Dissertations / Theses on the topic 'Cell Division - Stochastic Simulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Cell Division - Stochastic Simulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Morton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.
Full textSzekely, Tamas. "Stochastic modelling and simulation in cell biology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.
Full textChen, Minghan. "Stochastic Modeling and Simulation of Multiscale Biochemical Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90898.
Full textDoctor of Philosophy
Modeling and simulation of biochemical networks faces numerous challenges as biochemical networks are discovered with increased complexity and unknown mechanisms. With improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models, or numerical models based on probability distributions, for gene and protein networks at cellular levels that match well with the data and account for randomness. This dissertation studies a stochastic model in space and time of a bacterium’s life cycle— Caulobacter. A two-dimensional model based on a natural pattern mechanism is investigated to illustrate the changes in space and time of a key protein population. However, stochastic simulations are often complicated by the expensive computational cost for large and sophisticated biochemical networks. The hybrid stochastic simulation algorithm is a combination of traditional deterministic models, or analytical models with a single output for a given input, and stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks that contain both species populations and reaction rates with widely varying magnitude. The populations of some species may become negative in the simulation under some circumstances. This dissertation investigates negative population estimates from the hybrid method, proposes several remedies, and tests them with several cases including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of observed data must be large enough to obtain valid results. To optimize system parameters, the quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic (budding) yeast life cycle model by matching different distributions between simulated results and observed data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental molecular binding mechanism by the stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different optimization strategies are explored targeting different features of the observed data.
Biehler, Eike [Verfasser], Werner [Akademischer Betreuer] Nagel, and Richard [Akademischer Betreuer] Cowan. "Cell division processes in tessellations : a stochastic geometry approach / Eike Biehler. Gutachter: Werner Nagel ; Richard Cowan." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2012. http://d-nb.info/1029294216/34.
Full textAhmadian, Mansooreh. "Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory Networks." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99481.
Full textDoctor of Philosophy
Cell cycle is a process in which a growing cell replicates its DNA and divides into two cells. Progression through the cell cycle is regulated by complex interactions between networks of genes, transcripts, and proteins. These interactions inside the confined volume of a cell are subject to inherent noise. To provide a quantitative description of the cell cycle, several deterministic and stochastic models have been developed. However, deterministic models cannot capture the intrinsic noise. In addition, stochastic modeling poses the following challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the accuracy of the estimated model parameters. The goal of this dissertation is to address these challenges by developing new efficient methods for modeling and simulation of stochastic effects in biochemical networks. The results show that the proposed hybrid model that combines stochastic and deterministic modeling approaches can achieve high computational efficiency while generating accurate simulation results. Moreover, a new machine learning-based method is developed to address the parameter estimation problem in biochemical systems. The results show that the proposed method yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
Charlebois, Daniel A. "An algorithm for the stochastic simulation of gene expression and cell population dynamics." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28755.
Full textWang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Full textPh. D.
Joubaud, Maud. "Processus de Markov déterministes par morceaux branchants et problème d’arrêt optimal, application à la division cellulaire." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS031/document.
Full textPiecewise deterministic Markov processes (PDMP) form a large class of stochastic processes characterized by a deterministic evolution between random jumps. They fall into the class of hybrid processes with a discrete mode and an Euclidean component (called the state variable). Between the jumps, the continuous component evolves deterministically, then a jump occurs and a Markov kernel selects the new value of the discrete and continuous components. In this thesis, we extend the construction of PDMPs to state variables taking values in some measure spaces with infinite dimension. The aim is to model cells populations keeping track of the information about each cell. We study our measured-valued PDMP and we show their Markov property. With thoses processes, we study a optimal stopping problem. The goal of an optimal stopping problem is to find the best admissible stopping time in order to optimize some function of our process. We show that the value fonction can be recursively constructed using dynamic programming equations. We construct some $epsilon$-optimal stopping times for our optimal stopping problem. Then, we study a simple finite-dimension real-valued PDMP, the TCP process. We use Euler scheme to approximate it, and we estimate some types of errors. We illustrate the results with numerical simulations
Dao, Duc Khanh. "Modeling and analysis of neuronal networks, stochastic chemical reactions in cellular micro-domains and telomere dynamics." Paris 6, 2013. http://www.theses.fr/2013PA066513.
Full textIn this PhD, we model specific stochastic events occurring in different biological contexts. In the first part, we study three different properties of neural networks. Using a mean field facilitation-depression synaptic model, we unravel the synchronous long lasting bursting observed at various scales of neural populations. Next, we study the neuronal noise induced transition between Up& Down states. To study the oscillatory peaks of the time spent in Up state, we consider the exit problem for a class of stochastic processes in a domain with an attractor located close to a limit cycle. We construct a class of systems conjugate to the Hopf bifurcation system that we study using WKB approximation and boundary layer analysis. We finally focus on neuroglial interactions and more specifically on astrocytic potassium. Using a tri-compartment model, we simulate the potassium dynamics for different stimulation protocols and we determine how astrocytic channels can influence neurotransmission. In the second part, we focus on the threshold activation for stochastic chemical reactions in cellular micro-domains. We compute the probability and the mean first time to reach a threshold for different reactions. The methods are applied to study the mitotic spindle checkpoint and the problem of gene expression and post-transcriptional regulation. The third part is finally dedicated to the stochastic dynamics of telomere length across cell divisions. We model the dynamics of telomere length as a drift and jump process, which allows predicting the distribution of telomere length and the length of the shortest telomere
Wollrab, Viktoria. "Active gels in vivo : patterns and dynamics in cytokinetic rings and their functions in cell division." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF027/document.
Full textActomyosin structures are involved in many cell functions. Understanding their organization and collective behavior is still challenging. We study the cytokinetic ring in mammalian cells and in fission yeasts, by orienting cells in microcavities. This allows seeing the ring in a single plane of focus. With this setup, we reveal new structures and distinct dynamics for both cellular systems. In mammalian cells we find a pattern of regular clusters of myosin and formin. The characteristics of this pattern are stable throughout closure and its formation coincides with the onset of constriction. We propose that its characteristic is an inherent property of the actomyosin network and that its formation leads to an increase in stress generation. These hypotheses are supported by our theoretical mean field model. In contrast, fission yeast rings show rotating inhomogeneities (speckles), i.e. rotations of actin, myosin, cell wall building proteins (Bgs) and other proteins. Myosin speckles dynamic is unchanged, if wall growth is inhibited. However, the inhibition of speckle motion leads to stalled closure. We propose that the ring closure is driven by the rotation of actin and myosin, which pull Bgs thereby building the septum. This model is supported by our calculations and by numerical simulations. We suggest that the transition between states of different orders and dynamics might be a way to regulate actomyosin systems in vivo
Abdennur, Nezar A. "A Framework for Individual-based Simulation of Heterogeneous Cell Populations." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20478.
Full textAhn, Tae-Hyuk. "Computational Techniques for the Analysis of Large Scale Biological Systems." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/77162.
Full textPh. D.
Charlebois, Daniel. "Computational Investigations of Noise-mediated Cell Population Dynamics." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30339.
Full textLichtenstein, Joseph. "Low computational complexity bit error rate simulation for personal communications systems in multipath and fading environments." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06102009-063138/.
Full textLi, Yingjie. "Bit error rate simulation of a CDMA system for personal communications." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-07282008-135717/.
Full textDyson, Louise. "Mathematical models of cranial neural crest cell migration." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:66955fb9-691f-4d27-ad26-39bb2b089c64.
Full textMeige, Albert, and albert@meige net. "Numerical modeling of low-pressure plasmas: applications to electric double layers." The Australian National University. Research School of Physical Sciences and Engineering, 2006. http://thesis.anu.edu.au./public/adt-ANU20070111.002333.
Full textMagno, Alessandra Cristina Gomes. "Relação entre o volume da célula e dinâmica do ciclo celular em mamíferos." Universidade Federal de Juiz de Fora (UFJF), 2016. https://repositorio.ufjf.br/jspui/handle/ufjf/4784.
