Academic literature on the topic 'Cell coculture'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell coculture.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cell coculture"

1

Miyoshi, Hirotoshi, Chiaki Sato, Yuichiro Shimizu, and Misa Morita. "Expansion of mouse hematopoietic stem/progenitor cells in three-dimensional cocultures on growth-suppressed stromal cell layer." International Journal of Artificial Organs 42, no. 7 (February 12, 2019): 374–79. http://dx.doi.org/10.1177/0391398819827596.

Full text
Abstract:
With the aim of establishing an effective method to expand hematopoietic stem/progenitor cells for application in hematopoietic stem cell transplantation, we performed ex vivo expansion of hematopoietic stem/progenitor cells derived from mouse fetal liver cells in three-dimensional cocultures with stromal cells. In these cocultures, stromal cells were first cultured within three-dimensional scaffolds to form stromal layers and then fetal liver cells containing hematopoietic cells were seeded on these scaffolds to expand the hematopoietic cells over the 2 weeks of coculture in a serum-containing medium without the addition of cytokines. Prior to coculture, stromal cell growth was suppressed by treatment with the DNA synthesis inhibitor mitomycin C, and its effect on hematopoietic stem/progenitor cell expansion was compared with that in control cocultures in which fetal liver cells were cocultured with three-dimensional freeze-thawed stromal cells. After coculture with mitomycin C-treated stromal cells, we achieved a several-fold expansion of the primitive hematopoietic cells (c-kit+hematopoietic progenitor cells >7.8-fold, and CD34+hematopoietic stem/progenitor cells >3.5-fold). Compared with control cocultures, expansion of hematopoietic stem/progenitor cells tended to be lower, although that of hematopoietic progenitor cells was comparable. Thus, our results suggest that three-dimensional freeze-thawed stromal cells have higher potential to expand hematopoietic stem/progenitor cells compared with mitomycin C-treated stromal cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Hirschi, Karen K., Stephanie A. Rohovsky, and Patricia A. D'Amore. "PDGF, TGF-β, and Heterotypic Cell–Cell Interactions Mediate Endothelial Cell–induced Recruitment of 10T1/2 Cells and Their Differentiation to a Smooth Muscle Fate." Journal of Cell Biology 141, no. 3 (May 4, 1998): 805–14. http://dx.doi.org/10.1083/jcb.141.3.805.

Full text
Abstract:
We aimed to determine if and how endothelial cells (EC) recruit precursors of smooth muscle cells and pericytes and induce their differentiation during vessel formation. Multipotent embryonic 10T1/2 cells were used as presumptive mural cell precursors. In an under-agarose coculture, EC induced migration of 10T1/2 cells via platelet-derived growth factor BB. 10T1/2 cells in coculture with EC changed from polygonal to spindle-shaped, reminiscent of smooth muscle cells in culture. Immunohistochemical and Western blot analyses were used to examine the expression of smooth muscle (SM)-specific markers in 10T1/2 cells cultured in the absence and presence of EC. SM-myosin, SM22α, and calponin proteins were undetectable in 10T1/2 cells cultured alone; however, expression of all three SM-specific proteins was significantly induced in 10T1/2 cells cocultured with EC. Treatment of 10T1/2 cells with TGF-β induced phenotypic changes and changes in SM markers similar to those seen in the cocultures. Neutralization of TGF-β in the cocultures blocked expression of the SM markers and the shape change. To assess the ability of 10T1/2 cells to contribute to the developing vessel wall in vivo, prelabeled 10T1/2 cells were grown in a collagen matrix and implanted subcutaneously into mice. The fluorescently marked cells became incorporated into the medial layer of developing vessels where they expressed SM markers. These in vitro and in vivo observations shed light on the cell–cell interactions that occur during vessel development, as well as in pathologies in which developmental processes are recapitulated.
APA, Harvard, Vancouver, ISO, and other styles
3

Gilead, L., O. Bibi, and E. Razin. "Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells." Blood 76, no. 6 (September 15, 1990): 1188–95. http://dx.doi.org/10.1182/blood.v76.6.1188.1188.

Full text
Abstract:
Abstract Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above- mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers. These results demonstrate microenvironmental effects exerted by the MESF and HSF monolayers on IL-3-dependent hBMMCs similar to those reported in the conversion of murine mast cell phenotype.
APA, Harvard, Vancouver, ISO, and other styles
4

Gilead, L., O. Bibi, and E. Razin. "Fibroblasts induce heparin synthesis in chondroitin sulfate E containing human bone marrow-derived mast cells." Blood 76, no. 6 (September 15, 1990): 1188–95. http://dx.doi.org/10.1182/blood.v76.6.1188.bloodjournal7661188.

Full text
Abstract:
Human bone marrow-derived mast cells (hBMMCs), differentiated in vitro in suspension culture and under the influence of human peripheral blood mononuclear cells conditioned medium (hCM), were tested for their response to recombinant human interleukin-3 (rhIL-3) and for their behavior in different microenvironments. The hBMMCs were incubated in the presence of rhIL-3 and the changes in their proliferation rate were determined. Recombinant hIL-3 induced a more than sixfold increase in 3H-thymidine uptake into the hBMMC DNA in a dose-dependent manner. Human CM used as a control for proliferation response induced a more than eightfold maximal proliferation rate increase. Rabbit anti-rhIL-3 completely inhibited hBMMC 3H-thymidine uptake induced by rhIL-3 and decreased the hCM-induced proliferation by approximately 50%. These hBMMCs were cocultured with four different mytomicin C-treated cell monolayers and assayed for phenotypic changes. After only 2 days in coculture with either embryonic mouse skin-derived fibroblasts (MESFs) or human skin-derived fibroblasts (HSFs), a marked increase in granule number and density was noted on staining with toluidine blue. Mast cells that initially stained alcian blue+/safranin- at day 0 of coculture became alcian blue+/safranin+ during the coculture period. Human BMMC proteoglycan synthesis shifted from approximately 85% chondroitin sulfate E to approximately 60% heparin within 14 to 19 days of coculture with the MESF monolayer and to approximately 50% heparin within 19 days of coculture with the HSF monolayer. None of the above- mentioned changes were noted in cocultures of hBMMCs with 3T3 cell line fibroblast monolayers or in cocultures with bovine vascular endothelium (BVE) cell monolayers. These results demonstrate microenvironmental effects exerted by the MESF and HSF monolayers on IL-3-dependent hBMMCs similar to those reported in the conversion of murine mast cell phenotype.
APA, Harvard, Vancouver, ISO, and other styles
5

Portnoy, Joshua, Tianli Pan, Charles A. Dinarello, John M. Shannon, Jay Y. Westcott, Lening Zhang, and Robert J. Mason. "Alveolar type II cells inhibit fibroblast proliferation: role of IL-1α." American Journal of Physiology-Lung Cellular and Molecular Physiology 290, no. 2 (February 2006): L307—L316. http://dx.doi.org/10.1152/ajplung.00102.2005.

