fuel cell membrane a computer model has been developed. It is validated using information reported for the electrolyte membrane material Nafion. When the model is compared to experimental data from the literature a maximum error of 24.7% is observed. Two effects in addition to molecular diffusion have been studied; interfacial absorption and desorption of water at the membrane surface, and convective mass transfer. The effect of convective mass transfer is shown to be negligible while the effects of absorption and desorption are significant. By completing this validation it allows for the additional studies in the future of diffusion in other types of proton exchange membranes and the improvement of fuel cell performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Verma, Atul, and Ranga Pitchumani. "Effect of Membrane Properties on Dynamic Behavior of Polymer Electrolyte Membrane Fuel Cells." In ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fuelcell2013-18209.

Full text
Abstract:
Understanding the performance of proton exchange membrane (PEM) fuel cells is critical to the water management in the fuel cell system. Low-humidity operating conditions present a complex interaction between dynamic behavior and water transport owing to different time scales of water transport mechanisms in the transient process. Toward understanding the effects of membrane properties on the dynamic behavior, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting the unit cell to step change in current. The objective is to elucidate the complex interaction between cell voltage response and water transport dynamics for various membrane properties, where the performance is critically related water content of the membrane. Detailed computational fluid dynamics (CFD) simulations are carried out to show that step increase in current density leads to anode dryout due to electro-osmotic drag, and investigate its dependence on variations in membrane properties.
APA, Harvard, Vancouver, ISO, and other styles
9

Guan, Yingxue, Aili Zhang, and Lisa X. Xu. "Study of Interaction Energy Between Nanoparticles and Cell Membrane." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23187.

Full text
Abstract:
Applications of nanoparticles in the bio-medical field like nano-medicine, molecular imaging probes, fluorescence marker, gene carriers, are developing quickly owing to the unique characteristics of nanoparticles. Among these applications, the interaction of nano-particles with the living cells is of critical importance. The complex chemical properties and biological activities of the particles bring about undesirable cytotoxic potentials and special cell internalization. According to previous studies, the cell uptake kinetics of nanoparticles mainly depend on the concentration difference between extracellular and intracellular nanoparticles, the surface electric charge of the nanoparticle, and the active transport of the cell. For example, Ginzburg’s thermodynamic simulation and Park’s three-dimensional phase-field model quantitatively explain the transitions in membrane morphology after exposure to nanoparticles with different surface charge, respectively. However, recent studies have shown that the gold nanoparticles coated with hydrophilic and hydrophobic functional groups with the same concentration but in different orders, completely exhibit quite different intrusion ability at 4°C when the active transport of the cell is greatly inhibited. The results suggest that the interaction energy of nanoparticles and cell membranes may be another driving force for the nanopartcles’ mass transfer across the cell membrane. Thus, in this paper, the interaction energy of the differently coated nanoparticles (P) with cell membrane (M) in water (W) is studied theoretically and results are used to explain the former experimental findings.
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki, Takahiro, Yuichiro Tabuchi, Shohji Tsushima, Shuichiro Hirai, Koichiro Aotani, and Norio Kubo. "Measurement of Water Content Distribution in Catalyst Coated Membrane at Water Permeation Condition by Magnetic Resonance Imaging." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33338.

Full text
Abstract:
Through-plane water content distribution in a polymer electrolyte membrane (PEM) and water flux across the membrane were measured under different water permeation conditions using magnetic resonance imaging (MRI) and a dew point measurement system. We placed the PEM by itself or as a catalyst coated membrane (CCM) in an experimental cell, and we subjected them to several water permeation conditions that had different water activities across the membrane. We compared the water content distribution and water flux of samples, and the results showed the membranes exhibited different water content distribution between the PEM and the CCM. The differences suggest that the rate-determining process of the water transport phenomena across the membrane, which are diffusion through the membrane and interfacial transport across the membrane-gas interface, changed according to whether the membrane is used by itself or as a CCM.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cell membrane ion transport"

1

Voth, Gregory A. Final Report: Computer Simulation of Proton Transport in Fuel Cell Membranes. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1600007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bose, Anima. Multi-Hybrid Power Vehicles with Cost Effective and Durable Polymer Electrolyte Membrane Fuel Cell and Li-ion Battery. Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1121743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography