Journal articles on the topic 'Cell Annotation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Cell Annotation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen, and Huamei Li. "scAnnoX: an R package integrating multiple public tools for single-cell annotation." PeerJ 12 (March 28, 2024): e17184. http://dx.doi.org/10.7717/peerj.17184.
Full textVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk, and Kees Joost Batenburg. "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations." Journal of Imaging 10, no. 7 (July 17, 2024): 172. http://dx.doi.org/10.3390/jimaging10070172.
Full textHia, Nazifa Tasnim, and Sumon Ahmed. "Automatic cell type annotation using supervised classification: A systematic literature review." Systematic Literature Review and Meta-Analysis Journal 3, no. 3 (October 21, 2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Full textXu, Yang, Simon J. Baumgart, Christian M. Stegmann, and Sikander Hayat. "MACA: marker-based automatic cell-type annotation for single-cell expression data." Bioinformatics 38, no. 6 (December 22, 2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Full textGill, Jaidip, Abhijit Dasgupta, Brychan Manry, and Natasha Markuzon. "Abstract 4927: Combining single-cell ATAC and RNA sequencing for supervised cell annotation." Cancer Research 84, no. 6_Supplement (March 22, 2024): 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Full textZhou, Xiao, Miao Gu, and Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection." Entropy 23, no. 10 (October 14, 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Full textZhou, Xiao, Miao Gu, and Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection." Entropy 23, no. 10 (October 14, 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Full textCheng, Changde, Wenan Chen, Hongjian Jin, and Xiang Chen. "A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication." Cells 12, no. 15 (July 30, 2023): 1970. http://dx.doi.org/10.3390/cells12151970.
Full textLong, Helen, Richard Reeves, and Michelle M. Simon. "Mouse genomic and cellular annotations." Mammalian Genome 33, no. 1 (February 5, 2022): 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Full textWei, Ziyang, and Shuqin Zhang. "CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data." Bioinformatics 37, Supplement_1 (July 1, 2021): i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Full textYuan, Musu, Liang Chen, and Minghua Deng. "scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets." Bioinformatics 38, no. 3 (October 8, 2021): 738–45. http://dx.doi.org/10.1093/bioinformatics/btab700.
Full textZhao, Zipei, Fengqian Pang, Yaou Liu, Zhiwen Liu, and Chuyang Ye. "Positive-unlabeled learning for binary and multi-class cell detection in histopathology images with incomplete annotations." Machine Learning for Biomedical Imaging 1, December 2022 (February 17, 2023): 1–30. http://dx.doi.org/10.59275/j.melba.2022-8g31.
Full textDoddahonnaiah, Deeksha, Patrick J. Lenehan, Travis K. Hughes, David Zemmour, Enrique Garcia-Rivera, A. J. Venkatakrishnan, Ramakrishna Chilaka, et al. "A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets." Genes 12, no. 6 (June 10, 2021): 898. http://dx.doi.org/10.3390/genes12060898.
Full textBarrett, John, and Richard Childs. "Non-myeloablative stem cell transplants. Annotation." British Journal of Haematology 111, no. 1 (October 2000): 6–17. http://dx.doi.org/10.1046/j.1365-2141.2000.02405.x.
Full textLiu, Huaitian, Alexandra Harris, Brittany Jenkins-Lord, Tiffany H. Dorsey, Francis Makokha, Shahin Sayed, Gretchen Gierach, and Stefan Ambs. "Abstract LB240: Cell type annotation using singleR with custom reference for single-nucleus multiome data derived from frozen human breast tumors." Cancer Research 84, no. 7_Supplement (April 5, 2024): LB240. http://dx.doi.org/10.1158/1538-7445.am2024-lb240.
Full textFeng, Zhanying, Xianwen Ren, Yuan Fang, Yining Yin, Chutian Huang, Yimin Zhao, and Yong Wang. "scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization." Bioinformatics 36, no. 8 (December 17, 2019): 2474–85. http://dx.doi.org/10.1093/bioinformatics/btz936.
Full textSun, Hao, Danqi Guo, and Zhao Chen. "Mixed-Supervised Learning for Cell Classification." Sensors 25, no. 4 (February 16, 2025): 1207. https://doi.org/10.3390/s25041207.
Full textTang, Dachao, Cheng Han, Shaofeng Lin, Xiaodan Tan, Weizhi Zhang, Di Peng, Chenwei Wang, and Yu Xue. "iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death." Cells 11, no. 13 (June 24, 2022): 2018. http://dx.doi.org/10.3390/cells11132018.
Full textLagier, Michael J., Brittany Bowman, Kelsey Brend, Katherine Hobbs, Michael Foggia, and Mark McDaniel. "Improved Functional Prediction of Hypothetical Proteins from Listeria monocytogenes 08-5578." Journal of the Iowa Academy of Science 121, no. 1-4 (January 1, 2014): 16–27. http://dx.doi.org/10.17833/121-03.1.