Full text
Abstract:
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2(PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2production in fibroblasts. Exogenous addition of rat IL-1α to cultured lung fibroblasts induced PGE2secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1α protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1α gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1α (but not IL-1β). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2secretion and fibroblast inhibition ( day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1α secretion by ATII cells is one factor that stimulates PGE2production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2production through an IL-1α-independent pathway.
APA, Harvard, Vancouver, ISO, and other styles
6

Hyakumura, Tomoko, Stuart McDougall, Sue Finch, Karina Needham, Mirella Dottori, and Bryony A. Nayagam. "Organotypic Cocultures of Human Pluripotent Stem Cell Derived-Neurons with Mammalian Inner Ear Hair Cells and Cochlear Nucleus Slices." Stem Cells International 2019 (November 20, 2019): 1–14. http://dx.doi.org/10.1155/2019/8419493.

Full text
Abstract:
Stem cells have been touted as a source of potential replacement neurons for inner ear degeneration for almost two decades now; yet to date, there are few studies describing the use of human pluripotent stem cells (hPSCs) for this purpose. If stem cell therapies are to be used clinically, it is critical to validate the usefulness of hPSC lines in vitro and in vivo. Here, we present the first quantitative evidence that differentiated hPSC-derived neurons that innervate both the inner ear hair cells and cochlear nucleus neurons in coculture, with significantly more new synaptic contacts formed on target cell types. Nascent contacts between stem cells and hair cells were immunopositive for both synapsin I and VGLUT1, closely resembling expression of these puncta in endogenous postnatal auditory neurons and control cocultures. When hPSCs were cocultured with cochlear nucleus brainstem slice, significantly greater numbers of VGLUT1 puncta were observed in comparison to slice alone. New VGLUT1 puncta in cocultures with cochlear nucleus slice were not significantly different in size, only in quantity. This experimentation describes new coculture models for assessing auditory regeneration using well-characterised hPSC-derived neurons and highlights useful methods to quantify the extent of innervation on different cell types in the inner ear and brainstem.
APA, Harvard, Vancouver, ISO, and other styles
7

Zotova, Anastasia, Anastasia Atemasova, Alexey Pichugin, Alexander Filatov, and Dmitriy Mazurov. "Distinct Requirements for HIV-1 Accessory Proteins during Cell Coculture and Cell-Free Infection." Viruses 11, no. 5 (April 26, 2019): 390. http://dx.doi.org/10.3390/v11050390.

Full text
Abstract:
The role of accessory proteins during cell-to-cell transmission of HIV-1 has not been explicitly defined. In part, this is related to difficulties in measuring virus replication in cell cocultures with high accuracy, as cells coexist at different stages of infection and separation of effector cells from target cells is complicated. In this study, we used replication-dependent reporter vectors to determine requirements for Vif, Vpu, Vpr, or Nef during one cycle of HIV-1 cell coculture and cell-free infection in lymphoid and nonlymphoid cells. Comparative analysis of HIV-1 replication in two cell systems showed that, irrespective of transmission way, accessory proteins were generally less required for virus replication in 293T/CD4/X4 cells than in Jurkat-to-Raji/CD4 cell cocultures. This is consistent with a well-established fact that lymphoid cells express a broad spectrum of restriction factors, while nonlymphoid cells are rather limited in this regard. Remarkably, Vpu deletion reduced the level of cell-free infection, but enhanced the level of cell coculture infection and increased the fraction of multiply infected cells. Nef deficiency did not influence or moderately reduced HIV-1 infection in nonlymphoid and lymphoid cell cocultures, respectively, but strongly affected cell-free infection. Knockout of BST2—a Vpu antagonizing restriction factor—in Jurkat producer cells abolished the enhanced replication of HIV-1 ΔVpu in cell coculture and prevented the formation of viral clusters on cell surface. Thus, BST2-tethered viral particles mediated cell coculture infection more efficiently and at a higher level of multiplicity than diffusely distributed virions. In conclusion, our results demonstrate that the mode of transmission may determine the degree of accessory protein requirements during HIV-1 infection.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Qishan, Bingxin Xu, Kaijian Fan, Jing Wu, and Tingyu Wang. "CypB-CD147 Signaling Is Involved in Crosstalk between Cartilage and FLS in Collagen-Induced Arthritis." Mediators of Inflammation 2020 (August 29, 2020): 1–12. http://dx.doi.org/10.1155/2020/6473858.

Full text
Abstract:
To investigate the crosstalk between cartilage and fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA), we adopted an in vitro coculture system model of collagen-induced arthritis (CIA) cartilage and CIA FLS monolayer. CIA rat samples of the synovium and femur head were collected for isolation of FLS and coculture system. Cartilages were treated with vehicle (Ctrl group), 10 ng/mL interleukin- (IL-) 1α (IL-1α group), and 10 ng/mL IL-1α plus 10 μM dexamethasone (Dex group) for 3 days before coculture with FLS for further 2 days. After the coculture, FLS were collected to determine the influences of articular cartilage on synoviocytes. Whether the CypB-CD147 signaling pathway is involved in the interactions between cartilage and FLS is assayed. Results showed that IL-1α-stimulated CIA cartilage promoted the proliferation and reduced the apoptosis of FLS. Increased inflammatory cytokines and decreased p57 expression were found in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. Upregulation of NF-κB and I-κB kinase β (IKK-β) and downregulation of the inhibitor of NF-κBα (I-κBα) protein were observed in cocultured FLS. After coculture, significant increases in the expression of cyclophilin B (CypB) and CD147 were observed in CIA cartilage and FLS, respectively. Furthermore, results of immunofluorescence staining showed that the anti-CD147 antibody significantly suppressed p65 nuclear translocation in cocultured FLS stimulated by IL-1α-challenged CIA cartilage. In conclusion, inflammatory effects in the cartilage-FLS coculture system are associated with the CypB-CD147 mediating NF-κB pathway which may further enhance the inflammation in RA.
APA, Harvard, Vancouver, ISO, and other styles
9

Loibl, Markus, Andreas Binder, Marietta Herrmann, Fabian Duttenhoefer, R. Geoff Richards, Michael Nerlich, Mauro Alini, and Sophie Verrier. "Direct Cell-Cell Contact between Mesenchymal Stem Cells and Endothelial Progenitor Cells Induces a Pericyte-Like Phenotype In Vitro." BioMed Research International 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/395781.

