Academic literature on the topic 'Cell conditioning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell conditioning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cell conditioning"
Woywodt, Alexander, Johanna Scheer, Lothar Hambach, Stefanie Buchholz, Arnold Ganser, Hermann Haller, Bernd Hertenstein, and Marion Haubitz. "Circulating endothelial cells as a marker of endothelial damage in allogeneic hematopoietic stem cell transplantation." Blood 103, no. 9 (May 1, 2004): 3603–5. http://dx.doi.org/10.1182/blood-2003-10-3479.
Full textCan, Sun, Lin Xia, Huang Yuxian, Chen Tuzhen, and Bingyi Wu. "More Intensity Immuno-Suppression In Conditioning Regimen may Favor Donor Stem Cell Sustained Engraftment In Allogeneic Stem Cell Transplantation For Acquired Severe Aplastic Anemia Patients." Blood 122, no. 21 (November 15, 2013): 5452. http://dx.doi.org/10.1182/blood.v122.21.5452.5452.
Full textJadasz, Janusz Joachim, David Kremer, Peter Göttle, Nevena Tzekova, Julia Domke, Francisco J. Rivera, James Adjaye, Hans-Peter Hartung, Ludwig Aigner, and Patrick Küry. "Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation." PLoS ONE 8, no. 8 (August 12, 2013): e71814. http://dx.doi.org/10.1371/journal.pone.0071814.
Full textDivito, Sherrie J., Christopher Elco, Indira Guleria, Edgar Milford, Corey Cutler, and Thomas S. Kupper. "Host skin T cells survive stem cell transplant conditioning and are functional during acute GVHD." Journal of Immunology 198, no. 1_Supplement (May 1, 2017): 82.13. http://dx.doi.org/10.4049/jimmunol.198.supp.82.13.
Full textYamamoto, Shuhei, Yasunori Mitani, Masayuki Watanabe, Akihiro Satake, and Yoshiaki Ushifusa. "Fuel Cell Co-generation and PCS Control for Suppressing Frequency and Voltage Fluctuation due to PV Power." International Journal of Electronics and Electrical Engineering 9, no. 2 (June 2021): 48–51. http://dx.doi.org/10.18178/ijeee.9.2.48-51.
Full textLimerick, Emily, and Courtney Fitzhugh. "Choice of Donor Source and Conditioning Regimen for Hematopoietic Stem Cell Transplantation in Sickle Cell Disease." Journal of Clinical Medicine 8, no. 11 (November 15, 2019): 1997. http://dx.doi.org/10.3390/jcm8111997.
Full textAntin, Joseph H. "Reduced-Intensity Stem Cell Transplantation." Hematology 2007, no. 1 (January 1, 2007): 47–54. http://dx.doi.org/10.1182/asheducation-2007.1.47.
Full textGranadier, David, Kirsten Cooper, Dante Dennis Acenas II, Lorenzo Iovino, Paul Deroos, Vanessa A. Hernandez, and Jarrod A. Dudakov. "Hematopoietic Stem Cell Transplantation (HCT) Conditioning Leads to NK Cell Cytotoxicity Limiting Endogenous Thymus Regeneration." Blood 142, Supplement 1 (November 28, 2023): 461. http://dx.doi.org/10.1182/blood-2023-188387.
Full textLimerick, Emily, and Allistair Abraham. "Across the Myeloablative Spectrum: Hematopoietic Cell Transplant Conditioning Regimens for Pediatric Patients with Sickle Cell Disease." Journal of Clinical Medicine 11, no. 13 (July 3, 2022): 3856. http://dx.doi.org/10.3390/jcm11133856.
Full textElsabbagh, Eman M., Osama Abunar, Ammar Habbal, Mohammad Tanbour, Ahmed Mansour, Mohamed Sarhan, Ahmed Elkaryoni, and Sherif M. Badawy. "Alternative-Donor Hematopoietic Stem Cell Transplantation for Sickle Cell Disease in Pediatric Patients: A Systematic Review and Meta-Analysis." Blood 132, Supplement 1 (November 29, 2018): 5875. http://dx.doi.org/10.1182/blood-2018-99-119287.
Full textDissertations / Theses on the topic "Cell conditioning"
Lee, Elaine Linda. "Mechanical Conditioning of Cell Layers for Tissue Engineering." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1322758337.
Full textBanerjee, Tamoghna. "Power Conditioning System on a Micro-Grid System." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7736.
Full textHarfman, Todorovic Maja. "Analysis and design of power conditioning systems." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2721.
Full textZhuang, Lihui. "Mechanisms of microenvironmental conditioning in non-Hodgkin's lymphoma." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6486.
Full textRen, Aaron G. "Immunosuppressants used in the conditioning regimens for hematopoietic stem cell transplantation /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/7957.
Full textDi, Federico Erica. "Complex mechanical conditioning of cell-seeded constructs can influence chondrocyte activity." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/7982.
Full textKhlid, Ben Hamad. "Fuel cell power conditioning multiphase converter for 1400 VDC megawatts stacks." Thesis, Cape Peninsula University of Technology, 2019. http://hdl.handle.net/20.500.11838/3042.
Full textEnergy systems based on fossil fuel have demonstrated their abilities to permit economic development. However, with the fast exhaustion of this energy source, the expansion of the world energy demand and concerns over global warming, new energy systems dependent on renewable and other sustainable energy are gaining more interests. It is a fact that future development in the energy sector is founded on the utilisation of renewable and sustainable energy sources. These energy sources can enable the world to meet the double targets of diminishing greenhouse gas emissions and ensuring reliable and cost-effective energy supply. Fuel cells are one of the advanced clean energy technologies to substitute power generation systems based on fossil fuel. They are viewed as reliable and efficient technologies to operate either tied or non-tied to the grid to power applications ranging from domestic, commercial to industrial. Multiple fuel cell stacks can be associated in series and parallel to obtain a fuel cell system with high power up to megawatts. The connection of megawatts fuel cell systems to a utility grid requires that the power condition unit serving as the interface between the fuel cell plant and the grid operates accordingly. Different power conditioning unit topologies can be adopted, this study considers a multilevel inverter. Multilevel inverters are getting more popularity and attractiveness as compared to conventional inverters in high voltage and high-power applications. These inverters are suitable for harmonic mitigation in high-power applications whereby switching devices are unable to function at high switching frequencies. For a given application, the choice of appropriate multilevel topology and its control scheme are not defined and depend on various engineering compromises, however, the most developed multilevel inverter topologies include the Diode Clamped, the Flying Capacitor and the Cascade Full Bridge inverters. On the other hand, a multilevel inverter can be either a three or a five, or a nine level, however, this research focuses on the three-level diode clamped inverters. The aim of this thesis is to model and control a three-level diode clamped inverter for the grid connection of a megawatt fuel cell stack. Besides the grid, the system consists of a 1.54 MW operating at 1400 V DC proton exchange membrane fuel cell stack, a 1.26 MW three-level diode clamped inverter with a nominal voltage of 600 V and an LCL filter which is designed to reduce harmonics and meet the standards such as IEEE 519 and IEC 61000-3-6. The inverter control scheme comprises voltage and current regulators to provide a good power factor and satisfy synchronisation requirements with the grid. The frequency and phase are synchronised with those of the grid through a phase locked loop. The modelling and simulation are performed using Matlab/Simulink. The results show good performance of the developed system with a low total harmonic distortion of about 0.35% for the voltage and 0.19% for the current.
Cochonneau, Stéphanie. "Modulating hematopoietic progenitor cell engraftment and T cell differentiation : role of conditioning and route of administration." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20226.
Full textT cell deficiencies can be corrected by the intravenous (IV) injection of donor hematopoietic stem cells (HSCs). Using a murine model of ZAP-70-/- deficiency, our group previously showed that the intrathymic (IT) administration of histocompatible HSCs leads to a more robust and long-term thymopoiesis as compared to that achieved by the classical IV route. During my PhD, I found that the direct IT administration of semiallogeneic HSCs results in a sustained donor-derived thymopoiesis, overcoming histocompatibility barriers, even in the absence of conditioning. Furthermore, I found that donor-derived early thymic progenitors (ETPs) persist in the thymi of ZAP-70-/- transplanted mice, and present increased multi-lineage potential as compared to wild-type ETPs. Importantly, the frequency of donor-derived ETPs was augmented following IT transplantation, indicative of an increased progenitor niche. Interestingly, ZAP-70-deficient HSC could themselves be driven to a CD8 lineage fate in an environment where IL-7 potentiates continuous activation of the Notch pathway. Following IV transplantation of donor HSC into non-conditioned ZAP-70-/- mice, I determined that there is an accumulation of lineage-/Sca1+ donor progenitors lacking expression of the stem cell marker c-kit, termed LSAPT. These LSAPT show a biased differentiation towards the γδ T cell lineage with high IL-17-producing effector function, suggesting that progenitor origin regulates γδ T cell fate. The ensemble of my experiments provide new insights into the identity of T lineage progenitors and demonstrate how signaling pathways as well as environmental factors modulate T cell differentiation and effector function
Talay, Oezcan. "Efficient dendritic cell maturation and initiation of a strong T cell immune response requires B7-H1-mediated dendritic cell 'conditioning' during interaction with T cells." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89195.