Full textLachmann, Alexander, Kaeli A. Rizzo, Alon Bartal, Minji Jeon, Daniel J. B. Clarke, and Avi Ma’ayan. "PrismEXP: gene annotation prediction from stratified gene-gene co-expression matrices." PeerJ 11 (February 27, 2023): e14927. http://dx.doi.org/10.7717/peerj.14927.
Full textZhang, Yuexin, Chao Song, Yimeng Zhang, Yuezhu Wang, Chenchen Feng, Jiaxin Chen, Ling Wei, et al. "TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse." Nucleic Acids Research 50, no. D1 (October 30, 2021): D391—D401. http://dx.doi.org/10.1093/nar/gkab950.
Full textLi, Jia, Quanhu Sheng, Yu Shyr, and Qi Liu. "scMRMA: single cell multiresolution marker-based annotation." Nucleic Acids Research 50, no. 2 (October 14, 2021): e7-e7. http://dx.doi.org/10.1093/nar/gkab931.
Full textXiong, Yi-Xuan, Meng-Guo Wang, Luonan Chen, and Xiao-Fei Zhang. "Cell-type annotation with accurate unseen cell-type identification using multiple references." PLOS Computational Biology 19, no. 6 (June 28, 2023): e1011261. http://dx.doi.org/10.1371/journal.pcbi.1011261.
Full textZubair, Asif, Rich Chapple, Sivaraman Natarajan, William C. Wright, Min Pan, Hyeong-Min Lee, Heather Tillman, John Easton, and Paul Geeleher. "Abstract 456: Jointly leveraging spatial transcriptomics and deep learning models for image annotation achieves better-than-pathologist performance in cell type identification in tumors." Cancer Research 82, no. 12_Supplement (June 15, 2022): 456. http://dx.doi.org/10.1158/1538-7445.am2022-456.
Full textTickotsky, Nili, and Moti Moskovitz. "Protein Activation in Periapical Reaction to Iodoform Containing Root Canal Sealer." Journal of Clinical Pediatric Dentistry 41, no. 6 (January 1, 2017): 450–55. http://dx.doi.org/10.17796/1053-4628-41.6.6.
Full textEnglbrecht, Fabian, Iris E. Ruider, and Andreas R. Bausch. "Automatic image annotation for fluorescent cell nuclei segmentation." PLOS ONE 16, no. 4 (April 16, 2021): e0250093. http://dx.doi.org/10.1371/journal.pone.0250093.
Full textXu, Congmin, Huyun Lu, and Peng Qiu. "Comparison of cell type annotation algorithms for revealing immune response of COVID-19." Frontiers in Systems Biology 2 (October 24, 2022). http://dx.doi.org/10.3389/fsysb.2022.1026686.
Full textHou, Wenpin, and Zhicheng Ji. "Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis." Nature Methods, March 25, 2024. http://dx.doi.org/10.1038/s41592-024-02235-4.
Full textGuo, Qirui, Musu Yuan, Lei Zhang, and Minghua Deng. "scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement." Briefings in Bioinformatics 25, no. 4 (May 23, 2024). http://dx.doi.org/10.1093/bib/bbae305.
Full textDong, Sherry, Kaiwen Deng, and Xiuzhen Huang. "Single-Cell Type Annotation With Deep Learning in 265 Cell Types For Humans." Bioinformatics Advances, April 8, 2024. http://dx.doi.org/10.1093/bioadv/vbae054.
Full textAltay, Aybuge, and Martin Vingron. "scATAcat: cell-type annotation for scATAC-seq data." NAR Genomics and Bioinformatics 6, no. 4 (July 2, 2024). http://dx.doi.org/10.1093/nargab/lqae135.
Full textVu, Ha, and Jason Ernst. "Universal annotation of the human genome through integration of over a thousand epigenomic datasets." Genome Biology 23, no. 1 (January 6, 2022). http://dx.doi.org/10.1186/s13059-021-02572-z.
Full textLawson, Nathan D., Rui Li, Masahiro Shin, Ann Grosse, Onur Yukselen, Oliver A. Stone, Alper Kucukural, and Lihua Zhu. "An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes." eLife 9 (August 24, 2020). http://dx.doi.org/10.7554/elife.55792.
Full textKimmel, Jacob C., and David R. Kelley. "Semisupervised adversarial neural networks for single-cell classification." Genome Research, February 24, 2021. http://dx.doi.org/10.1101/gr.268581.120.