Full text
Abstract:
Tissue engineering techniques for the regeneration of large bone defects require sufficient vascularisation of the applied constructs to ensure a sufficient supply of oxygen and nutrients. In our previous work, prevascularised 3D scaffolds have been successfully established by coculture of bone marrow derived stem cells (MSCs) and endothelial progenitor cells (EPCs). We identified stabilising pericytes (PCs) as part of newly formed capillary-like structures. In the present study, we report preliminary data on the interactions between MSCs and EPCs, leading to the differentiation of pericyte-like cells. MSCs and EPCs were seeded in transwell cultures, direct cocultures, and single cultures. Cells were cultured for 10 days in IMDM 10% FCS or IMDM 5% FCS 5% platelet lysate medium. Gene expression of PC markers, CD146, NG2,αSMA, and PDGFR-β, was analysed using RT-PCR at days 0, 3, 7, and 10. The upregulation of CD146, NG2, andαSMA in MSCs in direct coculture with EPCs advocates the MSCs’ differentiation towards a pericyte-like phenotype in vitro. These results suggest that pericyte-like cells derive from MSCs and that cell-cell contact with EPCs is an important factor for this differentiation process. These findings emphasise the concept of coculture strategies to promote angiogenesis for cell-based tissue engineered bone grafts.
APA, Harvard, Vancouver, ISO, and other styles
10

Burger, Jan A., Maite P. Quiroga, Elena Hartmann, Andrea Bürkle, William G. Wierda, Michael J. Keating, and Andreas Rosenwald. "High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation." Blood 113, no. 13 (March 26, 2009): 3050–58. http://dx.doi.org/10.1182/blood-2008-07-170415.

Full text
Abstract:
Abstract In lymphatic tissues, chronic lymphocytic leukemia (CLL) cells are interspersed with CD68+ nurselike cells (NLCs), T cells, and other stromal cells that constitute the leukemia microenvironment. However, the mechanism regulating colocalization of CLL and these accessory cells are largely unknown. To dissect the molecular cross talk between CLL and NLCs, we profiled the gene expression of CD19-purified CLL cells before and after coculture with NLCs. NLC coculture induced high-level expression of B-cell maturation antigen and 2 chemoattractants (CCL3, CCL4) by CLL cells. CCL3/CCL4 induction in NLC cocultures correlated with ZAP-70 expression by CLL cells. High CCL3/CCL4 protein levels were found in CLL cocultures with NLCs, and CCL3/CCL4 induction was abrogated by R406, a Syk inhibitor, suggesting that NLCs induce these chemokines via B-cell receptor (BCR) activation. BCR triggering also caused robust CCL3/CCL4 protein secretion by CLL cells. High CCL3 and CCL4 plasma levels in CLL patients suggest that this pathway plays a role in vivo. These studies reveal a novel mechanism of cross talk between CLL cells and their microenvironment, namely, the secretion of 2 T-cell chemokines in response to NLC coculture and BCR stimulation. Through these chemokines, CLL cells can recruit accessory cells and thereby actively create a supportive microenvironment.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cell coculture"

1

Apple, Allon Aliza. "Bilaminar coculture of stem cells and instructive cells for tissue regeneration." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390115.

Full text
Abstract:
Thesis (Ph.D.)--University of California, San Francisco with the University of California, Berkeley, 2009.
Source: Dissertation Abstracts International, Volume: 71-02, Section: B, page: . Adviser: Jeffrey C. Lotz.
APA, Harvard, Vancouver, ISO, and other styles
2

Hakelius, Malin. "Interactions between Malignant Keratinocytes and Fibroblasts : Studies in Head and Neck Squamous Cell Carcinoma." Doctoral thesis, Uppsala universitet, Plastikkirurgi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-221109.

Full text
Abstract:
Carcinoma growth requires a supportive tumor stroma. The concept of reciprocal interactions between tumor and stromal cells has become widely acknowledged and the connective tissue activation seen in the malignant process has been likened to that of a healing wound. Little is, however, known about the specific characteristics of these interactions, distinguishing them from the interplay occurring between epithelial and stromal cells in wound healing. In order to study differences in the humoral effects of malignant and benign epithelial cells on fibroblasts, we used an in vitro coculture model with human oral squamous cell carcinoma cells (SCC) or normal oral keratinocytes (NOK) on one side of a semi-permeable membrane and fibroblasts seeded in gels on the other. Pro-collagens α1(I) and α1(III) were more downregulated in NOK cocultures compared to SCC cocultures. IL-1α was identified as a major keratinocyte-derived soluble factor behind the effects observed. We concluded that SCC are less antifibrotic compared to NOK. There was also a differential expression among enzymes involved in ECM turnover. The urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) were both upregulated by NOK, but not by SCC. Here, rIL-1ra caused further upregulation of PAI-1. Global gene expression in fibroblasts was assessed using Affymetrix™ arrays. In total, 82 transcripts were considered differentially expressed; 52 were up- and 30 were downregulated in SCC compared to NOK cocultures. Among the differentially expressed genes there was an enrichment of genes related to collagens and to a nonspecific, innate-type response. The innate response marker pentraxin (PTX3) was upregulated by keratinocyte-derrived IL-1α in both NOK and SCC cocultures. We observed a considerably higher IL-1α / IL-1ra quotient in SCC cocultures, however, while PTX3 mRNA upregulation was higher in SCC cocultures, there was no difference in the level of PTX3 secreted protein. Taken together, we concluded that NOK and SCC regulate genes important for ECM composition and for the innate immune-response differentially. IL-1α was identified as one important mediator of the observed effects. In general, SCC appeared to be more profibrotic in their effects on fibroblasts.
APA, Harvard, Vancouver, ISO, and other styles
3

Chamayou, Léo. "LiverPearls, une méthode de culture multicellulaire miniaturisée et à haut débit reproduisant l’environnement physiologique et la structure tridimensionnelle du foie humain." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLS005.