Full textGuyette, Jacques Paul. "Conditioning of Mesenchymal Stem Cells Initiates Cardiogenic Differentiation and Increases Function in Infarcted Hearts." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/32.
Full textBooks on the topic "Cell conditioning"
Pilatowsky, I., R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, and W. Rivera. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-028-1.
Full textFigueroa, Isaac Pilatowsky. Cogeneration fuel cell-sorption air conditioning systems. London: Springer-Verlag, 2011.
Find full textFigueroa, Isaac Pilatowsky. Cogeneration fuel cell-sorption air conditioning systems. London: Springer-Verlag, 2011.
Find full text1960-, Bashey Asad, and Ball Edward D. 1950-, eds. Non-myeloablative allogeneic transplantation. Boston: Kluwer Academic Publishers, 2002.
Find full textMorozov, Vladimir I. Exercise and cellular mechanisms of muscle injury. Hauppauge, N.Y: Nova Science, 2009.
Find full textPilatowsky, I., Rosenberg J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, and W. Rivera. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Springer, 2014.
Find full textRomero, Rosenberg J., C. A. Isaza, S. A. Gamboa, P. J. Sebastian, and I. Pilatowsky. Cogeneration Fuel Cell-Sorption Air Conditioning Systems. Springer London, Limited, 2011.
Find full textEnjeti, Prasad, Marja Harfman Todorovic, and Leonardo Palma. Power Conditioning Systems for Fuel Cell Applications. Wiley & Sons, Incorporated, John, 2009.
Find full textProvan, Drew, Trevor Baglin, Inderjeet Dokal, Johannes de Vos, and Hassan Al-Sader. Haematopoietic stem cell transplantation. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199683307.003.0009.
Full textThe 2006-2011 World Outlook for Chemically Blown Closed-Cell Rubber Sponge for Appliances, Air Conditioning, and Refrigeration. Icon Group International, Inc., 2005.
Find full textBook chapters on the topic "Cell conditioning"
Mohty, Mohamad, and Monique C. Minnema. "Lymphodepleting Conditioning Regimens." In The EBMT/EHA CAR-T Cell Handbook, 131–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94353-0_25.
Full textShimoni, Avichai, Vera Radici, and Arnon Nagler. "Conditioning." In The EBMT Handbook, 125–34. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-44080-9_13.
Full textZulu, Sara, and Michelle Kenyon. "Principles of Conditioning Therapy and Cell Infusion." In The European Blood and Marrow Transplantation Textbook for Nurses, 91–99. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23394-4_6.
Full textSharma, Sanjeev Kumar. "Classification of Conditioning Regimens." In Basics of Hematopoietic Stem Cell Transplant, 183–202. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5802-1_16.
Full textSmith, Sonali M., and Ginna G. Laport. "Non-Hodgkin’s Lymphoma: Allogeneic Reduced Intensity Conditioning." In Allogeneic Stem Cell Transplantation, 109–25. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-478-0_8.
Full textShimahara, T., G. Czternasty, J. Stinnakre, and J. Bruner. "Calcium Action Potential Induction in a “Nonexcitable” Motor Neuron Cell Body." In Neural Mechanisms of Conditioning, 283–89. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2115-6_18.
Full textPilatowsky, I., R. J. Romero, C. A. Isaza, S. A. Gamboa, P. J. Sebastian, and W. Rivera. "Cogeneration Fuel Cells – Air Conditioning Systems." In Cogeneration Fuel Cell-Sorption Air Conditioning Systems, 103–20. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-84996-028-1_6.
Full textYüksel, Meltem Kurt, and Taner Demirer. "Toxicity of Conditioning Regimens in Haploidentical SCT." In Stem Cell Biology and Regenerative Medicine, 43–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65319-8_4.
Full textZulu, Sara, and Michelle Kenyon. "Principles of Conditioning Therapy and Cell Infusion." In The European Blood and Marrow Transplantation Textbook for Nurses, 89–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50026-3_6.