Full textMichielsen, Lieke, Mohammad Lotfollahi, Daniel Strobl, Lisa Sikkema, Marcel J. T. Reinders, Fabian J. Theis, and Ahmed Mahfouz. "Single-cell reference mapping to construct and extend cell-type hierarchies." NAR Genomics and Bioinformatics 5, no. 3 (July 5, 2023). http://dx.doi.org/10.1093/nargab/lqad070.
Full textLiu, Yan, Guo Wei, Chen Li, Long-Chen Shen, Robin B. Gasser, Jiangning Song, Dijun Chen, and Dong-Jun Yu. "TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level." Briefings in Bioinformatics, April 20, 2023. http://dx.doi.org/10.1093/bib/bbad132.
Full textLi, Ziyi, and Hao Feng. "A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data." Scientific Reports 12, no. 1 (January 18, 2022). http://dx.doi.org/10.1038/s41598-021-04473-4.
Full textZhang, Weihang, Yang Cui, Bowen Liu, Martin Loza, Sung-Joon Park, and Kenta Nakai. "HyGAnno: hybrid graph neural network–based cell type annotation for single-cell ATAC sequencing data." Briefings in Bioinformatics 25, no. 3 (March 27, 2024). http://dx.doi.org/10.1093/bib/bbae152.
Full textVu, Ha, and Jason Ernst. "Universal chromatin state annotation of the mouse genome." Genome Biology 24, no. 1 (June 27, 2023). http://dx.doi.org/10.1186/s13059-023-02994-x.
Full textFord, Michael K. B., Ananth Hari, Qinghui Zhou, Ibrahim Numanagić, and S. Cenk Sahinalp. "Biologically-informed Killer cell immunoglobulin-like receptor (KIR) gene annotation tool." Bioinformatics, October 21, 2024. http://dx.doi.org/10.1093/bioinformatics/btae622.
Full textShrestha, Prem, Nicholas Kuang, and Ji Yu. "Efficient end-to-end learning for cell segmentation with machine generated weak annotations." Communications Biology 6, no. 1 (March 2, 2023). http://dx.doi.org/10.1038/s42003-023-04608-5.
Full textGeuenich, Michael J., Dae-won Gong, and Kieran R. Campbell. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data." Nature Communications 15, no. 1 (February 3, 2024). http://dx.doi.org/10.1038/s41467-024-45198-y.
Full textShi, Yongle, Yibing Ma, Xiang Chen, and Jie Gao. "scADCA: An Anomaly Detection-Based scRNA-seq Dataset Cell Type Annotation Method for Identifying Novel Cells." Current Bioinformatics 20 (October 10, 2024). http://dx.doi.org/10.2174/0115748936334071240903064630.
Full textXiong, Yi-Xuan, and Xiao-Fei Zhang. "scDOT: enhancing single-cell RNA-Seq data annotation and uncovering novel cell types through multi-reference integration." Briefings in Bioinformatics 25, no. 2 (January 22, 2024). http://dx.doi.org/10.1093/bib/bbae072.
Full textMichielsen, Lieke, Marcel J. T. Reinders, and Ahmed Mahfouz. "Hierarchical progressive learning of cell identities in single-cell data." Nature Communications 12, no. 1 (May 14, 2021). http://dx.doi.org/10.1038/s41467-021-23196-8.
Full textZhang, Ying, Huaicheng Sun, Wei Zhang, Tingting Fu, Shijie Huang, Minjie Mou, Jinsong Zhang, et al. "CellSTAR: a comprehensive resource for single-cell transcriptomic annotation." Nucleic Acids Research, October 19, 2023. http://dx.doi.org/10.1093/nar/gkad874.
Full textShao, Xin, Haihong Yang, Xiang Zhuang, Jie Liao, Penghui Yang, Junyun Cheng, Xiaoyan Lu, Huajun Chen, and Xiaohui Fan. "scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network." Nucleic Acids Research, September 9, 2021. http://dx.doi.org/10.1093/nar/gkab775.
Full textLee, Sarada M. W., Andrew Shaw, Jodie L. Simpson, David Uminsky, and Luke W. Garratt. "Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation." Scientific Reports 11, no. 1 (August 19, 2021). http://dx.doi.org/10.1038/s41598-021-96067-3.
Full textWang, Yuge, Xingzhi Sun, and Hongyu Zhao. "Benchmarking automated cell type annotation tools for single-cell ATAC-seq data." Frontiers in Genetics 13 (December 13, 2022). http://dx.doi.org/10.3389/fgene.2022.1063233.
Full textQuan, Fei, Xin Liang, Mingjiang Cheng, Huan Yang, Kun Liu, Shengyuan He, Shangqin Sun, et al. "Annotation of cell types (ACT): a convenient web server for cell type annotation." Genome Medicine 15, no. 1 (November 3, 2023). http://dx.doi.org/10.1186/s13073-023-01249-5.
Full text