Full text
Abstract:
L’intérêt pour de nouveaux modèles de foie, plus proches physiologiquement du foie in vivo, est élevé, en particulier en provenance de l’industrie pharmaceutique. En effet, les systèmes standards, tels que la culture en 2D ne sont pas très prédictifs pour certaines études et de meilleurs modèles sont nécessaires, à la fois dans le cadre des études ADME/Tox pour le développement de médicaments ou pour modéliser les nombreuses maladies hépatiques. Afin de reproduire le foie humain, un modèle doit imiter sa structure de façon plus proche que les systèmes en 2D et refléter sa composition cellulaire. Pour produire ce modèle, nous avons utilisé une technologie de micro-encapsulation basée sur la co-extrusion dans l’air d’un jet biphasique, composé d’une phase externe de solution d’alginate et d’une phase interne contenant les cellules. Ce jet est ensuite fragmenté puis l’alginate est réticulé produisant des micro-capsules cœur/coque. La coque poreuse d’alginate protège les cellules du stress mécanique tout en permettant le passage de l’oxygène et des nutriments.Les cellules s’auto-assemblent dans ces capsules en sphéroïdes hépatiques pouvant être cultivés pendant un mois en gardant une bonne fonctionnalité et pouvant être utilisés dans le cadre de criblage à haut-débit. Cette thèse a porté sur l’utilisation de cette technologie pour mettre au point un modèle 3D de foie humain contenant des hépatocytes primaires humains, des cellules de Kupffer, et des cellules endothéliales sinusoïdales. Dans un premier temps, les conditions de culture de ce modèle ont dû être optimisées, notamment le ratio entre les différents types cellulaires et le milieu de culture adapté à ceux-ci. Puis, une fois ces conditions établies, le modèle a été caractérisé, structurellement par microscopie,ainsi que fonctionnellement, par l’étude de l’expression génique de plusieurs protéines hépatiques importantes, telles que les cytochromes P450 ou des récepteurs nucléaires. Des études d’activité enzymatique, de sécrétion d’albumine et d’urée ont également été menées. Ces capsules nous permettent d’obtenir un modèle en 3D, plus proche de la structure du foie humain, et capable de reproduire les interactions complexes entre les différents types cellulaires
Interest for new and more physiologically relevant liver models is high, particularly from pharmaceutical companies. Standard systems, like 2D culture, are indeed not enough predictive and better models are needed, either for drug candidates screening in ADME/Tox studies or for hepatic diseases modelling. To be closer to the human liver, a new model needs toreplicate liver structure and cellular composition better than the 2D. To this end, we used a micro-encapsulation technology, developed by the laboratory and based on the co-extrusion of a two-phases jet, composed of an alginate external phase and a cell-containing internal phase. This jet is then fragmented into micro-droplets and the alginate reticulated to form core-shell microcapsules. The porous alginate shell protects the cells from shear stress while letting oxygen and nutrients pass, and by preventing cell adhesion, enables the cells to self-assemble into hepatic spheroids which can bekept alive during one month, retain good functionality and can be used for high-throughput screening. This thesis focusedon using this technology to develop a next 3D liver model containing human primary hepatocytes, Kupffer cells and liver sinusoidal endothelial cells. Firstly, culture conditions for this model had to be optimized, particularly the ratio between these different cell types and the culture medium, which had to be suitable for these cell types. Then, once the culture conditions had been established, the model was characterized, structurally by immunofluorescence staining, and functionally by studying gene expression of important liver proteins, like cytochromes P450 or nuclear receptors. Enzymaticactivity, albumin and urea secretion were also studied. These capsules allow us to obtain a model able to replicate the complex interactions between these cell types and structurally closer to the human liver
APA, Harvard, Vancouver, ISO, and other styles
4

Messelmani, Taha. "Development and characterisation of a biomimetic liver on chip featuring 3D hepatic coculture with an endothelial barrier." Electronic Thesis or Diss., Compiègne, 2023. http://www.theses.fr/2023COMP2736.

Full text
Abstract:
Au cours des programmes de développement de médicaments, des modèles animaux sont utilisés pour évaluer le métabolisme et la toxicité des médicaments. Plusieurs cadres juridiques sont établis pour le remplacement, la réduction et l'amélioration de ces expériences. Le foie est un organe central pour la détoxification des molécules exogènes. Par conséquent, le développement de modèles reproduisant les fonctions du foie reste un objectif ambitieux. Ces dernières années, l'association entre l'ingénierie tissulaire et la technologie des organes sur puce a conduit au développement de modèles alternatifs imitant certaines fonctions hépatiques. L'objectif de ce travail est de développer une plateforme de foie sur puce biomimétique en couplant une biopuce d'hépatocytes et une barrière endothéliale. Dans la première partie, nous avons utilisé la technologie des organes sur puce et un hydroscaffold à base de matrice extracellulaire pour organiser les cellules en 3D. Les sphéroïdes formés ont été caractérisés sur le plan structurel et fonctionnel. Dans la deuxième partie, nous avons caractérisé la formation d'une barrière endothéliale. Nous avons établi les conditions de co-culture et analysé le potentiel du couplage de la barrière endothéliale avec la puce d'hépatocytes pour métaboliser l'APAP. Enfin, nous avons analysé la signature métabolomique de chaque condition, les interactions entre les cellules et identifié la signature métabolique des lésions causées par l'APAP. Dans la dernière partie, nous avons proposé des pistes d'amélioration en utilisant des hépatocytes primaires ou en intégrant la barrière endothéliale et les hépatocytes dans une biopuce bi-comportementalisée
During drugs development programs, animal models are commonly used for the assessment of the metabolism and toxicity of drug candidates. Several legal frameworks are being settled to promote the replacement, the reduction, and the refinement of these experiments. The liver is a central organ involved in the detoxification of exogenous molecules. Accordingly, the development of models mimicking the functions of the liver remain a challenging objective. Conventionally, liver cells are cultured in vitro in 2D Petri dishes but this conformation leads to a rapid loss of their functions. In recent years, the association between tissue engineering and organ-on-chip technology led to the development of more accurate alternative models that mimic the liver functions. The aim of this thesis is to develop a biomimetic liver-on-chip platform by coupling a hepatocyte biochip and an endothelial-like barrier. The goal is to mimic the passage of molecules through the liver sinusoid endothelial barrier and then their metabolism with the hepatocytes. In the first part, we used organ-on-chip technology and ECM-based hydroscaffold to organise the cells in 3D structures. The potential of our model was compared with static Petri dishes and the spheroids formed were characterised structurally and functionally. In the second part, we characterized the formation of an endothelial barrier and identified specific markers indicating the conservation of the phenotype of endothelial cells. We established the coculture conditions and analysed the potential of coupling the endothelial barrier with the hepatocyte-on-chip to metabolize the APAP as a candidate molecule. Finally, we analysed the metabolomic signature of each condition, crosstalk between the cells, and identified the metabolic signature of APAP injury and described the reactions happening at metabolic level. In the last part, we proposed tracks of improvement by using primary hepatocytes or by integrating the endothelial barrier and the hepatocytes in the same bi-compartmentalized biochip
APA, Harvard, Vancouver, ISO, and other styles
5

Kalman, Benoît. "Génération et optimisation de microtissus musculaires 3D in vitro." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI053.