Full textCoffey, Chelsea E., Zachary R. Mussett, and Vassilios I. Sikavitsas. "Conditioning Cells In Vitro to Facilitate Tendons and Ligament Regeneration." In Biomaterials for Cell Delivery, 263–80. Boca Raton : Taylor & Francis, 2018. | Series: Gene and cell therapy series: CRC Press, 2018. http://dx.doi.org/10.1201/9781315151755-11.
Full textConference papers on the topic "Cell conditioning"
Castro Vallenas, J. D., E. Paiva-Peredo, and C. A. Sotomayor Beltrán. "Prototype Peltier Cell Air Conditioning Using Photovoltaic Energy." In 2023 IEEE XXX International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, 2023. http://dx.doi.org/10.1109/intercon59652.2023.10326092.
Full textPolenov, Dieter, Heiko Mehlich, and Josef Lutz. "Requirements for MOSFETs in Fuel Cell Power Conditioning Applications." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.283149.
Full textPolenov, Dieter, Heiko Mehlich, and Josef Lutz. "Requirements for MOSFETs in Fuel Cell Power Conditioning Applications." In 2006 12th International Power Electronics and Motion Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/epepemc.2006.4778695.
Full textTakano, Atsushi, Masato Tanaka, and Nobuyuki Futai. "Microfluidic cell culture system with on-chip hypoxic conditioning." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610540.
Full textLawrence, C. P., M. M. A. Salama, and R. A. El Shatshat. "Optimization of a Fuel-Cell EV Air-Conditioning System." In 2007 Canadian Conference on Electrical and Computer Engineering. IEEE, 2007. http://dx.doi.org/10.1109/ccece.2007.373.
Full textDu, Yilin, Jan Muehlbauer, Jiazhen Ling, Vikrant Aute, Yunho Hwang, and Reinhard Radermacher. "Rechargeable Personal Air Conditioning Device." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59253.
Full textVinnikov, Dmitri, Indrek Roasto, Tanel Jalakas, Tonu Lehtla, and Juhan Laugis. "New fuel cell power conditioning system for supplying dedicated loads." In 9th International Conference on Environment and Electrical Engineering (EEEIC 2010). IEEE, 2010. http://dx.doi.org/10.1109/eeeic.2010.5489939.
Full textSeok, Hwasoo, Byeongcheol Han, Soo-Hong Kim, Jae-Geun Lee, and Minsung Kim. "Rippleless resonant boost converter for fuel-cell power conditioning systems." In 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2018. http://dx.doi.org/10.1109/apec.2018.8341081.
Full textJalakas, T., I. Roasto, D. Vinnikov, and H. Agabus. "Novel power conditioning system for residential fuel cell power plants." In 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2012. http://dx.doi.org/10.1109/pedg.2012.6254060.
Full textLee, J., B. Han, and H. Cha. "Grid-tied power conditioning system for fuel cell power generation." In Energy Society General Meeting. IEEE, 2010. http://dx.doi.org/10.1109/pes.2010.5589928.
Full textReports on the topic "Cell conditioning"
Sudip K. Mazumder, Chuck McKintyre, Dan Herbison, Doug Nelson, Comas Haynes, Michael von Spakovsky, Joseph Hartvigsen, and S. Elangovan. AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/895119.
Full textSudip K. Mazumder. An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads. US: University Of Illinois, December 2005. http://dx.doi.org/10.2172/899235.
Full textYahav, Shlomo, John McMurtry, and Isaac Plavnik. Thermotolerance Acquisition in Broiler Chickens by Temperature Conditioning Early in Life. United States Department of Agriculture, 1998. http://dx.doi.org/10.32747/1998.7580676.bard.
Full textLee, You-Kee, Jung-Yeul Kim, Young-Ki Lee, Insoo Kim, Hee-Soo Moon, Jong-Wan Park, Craig P. Jacobson, and Steven J. Visco. Conditioning effects on La1-xSrxMnO3-Yttria stabilized Zirconia electrodes for thin-film solid oxide fuel cells. Office of Scientific and Technical Information (OSTI), December 2002. http://dx.doi.org/10.2172/810538.
Full textPorat, Ron, Gregory T. McCollum, Amnon Lers, and Charles L. Guy. Identification and characterization of genes involved in the acquisition of chilling tolerance in citrus fruit. United States Department of Agriculture, December 2007. http://dx.doi.org/10.32747/2007.7587727.bard.
Full textMeiri, Noam, Michael D. Denbow, and Cynthia J. Denbow. Epigenetic Adaptation: The Regulatory Mechanisms of Hypothalamic Plasticity that Determine Stress-Response Set Point. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7593396.bard.
Full text