Full textRejected by Adriana Oliveira (adriana.oliveira@ufjf.edu.br), reason: on 2017-06-01T11:41:14Z (GMT)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-06-01T11:44:40Z No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5)
Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-06-01T11:47:06Z (GMT) No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5)
Made available in DSpace on 2017-06-01T11:47:06Z (GMT). No. of bitstreams: 1 alessandracristinagomesmagno.pdf: 3807060 bytes, checksum: a3775aee860af7ea06cde6b9d587ab80 (MD5) Previous issue date: 2016-03-22
O objetivo principal deste trabalho é adicionar e analisar uma equação que repre senta o volume no modelo dinâmico do ciclo celular de mamíferos proposto por Gérard e Goldbeter (2011). A divisão celular ocorre quando o complexo ciclinaB/Cdk1(quínase dependente de ciclina) é totalmente degradado atingindo um valor mínimo. Neste ponto, a célula é divida em duas novas células filhas e cada uma irá conter a metade do conteúdo citoplasmático da célula mãe. As equações do modelo de base são válidas apenas se o volume celular, onde as reações ocorrem, é constante. Quando o volume celular não é constante, isto é, a taxa de variação do volume em relação ao tempo é explicitamente levada em consideração no modelo matemático, então as equações do modelo original não são mais válidas. Portanto, todas as equações foram modificadas a partir do princípio de conservação das massas para considerar um volume que varia ao longo do tempo. Por meio desta abordagem, o volume celular afeta todas as variáveis do modelo. Dois méto dos diferentes de simulação foram efetuados: determinista e estocástico. Na simulação estocástica, o volume afeta todos os parâmetros do modelo que possuem de alguma forma unidade molar, enquanto que no determinista, ele é incorporado nas equações diferen ciais. Na simulação determinista, as espécies bioquímicas podem estar em unidades de concentração, enquanto na simulação estocástica tais espécies devem ser convertidas para número de moléculas que são diretamente proporcional ao volume celular. Em um esforço para entender a influência da nova equação sobre o modelo uma análise de estabilidade foi feita. Isso esclarece como o novo parâmetro µ, fator de crescimento do volume celular, impacta na estabilidade do ciclo limite do modelo. Para encontrar a solução aproximada do modelo determinista, o método Runge Kutta de quarta ordem foi implementado. Já para o modelo estocástico, o método direto de Gillespie foi usado. Para concluir, um modelo mais preciso, em comparação ao modelo de base, foi desenvolvido ao levar em consideração a influência da taxa de variação do volume celular sobre o ciclo celular.
The main goal of this work is to add and analyse an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Gold beter (2011). The cell division occurs when the cyclinB/Cdk1 (cyclin-dependent kinase) complex is totally degraded and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cyto plasmic content of the mother cell. The equations of our base model are valid only if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation prin ciple for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were ac complished: deterministic and stochastic. In the stochastic simulation, the volume affects every model’s parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation over the model an stability analysis was performed. This elucidates how the new parameter µ, cell volume growth factor, impacts the stability of the model’s limit cycle. In order to find the approximated solution of the deterministic model, the fourth order Runge Kutta method was implemen ted. As for the stochastic model, the Gillespie’s Direct Method was used. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the rate of change of the cell volume.
Lautenschlager, Willian Wagner. "Um modelo estocástico de simulação da dinâmica dos queratinócitos, melanócitos e melanomas no desenvolvimento dos tumores." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-21082017-174520/.
Full textDuring the last decades, tumor biology research with the use of new techniques in molecular biology resulted in a profusion of information that have given conditions and motivated the development of new mathematical models dedicated to analyzing various aspects of growth and proliferation of the cell population. Some of these models have been devoted to the description and analysis of the steady state of the development process of a cell population under chemical conditions that, in theory, promote the acceleration or deceleration of the growth of tumor cell population. However, these studies have not yet analyzed the temporal dynamics of growth of a tumor cell population. One of the difficulties is the establishment of the interaction between cells of multiple types that serve as the description for this dynamic. Our work fills this gap and this dissertation aims to present the model, developed by us, to simulate the growth dynamics and cellular proliferation of melanoma (cancer of low incidence but of extremely high lethality) and the results obtained through the simulations of this computational model
Erenay, Bulent. "Concurrent Supply Chain Network & Manufacturing Systems Design Under Uncertain Parameters." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1459206318.
Full textMeacci, Giovanni. "Physical Aspects of Min Oscillations in Escherichia Coli." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1169728830839-77682.
Full textFriedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
Meacci, Giovanni. "Physical Aspects of Min Oscillations in Escherichia Coli." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A23940.
Full textMauro, Ava J. "Numerical methods and stochastic simulation algorithms for reaction-drift-diffusion systems." Thesis, 2014. https://hdl.handle.net/2144/15259.
Full textEren, Ezgi. "Stochastic Modeling and Analysis of Plant Microtubule System Characteristics." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-05-11085.
Full textShen, Pai-Hsiang, and 沈柏翔. "Simulation and Implementation of Handset Synchronization and Cell Search Methods for Next Generation Massive Antenna Multipath Division Multiple Access Cellular System." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/46nd2x.
Full textJohn, Mathias. "Reaction Constraints for the Pi-Calculus - A Language for the Stochastic and Spatial Modeling of Cell-Biological Processes." Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00825257.
Full textMeige, Albert. "Numerical modeling of low-pressure plasmas: applications to electric double layers." Phd thesis, 2006. http://hdl.handle.net/1885/45749.
Full textFriedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66