Full text
Abstract:
L’ingénierie du tissu musculaire squelettique vise à reconstituer in vitro un tissu fonctionnel aussi physiologique que possible dans le but de mieux comprendre la myogenèse, l’impact de mutations génétiques et tester des médicaments. Ces dernières années, différents modèles de tissus musculaires tridimensionnels ont été développés. Toutefois, l’utilisation prépondérante de cellules murines et la taille de ces modèles restreint leur pertinence pour les études de pathologies humaines et le criblage pharmacologique. Dans le cadre de ce travail de thèse, nous avons donc développé différents modèles de tissus musculaires humains micrométriques pour répondre à ces limitations. Dans un premier temps, nous avons conçu et optimisé par microfabrication une plateforme caractérisée par la présence de microcanaux. Nous avons ainsi généré des tissus musculaires multicouches alignés présentant une organisation proche du muscle natif à partir de myoblastes murins immortalisés C2C12 puis de myoblastes humains immortalisés. Nous avons ainsi montré l’influence de la topographie et de la concentration cellulaire sur l’alignement des myotubes et la maturation du tissu musculaire. Dans un second temps, nous avons développé une plateforme constituée de micropuits contenant chacun deux micropiliers permettant d’analyser la contractilité des tissus. Des microtissus musculaires 3D standardisés ont ainsi été générés avec cette plateforme à partir de myoblastes murins, et de myoblastes C2C12 électroporés avec un gène muté ou non de la desmine. Par la suite, des microtissus ont été générés à partir de myoblastes humains. L’importance du choix de la matrice dans la formation des microtissus et les bénéfices d’une coculture de myoblastes et fibroblastes dans la stabilité des tissus ont ainsi été mis en évidence. La géométrie de micropiliers a aussi été optimisée afin de générer et comparer des microtissus composés de myoblastes isolés de patients sains et malades (dystrophie musculaire de Duchenne). Une preuve de concept démontrant la possibilité d’utiliser cette technologie pour tester des thérapies chimiques et géniques a été établie. Nous avons en effet suivi en temps réel les effets de l’inhibiteur de la kinase Rho-associée Y-27632 sur la contractilité des microtissus, ainsi que la transduction d’un gène rapporteur fluorescent modèle par les cellules composant les microtissus. Les résultats de ce travail de thèse démontrent le potentiel de cette technologie pour l’étude des processus fondamentaux de la myogenèse, l’évaluation des effets fonctionnels de mutations patient-spécifique et le criblage de thérapies chimiques et géniques
Skeletal muscle tissue engineering aims to build functional and physiological tissues in vitro in order to better understand myogenesis, to investigate the impact of genetic mutations and to screen potential therapies. Over the past few years, bi- and tridimensional models of muscle tissue have been developed, but most of these models are based on the use of murine cells and require large amounts of cells, thus limiting their relevance to study pathologies of human muscles and drug screening assays. Here we aimed at developing different models of human muscle microtissues to address these issues. By using microfabrication techniques, we first engineered a microgrooved platform we used to generate aligned multilayered skeletal muscle tissues from murine C2C12 myoblasts and human immortalized myoblasts. We showed the impact of topography and cell density on the maturation and myotube alignment. We then fabricated a microdevice, consisting of microwells containing two micropillars allowing an easy access to the contractility of muscle tissues. We engineered microtissues from C2C12 and C2C12 myoblasts electroporated with a mutated gene of desmin, and showed some limitation of this technique of transduction. Finally, we generated microtissues from human myoblasts. We investigated the role of the extracellular matrix in the tissue formation and evidenced the benefits of coculturing myoblasts and fibroblasts on the stability of muscle microtissues. Furthermore, we optimized the geometry of the micropillars to engineer and compare microtissues composed of human myoblasts isolated from healthy and diseased (Duchenne muscular dystrophy) patients. A proof of concept of the potential of this technology for screening chemical and gene therapies was established. We were indeed able to analyze in real time the effects of the Rho-associated kinase-inhibitor Y-27632 on the tissue contractility, as well as the transduction of a model fluorescent reporter gene. Altogether, the results of this work demonstrate the potential of this technology to study fundamental muscle biology, examine functional effects of patient-specific mutations or screen chemical and gene therapies
APA, Harvard, Vancouver, ISO, and other styles
6

Joshi, Ramila Joshi. "Micro-engineering of embryonic stem cells niche to regulate neural cell differentiation." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1544029342969082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Madiedo-Podvršan, Sabrina. "Development of a lung-liver in vitro coculture model for the risk assessment of inhaled xenobiotics." Electronic Thesis or Diss., Compiègne, 2022. http://www.theses.fr/2022COMP2703.

Full text
Abstract:
L’urbanisation et la mondialisation sont des phénomènes de société qui multiplient et complexifient les sources de pollution. Parmi elles, la pollution atmosphérique impacte notablement la santé humaine à l’échelle mondiale de par son caractère transfrontière. L’appareil respiratoire est une voie d’absorption de nombreux xénobiotiques, sous forme de gaz, d’aérosols ou de nanoparticules. Une fois dans les voies respiratoires, les substances inhalées sont susceptibles d’interagir avec les cellules pulmonaires. Les mécanismes par lesquels des xénobiotiques inhalés induisent des dommages pulmonaires sont complexes, notamment en raison de l’hétérogénéité cellulaire des poumons. En raison de cette complexité, les modèles animaux constituent un outil de référence pour les études toxicologiques prédictives, cependant, dans le contexte européen de réduction de l’expérimentation animale (REACH, et les règles 3R), le développement de méthodes alternatives fiables est devenu une nécessité. Les modèles in vitro sont de bons candidats car plus simple et moins couteux à mettre en oeuvre que les modèles vivo et permettent de travailler avec des cellules ou des tissus d’origine humaine ce qui contribue à améliorer la pertinence des résultats. Cependant, l’extrapolation limitée du vitro au vivo est souvent liée à un manque de complexité des modèles, notamment en raison de l’absence de communication inter-organes. Les technologies des multi-organes sur puce cherchent à surmonter ces limitations en connectant plusieurs organoïdes métaboliquement actifs au sein d’un même circuit de culture afin de reproduire des interactions de type systémiques. Dans ce contexte, nous décrivons un modèle permettant de connecter in vitro, par le biais de la microfluidique, une barrière pulmonaire (voie d’entrée des xénobiotiques inhalés) à un organe détoxifiant tel que le foie, afin d’évaluer la toxicité liée à un stress inhalatoire de façon plus systémique. Cette approche permet de considérer la biotransformation des composés inhalés et l’interaction inter-organes comme possible modulateurs de la toxicité. Le projet étant dans les premières phase de développement, la robustesse expérimentale était au coeur du projet. L’objectif principal était de prouver qu’une substance modèle était capable de transiter dans le dispositif, au travers des deux compartiments tissulaires, afin de pouvoir étudier la dynamique inter-organes poumon/foie en condition de stress xénobiotique. Le projet a été articulé en trois phases expérimentales : - Caractérisation des réponses biologiques spécifiques aux tissus pulmonaire et hépatique en réponse à un stress. La viabilité, la fonctionnalité et les activités métaboliques des monocultures ont été évaluées après exposition à une substance modèle. - Adaptation et préparation des monocultures aux conditions de co-culture afin de préserver la viabilité et la fonctionnalité des tissus. - Les compartiments pulmonaire et hépatique ont été cultivés jointement dans un circuit de culture microfluidique fermé. La co-culture a été exposée à une substance modèle à travers la barrière pulmonaire afin d’imiter un mode d’exposition inhalatoire. Les paramètres de viabilité et de fonctionnalité des tissus ont été évalué post-culture afin de mettre en évidence quelconque phénomène d’interaction inter-organe. La caractérisation du modèle de co-culture a été réalisé grâce à l’exposition d’un agent hépatotoxique de référence, largement étudié dans la littérature : l’acétaminophène aussi connu sous le nom de paracétamol (APAP). L’exposition à la barrière pulmonaire n’est pas physiologique mais permet d’observer quantitativement le passage et la circulation du xénobiotique à travers le dispositif car l’APAP interfère avec la viabilité et les performances métaboliques hépatique, permettant ainsi de vérifier que le compartiment hépatique peut avoir accès à l’exposition effectuée à travers la barrière pulmonaire
Urbanization and globalization are prevailing social phenomena that multiply and complexify the sources of modern pollution. Amongst others, air pollution has been recognized as an omnipresent life-threatening hazard, comprising a wide range of toxic airborne xenobiotics that expose man to acute and chronic threats. The defense mechanisms involved in hazardous exposure responses are complex and comprise local and systemic biological pathways. Due to this complexity, animal models are considered prime study models. However, in light of animal experimentation reduction (3Rs), we developed and investigated an alternative in vitro method to study systemic-like responses to inhalationlike exposures. In this context, a coculture platform was established to emulate interorgan crosstalks between the pulmonary barrier, which constitutes the route of entry of inhaled compounds, and the liver, which plays a major role in xenobiotic metabolism. Both compartments respectively comprised a Calu-3 insert and a HepG2/C3A biochip which were jointly cultured in a dynamically-stimulated environment for 72 hours. The present model was characterized using acetaminophen (APAP), a well-documented hepatotoxicant, to visibly assess the passage and circulation of a xenobiotic through the device. Two kinds of models were developed: (1) the developmental model allowed for the technical setup of the coculture, and (2) the physiological-like model better approximates a vivo environment. Based on viability, and functionality parameters the developmental model showed that the Calu-3 bronchial barrier and the HepG2/C3A biochip can successfully be maintained viable and function in a dynamic coculture setting for 3 days. In a stress-induced environment, present results reported that the coculture model emulated active and functional in vitro crosstalk that seemingly was responsive to high (1.5 and 3 mM) and low (12 and 24 μM) xenobiotic exposure doses. Lung/liver crosstalk induced modulation of stress response dynamics, delaying cytotoxicity, proving that APAP fate, biological behaviors and cellular stress responses were modulated in a broader systemic-like environment
APA, Harvard, Vancouver, ISO, and other styles
8

Kletting, Stephanie [Verfasser], and Claus-Michael [Akademischer Betreuer] Lehr. "A new cell line-based coculture model of the human air-blood barrier to evaluate the interaction with aerosolized drug carriers / Stephanie Kletting ; Betreuer: Claus-Michael Lehr." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2016. http://d-nb.info/1114735035/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Forte, Andresa. "Expansão ex vivo das células-tronco hematopoiéticas do sangue do cordão umbilical: análise comparativa da proliferação celular em cocultura de células-troco mesenquimais provenientes do endotélio vascular do cordão umbilical e do tecido adiposo." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/5/5167/tde-25022015-085731/.

Full text
Abstract:
INTRODUÇÃO: As células-tronco hematopoiéticas (CTH) do sangue do cordão umbilical (SCU) têm sido utilizadas com sucesso para o tratamento de doenças malignas e não malignas. No entanto, algumas unidades de SCU podem apresentar baixa quantidade de células nucleadas totais (CNT). Algumas abordagens têm sido sugeridas para evitar problemas em relação à baixa concentração de CTH no transplante, como a administração de duas unidades de SCU para o paciente e a expansão ex vivo de CTH. OBJETIVO: Avaliar as taxas de proliferação celular na expansão ex vivo do SCU em sistema de cocultura com células-tronco mesenquimais (CTM) obtidos a partir de diferentes fontes com alta e baixa confluência e adicionando-se ou não coquetel de citocinas no meio de cultura. MÉTODOS: Este estudo foi aprovado pelo Comitê de Ética de Pesquisa (CAPPesq) do Hospital das Clínicas da Faculdade de Medicina da USP. A coleta do SCU (n =10) foi realizada após o nascimento do bebê e expulsão da placenta. O processamento foi realizado utilizando o método de redução de volume, o qual consiste em depleção de eritrócitos. As amostras de CTM provenientes do endotélio vascular do cordão umbilical foram obtidas de doadores diferentes (n=3) e o tecido adiposo (n=3) do inventário do LIM-31. A expansão das CNT e das células com expressão de marcadores CD133+/CD34+ foram observados depois de sete dias de cultura. Além disso, o ensaio para análise de unidades de formadoras de colônias (UFC) foi realizado em todas as amostras antes e depois da expansão do SCU. Para a expansão em sistema de cocultura foi separado dois grupos para ambas as fontes de CTM (Grupo I - cocultura com adição de coquetel de citocinas vs. Grupo II - cocultura sem citocinas). RESULTADOS: Após sete dias, no grupo I com cocultura confluente, a taxa de proliferação de CNT foi duas vezes maior ao comparar com cocultura subconfluente (35 vs. 16 vezes). No mesmo grupo também foi possível evidenciar elevada taxa de proliferação de células CD133+/CD34+. O índice de proliferação das UFC no grupo I aumentou até oito vezes. A cocultura subconfluente tanto do endotélio vascular do cordão umbilical como do tecido adiposo apresentou menor rendimento em comparação as CTM confluentes. A expansão das células na presença de citocinas apresentou maior proliferação celular ao comparar às coculturas sem adição de citocinas. CONCLUSÃO: Este estudo mostrou que para alto rendimento de células do SCU, o sistema de cocultura requer adição de coquetel de citocinas e CTM confluente independentemente da fonte utilizada
INTRODUCTION: Umbilical cord blood (UCB) hematopoietic stem cells have been successfully used for the treatment of both malignant and non-malignant diseases. Nevertheless, some UCB units could have low total nucleated cells (TNC) dose. Several approaches have been suggested to avoid inadequacy problems of hematopoietic stem cells (HSC) number for transplantation, such as administration of two UCB units to the patient and HSC ex vivo expansion. OBJECTIVE: Evaluate UCB ex vivo expansion proliferative rates in a high and low mesenchymal stem cells (MSC) confluence feeder layer obtained from different MSC sources and by adding or not cytokines cocktail into the medium. METHODS: This study was approved by the Research Ethic Committee (CAPPESQ) of Hospital das Clínicas da Faculdade de Medicina da USP. The collection of UCB (n=10) was made after delivery of the infant and the expulsion of placenta. Processing was performed using volume reduction method which consists in red blood depletion. MSC samples from umbilical cord endothelium were obtained from three different donors and adipose tissue (n=3) obtained from LIM31\'s pattern inventory. The total nucleated cell (TNC), expression of hematopoietic surface markers such as CD133+/CD34+ were observed after seven days of culture. Beyond that, colony forming unit assay (CFU) was performed before and after UCB expansion. The expansion by coculture method was observed in two groups (Group I - coculture with cytokines cocktail added vs. Group II- coculture without cytokines cocktail) for both MSCs sources. RESULTS: After seven days, analysis of confluent coculture showed that TNC proliferation rate ware almost 2 times higher than in subconfluent coculture (35 vs. 16-fold) in Group I and also revealed higher proliferative rate in CD133+/CD34+ cells considering. CFU showed similar increase after seven days of culture in comparison of day 0 (up to 8-fold). Subconfluent coculture for both umbilical cord endothelium and adipose tissue showed lower yield compared with those with high MSC confluence. The expansion in the presence of cytokines showed higher cell proliferation compared to the cocultures without addition of cytokines. CONCLUSION: This study showed that coculture system may require the addition of cytokines cocktail in the media and confluent MSC regardless of source for high yield of UCB cells
APA, Harvard, Vancouver, ISO, and other styles
10

Castro, Mike. "Cytokine Modulation of Cardiomyocyte-Macrophage Interaction." Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright157858331333014.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cell coculture"

1

Afshari, Fardad T., and James W. Fawcett. "Astrocyte–Schwann-Cell Coculture Systems." In Methods in Molecular Biology, 381–91. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-452-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davies, P. F. "Coculture of Endothelial and Smooth Muscle Cells." In Cell Culture Techniques in Heart and Vessel Research, 290–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75262-9_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Piersma, A. H., A. Willemse, C. E. van den Brink, S. W. de Laat, and C. L. Mummery. "Mesodermal Differentiation of Embryonal Carcinoma Cells in Coculture with Visceral Endoderm Cell Lines." In Cell to Cell Signals in Mammalian Development, 247–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73142-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thanabalasundaram, Gokulan, Jehad El-Gindi, Mira Lischper, and Hans-Joachim Galla. "Methods to Assess Pericyte-Endothelial Cell Interactions in a Coculture Model." In Methods in Molecular Biology, 379–99. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-938-3_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Katyshev, Vladimir, and Paula Dore-Duffy. "Pericyte Coculture Models to Study Astrocyte, Pericyte, and Endothelial Cell Interactions." In Methods in Molecular Biology, 467–81. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-452-0_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Satsu, Hideo, and Makoto Shimizu. "Food factors that regulate intestinal inflammation: evaluation of the factors by using a coculture system." In Animal Cell Technology: Basic & Applied Aspects, 29–37. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4457-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Swearingen, Michelle, Beverly Falcon, Sudhakar Chintharlapalli, and Mark Uhlik. "An Endothelial Cell/Mesenchymal Stem Cell Coculture Cord Formation Assay to Model Vascular Biology In Vitro." In Methods in Molecular Biology, 371–82. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7357-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takami, Masamichi, Je-Tae Woo, and Kazuo Nagai. "Increase of Intracellular Ca2+ Level Induces Osteoclast- Like Cell Formation in Coculture of Mouse Bone Marrow Cells and Osteoblastic Cells." In Animal Cell Technology: Basic & Applied Aspects, 97–101. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5161-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Torres-Barrera, Patricia, Mireya Ramírez-Florencio, and Antonieta Chávez-González. "Assessment of Cell Cycle in Primitive Chronic Myeloid Leukemia Cells by Flow Cytometry After Coculture with Endothelial Cells." In Methods in Molecular Biology, 207–16. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0759-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Babetto, Elisabetta. "A Schwann Cell–Neuron Coculture System to Study Neuron–Glia Interaction During Axon Degeneration." In Methods in Molecular Biology, 97–110. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0585-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cell coculture"

1

Lee, Jyong-Huei, Yi-Ting Lo, and Shih-Kang Fan. "Cell coculture within electrically patterned cells and hydrogel structures." In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2017. http://dx.doi.org/10.1109/memsys.2017.7863478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scott, Devon, Aaron Richman, Craig Lanning, Robin Shandas, and Wei Tan. "Devlopment of a Cell Coculture Microfluidic Shear Device for Mechano-Transmission Study." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176700.

Full text
Abstract:
We have developed a microfluidic shear device that allows for the study of cell communication in a dynamically controlled biochemical and biomechanical environments simulating cells’ living environments in vivo. Such study may help to improve our understanding in the effects of hypertension-relevant and vascular development-relevant flow shear stress on cell behaviors. Endothelial cells may be a key factor for transmitting the blood flow conditions from the endothelial lining to interstitial layers and smooth muscle cells. The interstitial flow stress and the shear stress induced signaling factors may greatly alter vascular biology of these deep layers. Endothelial cells act as a mechano-transducer by converting shear stress into biochemical signaling factors. The biochemical factors diffuse to smooth muscle cells and further alter the biological structure of vascular tissues. Also, the flow shear stress will be transmitted to the interstitial tissue layer through the pores resulted from the pores in the fenestrated endothelial lining. Studies in both the mechano-transduction process and the mechano-transmission process will benefit from a biomimetic flow shear device with co-cultured cells. Our device will allow the co-culture of endothelial cells and smooth muscle cells to study these biomechanical processes. The pulmonary arterial cells are used as a model in the study. The microfluidic device developed here will be used to enhance the understanding of pulmonary vascular disease pathogenesis due to the variations in the flow shear stress.
APA, Harvard, Vancouver, ISO, and other styles
3

Holle, Andrew W., Verena Kast, Ralf Kemkemer, and Joachim Spatz. "Abstract 5059: Cancer cell invasion dynamics in microchannels during stromal cell coculture." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pullens, Rolf A. A., Maria Stekelenburg, Carlijn V. C. Bouten, Frank P. T. Baaijens, and Mark J. Post. "3D Coculture of Human Endothelial Cells and Myofibroblasts for Vascular Tissue Engineering." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176099.

Full text
Abstract:
Cardiovascular disease is still the number one cause of death in the industrialized world. Diseased small diameter blood vessels are frequently replaced by native grafts. However, these vessels have a limited life time [1], for example the patency at 10 year after coronary artery bypass grafting of saphenous vein grafts is 57% [2]. Tissue engineering (TE) of small diameter blood vessels seems a promising approach to overcome these shortcomings or address the increasing need for substitutes during follow up surgery. Mechanical conditioning of myofibroblast (MFs) seeded constructs appears to be beneficial for functional tissue properties, such as cell proliferation, ECM production and mechanical strength [3,4]. Without a functional endothelial cell (ECs) layer however, patency may be compromised by thrombogenecity. Construction of an EC layer might on the other hand affect the tissue composition during culture, as was shown for bovine ECs, which influenced proliferation and ECM production of smooth muscle cells [5].
APA, Harvard, Vancouver, ISO, and other styles
5

Alcolea, Marla, Renata Moraes Brito, Mahmi Fujimori, Adenilda Cristina Honorio-França, Eduardo Luzia França, and Paula Becker Pertuzatti. "IMMUNOMODULATORY EFFECTS OF HONEY FROM STINGLESS BEES AND HONEY BEES ON BREAST CANCER CELLS." In Brazilian Breast Cancer Symposium 2022. Mastology, 2022. http://dx.doi.org/10.29289/259453942022v32s2002.

Full text
Abstract:
Objective: The limitations of current cancer treatments and their side effects have led to a growing interest in the study of natural compounds and alternative therapies such as apitherapy. Honey has in its constitution several substances that contribute to neutralize free radicals, such as phenolic compounds of which stand out in flavonoids and phenolic acids, besides having important antimicrobial and antitumor activities. However, the mechanisms of the antitumor action of honey and how the characteristics of honey of different species influence this mechanism are poorly understood. The aim of this study was to verify the antitumor action of honey bees (Apis mellifera) and stingless bees (Tetragonisca angustula) honey in mammary adenocarcinoma cell lines (MCF-7). Methods: Cell viability analyses were performed using fluorescence and flow cytometry methods, and oxidative balance through the release of superoxide anion (O2 − ) and production of the enzyme superoxide dismutase (SOD) in human peripheral blood mononuclear (MN) cells, MCF-7, and coculture of both. Results: Viability analyses in MN cells showed that honey samples, at concentrations of 100 mg/mL, 100 ng/mL, and 100 pg/mL, do not present cytotoxicity to cells. But in MCF-7 cells, there was a decrease in viability with stingless bee honey (100 mg/mL), showing the highest cytotoxic action and reducing the viability of cancer cells by 30.4%. The same honey sample caused an immunomodulatory effect on both MN and cancer cells, stimulating greater release of O2 − and SOD enzyme activity in these cells. While in the coculture, there was a greater release of O2 − and a decrease in enzymatic activity. Conclusion: The results showed that especially stingless bee honey acts on the oxidative stress of cells, and this might be the mechanism related to its antitumor action. Thus, honey can play a potential role as a preventive agent and complementary therapy against breast cancer.
APA, Harvard, Vancouver, ISO, and other styles
6

Trehan, Kartik, Christopher Yu, Sasha Bakhru, and Hai-Quan Mao. "Novel Hydrogel Microfibers for Tissue Engineering." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38066.

Full text
Abstract:
Cell encapsulation in hydrogels or microcapsules is one of the approaches for providing a biomimetic microenvironment to support cell survival, proliferation and functions. Microcapsules in particular have been used to improve the mass transport properties and ease of delivery through injection. More importantly, the microenvironment in hydrogels or hydrogel microcapsules can be tailored by incorporation of relevant adhesion molecules and growth factors through chemical conjugation and physical encapsulation. These functionalized hydrogels have been shown to effectively influence cell adhesion, proliferation and differentiation. In this study, we describe the preparation and characterization of a novel hydrogel fiber by polyelectrolyte complexation. This unique fiber geometry can be useful for regeneration of cylindrical tissues and for coculture of two different cell types inside and outside the fiber membrane.
APA, Harvard, Vancouver, ISO, and other styles
7

Anselmino, Nicolás, Alejandra Páez, Sofía Lage Vickers, Javier Cotignola, Pía Valacco, Geraldine Gueron, and Elba Vázquez. "Abstract B062: Proteomic characterization of the secretome from prostate cancer and bone progenitor cell coculture." In Abstracts: AACR Special Conference: Prostate Cancer: Advances in Basic, Translational, and Clinical Research; December 2-5, 2017; Orlando, Florida. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.prca2017-b062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shammout, B., and J. Johnson. "Modelling Fibrosis via Three Dimensional Pericyte-Endothelial Cell Coculture Using Biocompatible Nanoparticle Assembly and Spheroid Bioprinting Identifies Novel Therapeutic Targets." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Agulló-Ortuño, Mª Teresa, Elena Prieto-García, C. Vanesa Díaz-García, Irene Otero Blas, Inmaculada García-Ruíz, and José A. López-Martín. "Abstract 5893: Bioenergetic signature from cocultures of pancreatic tumor cell lines and fibroblasts." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Daszkiewicz, Lidia, Gera Goverse, Nataliia Beztsinna, Benjamin Visser, Lois van der Drift, Kuan Yan, and Leo Price. "Abstract 4543: Phenotypic screening of bispecific antibodies in 3D tumor immune cell cocultures." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography