Academic literature on the topic 'Cell Annotation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cell Annotation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cell Annotation"
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen, and Huamei Li. "scAnnoX: an R package integrating multiple public tools for single-cell annotation." PeerJ 12 (March 28, 2024): e17184. http://dx.doi.org/10.7717/peerj.17184.
Full textVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk, and Kees Joost Batenburg. "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations." Journal of Imaging 10, no. 7 (July 17, 2024): 172. http://dx.doi.org/10.3390/jimaging10070172.
Full textHia, Nazifa Tasnim, and Sumon Ahmed. "Automatic cell type annotation using supervised classification: A systematic literature review." Systematic Literature Review and Meta-Analysis Journal 3, no. 3 (October 21, 2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Full textXu, Yang, Simon J. Baumgart, Christian M. Stegmann, and Sikander Hayat. "MACA: marker-based automatic cell-type annotation for single-cell expression data." Bioinformatics 38, no. 6 (December 22, 2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Full textGill, Jaidip, Abhijit Dasgupta, Brychan Manry, and Natasha Markuzon. "Abstract 4927: Combining single-cell ATAC and RNA sequencing for supervised cell annotation." Cancer Research 84, no. 6_Supplement (March 22, 2024): 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Full textZhou, Xiao, Miao Gu, and Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection." Entropy 23, no. 10 (October 14, 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Full textZhou, Xiao, Miao Gu, and Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection." Entropy 23, no. 10 (October 14, 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Full textCheng, Changde, Wenan Chen, Hongjian Jin, and Xiang Chen. "A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication." Cells 12, no. 15 (July 30, 2023): 1970. http://dx.doi.org/10.3390/cells12151970.
Full textLong, Helen, Richard Reeves, and Michelle M. Simon. "Mouse genomic and cellular annotations." Mammalian Genome 33, no. 1 (February 5, 2022): 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Full textWei, Ziyang, and Shuqin Zhang. "CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data." Bioinformatics 37, Supplement_1 (July 1, 2021): i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Full textDissertations / Theses on the topic "Cell Annotation"
Raoux, Corentin. "Review and Analysis of single-cell RNA sequencing cell-type identification and annotation tools." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297852.
Full textEbenezer, ThankGod Echezona. "The genome of Euglena gracilis : annotation, function and expression." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275885.
Full textAbbey, Simon. "Annotation of the human odontoblast cell layer and dental pulp proteomes and N-terminomes." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62403.
Full textDentistry, Faculty of
Graduate
Hoffman, Matthew P. "The Cortical response to RhoA is regulated during mitosis. Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly." Thesis, Boston College, 2008. http://hdl.handle.net/2345/bc-ir:107671.
Full textThis doctoral thesis addresses two central topics divided into separate chapters. In Chapter 1: The cortical response to RhoA is regulated during mitosis, experimental findings using sea urchin embryos are presented that demonstrate that the small GTPase RhoA participates in positive signaling for cell division and that this activity is negatively regulated prior to anaphase. In a second series of experiments, myosin phosphatase is shown to be a central negative regulator of myosin activity during the cell cycle through metaphase of mitosis and experimental findings support the conclusion that myosin phosphatase opposes RhoA signaling until anaphase onset. These experiments also reveal that myosin activation alone is insufficient to stimulate cortical contractions during S phase and during metaphase arrest following activation of the spindle checkpoint. In Chapter 2: Annotation of cytoskeletal and motility proteins in the sea urchin genome assembly, as part of a collaborative project, homologs of cytoskeletal genes and gene families were derived and annotated from the sea urchin genome assembly. In addition, phylogenetic analysis of multiple gene families is presented based on these findings
Thesis (PhD) — Boston College, 2008
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Biology
Collin, Antoine. "Annotation cellulaire automatique pour la construction d'un atlas cellulaire." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ6039.
Full textSingle-cell gene expression analysis technologies, which have emerged over the last ten years, are profoundly changing approaches to cell biology. The analysis of single-cell data is a complex process involving many steps. A key step is cell annotation, which involves assigning the most relevant cell type to the different cells analysed. Correct cell annotation determines the quality of subsequent analyses. This complex task requires biological expertise of the tissue of interest and computational expertise to carry out data analysis. Initiatives such as the HCA provide large reference atlases with curated annotation. As such, they represent an opportunity to develop deep learning models capable of automating the annotation process.The aim of this thesis was to set up automatic annotation tools that could operate on large datasets. To achieve this, two lines of work were developed: first, I created an atlas of the human airways comprising more than 400,000 cells based on several dozen biopsies obtained from patients with early forms of chronic obstructive pulmonary disease (COPD), which were compared with as many biopsies from healthy volunteers of the same age. I then developed an automatic annotation method after reviewing the state of the art existing tools.In the first part, I was able to characterise the central role played by cigarette smoke, mainly in the epithelial cells located on the surface of the tracheobronchial airways, and thus directly exposed to cigarette smoke. The populations affected are characterised by the expression of genes coding for detoxification enzymes or enzymes involved in xenobiotic metabolism. None of these genes were affected in either ex-smokers or healthy patients. There appears to be a reversibility of the pathology following cessation of smoking, despite the molecular changes induced during initial exposure to cigarette smoke. My work is now currently extended by spatial transcriptomic approaches and analysis of the expression of different transcript isoforms.In the second part, I explored existing automatic annotation methods in the light of the knowledge acquired when annotating the COPD atlas. I began with an extensive review of the literature, with a particular interest in methods using deep learning models. I then developed an automatic annotation tool, scMusketeers, whose architecture favours the construction of a latent space reinforcing cell type while minimising experimental inter-batch effects. It compared favorably to 7 currently available tools on 12 different datasets, particularly in the task of detecting rare cell types
Lehmann, Nathalie. "Development of bioinformatics tools for single-cell transcriptomics applied to the search for signatures of symmetric versus asymmetric division mode in neural progenitors." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLE070.
Full textIn recent years, single-cell RNA-seq (scRNA-seq) has fostered the characterization of cell heterogeneity at a remarkable high resolution. Despite their democratization, the analysis of scRNA-seq remains a challenge, particularly for organisms whose genomic annotations are partial. During my PhD, I observed that the chick genomic annotations are often incomplete, thus resulting in a loss of a large number of sequencing reads. I investigated how an enriched annotation affects the biological results and conclusions from these analyses. We developed a novel approach based on the re-annotation of the genome with scRNA-seq data and long reads bulk RNA-seq. This computational biology project capitalises on a tight collaboration with the experimental team of Xavier Morin (IBENS). The main biological focus is the search for signatures of symmetric versus asymmetric division mode in neural progenitors. In order to identify the key transcriptional switches that occur during the neurogenic transition, I have implemented bioanalysis approaches dedicated to the search for gene signatures from scRNA-seq data
Planas, Iglesias Joan 1980. "On the study of 3D structure of proteins for developing new algorithms to complete the interactome and cell signalling networks." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/104152.
Full textLes proteïnes tenen un paper indispensable en virtualment qualsevol procés biològic. Les funcions de les proteïnes estan determinades per la seva estructura tridimensional (3D) i són coordinades per mitjà d’una complexa xarxa d’interaccions protiques (en anglès, protein-protein interactions, PPIs). Axí doncs, una comprensió en profunditat d’aquestes xarxes és fonamental per entendre la biologia cel•lular. Per a l’anàlisi de les xarxes d’interacció de proteïnes, l’ús de tècniques computacionals ha esdevingut fonamental als darrers temps. Els mètodes in silico aprofiten el coneixement actual sobre les interaccions proteiques per fer prediccions de noves interaccions o de les funcions de les proteïnes. Actualment existeixen diferents mètodes per a la predicció de noves interaccions de proteines. De tota manera, resultats recents demostren que aquests mètodes poden beneficiar-se del coneixement sobre parelles de proteïnes no interaccionants (en anglès, non-interacting pairs, NIPs). Per a la tasca de predir la funció de les proteïnes, el principi de “culpable per associació” (en anglès, guilt by association, GBA) és usat per extendre l’anotació de proteïnes de funció coneguda a través de xarxes d’interacció de proteïnes. En aquesta tesi es presenta un nou mètode pre a la predicció d’interaccions proteiques i un nou protocol basat per a completar xarxes de senyalització cel•lular. iLoops és un mètode que utilitza dades de parells no interaccionants i coneixement de l’estructura 3D de les proteïnes per a predir interaccions de proteïnes. També s’ha desenvolupat un nou protocol per a completar xarxes de senyalització cel•lular, una tasca relacionada amb la predicció de les funcions de les proteïnes. Aquest protocol es basa en aplicar el principi GBA a xarxes d’interaccions proteiques.
Ghadie, Mohamed A. "Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32048.
Full textKhattra, Jaswinder. "Cloning and annotation of novel transcripts from human embryonic stem cells." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/343.
Full textLux, Markus [Verfasser], and Barbara [Akademischer Betreuer] Hammer. "Efficient Grouping Methods for the Annotation and Sorting of Single Cells / Markus Lux ; Betreuer: Barbara Hammer." Bielefeld : Universitätsbibliothek Bielefeld, 2018. http://d-nb.info/1160033226/34.
Full textBook chapters on the topic "Cell Annotation"
Wang, Zuhui, and Zhaozheng Yin. "Annotation-Efficient Cell Counting." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 405–14. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87237-3_39.
Full textO’Connor, Maria F., Arthur Hughes, Chaoxin Zheng, Anthony Davies, Dermot Kelleher, and Khurshid Ahmad. "Annotation and Retrieval of Cell Images." In Intelligent Data Engineering and Automated Learning – IDEAL 2010, 218–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15381-5_27.
Full textLi, Dongshunyi, Jun Ding, and Ziv Bar-Joseph. "Unsupervised Cell Functional Annotation for Single-Cell RNA-Seq." In Lecture Notes in Computer Science, 349–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_24.
Full textVădineanu, Şerban, Daniël M. Pelt, Oleh Dzyubachyk, and K. Joost Batenburg. "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations." In Medical Image Learning with Limited and Noisy Data, 3–13. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44917-8_1.
Full textValkiers, Sebastiaan, Sofie Gielis, Vincent M. L. Van Deuren, Kris Laukens, and Pieter Meysman. "Clustering and Annotation of T Cell Receptor Repertoires." In Computational Vaccine Design, 33–51. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3239-0_3.
Full textShui, Zhongyi, Shichuan Zhang, Chenglu Zhu, Bingchuan Wang, Pingyi Chen, Sunyi Zheng, and Lin Yang. "End-to-End Cell Recognition by Point Annotation." In Lecture Notes in Computer Science, 109–18. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_11.
Full textLi, Chao-Ting, Hung-Wen Tsai, Tseng-Lung Yang, Jung-Chi Lin, Nan-Haw Chow, Yu Hen Hu, Kuo-Sheng Cheng, and Pau-Choo Chung. "Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection." In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 223–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_24.
Full textÇiçek, Özgün, Yassine Marrakchi, Enoch Boasiako Antwi, Barbara Di Ventura, and Thomas Brox. "Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins." In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 85–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_9.
Full textBashir, Raja Muhammad Saad, Talha Qaiser, Shan E. Ahmed Raza, and Nasir M. Rajpoot. "HydraMix-Net: A Deep Multi-task Semi-supervised Learning Approach for Cell Detection and Classification." In Interpretable and Annotation-Efficient Learning for Medical Image Computing, 164–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61166-8_18.
Full textKhalid, Nabeel, Tiago Comassetto Froes, Maria Caroprese, Gillian Lovell, Johan Trygg, Andreas Dengel, and Sheraz Ahmed. "PACE: Point Annotation-Based Cell Segmentation for Efficient Microscopic Image Analysis." In Artificial Neural Networks and Machine Learning – ICANN 2023, 545–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44210-0_44.
Full textConference papers on the topic "Cell Annotation"
Li, Tianhao, Yugui Xu, Sihan He, Yuhang Liu, Zixuan Wang, Zhigan Zhou, Yongqing Zhang, and Quan Zou. "Cell-Specific Highly Correlated Network for Self-Supervised Distillation in Cell Type Annotation." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 988–93. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822095.
Full textTang, Binhua, and Guowei Cheng. "A Novel GCN-Based Cell Annotation Method for Single-Cell RNA Sequencing Data." In 2024 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1–5. IEEE, 2024. https://doi.org/10.1109/cisp-bmei64163.2024.10906231.
Full textLi, Jiawei, Shizhan Chen, Zongbo Han, Wei Li, Jijun Tang, and Fei Guo. "Multi-Task Driven Multi-Level Dynamical Fusion for Single-Cell Multi-Omics Cell Type Annotation." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1009–14. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822524.
Full textZhu, Chi, Fengcui Qian, Yongbin Liu, Ying Yu, Chunquan Li, and Chunping Ouyang. "PEGCN: A Single-Cell Type Annotation model based on GCN with Pseudo Labels and Ensemble Learning." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1414–21. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822733.
Full textNeelapala, Satya Deepika, Soumya Jana, and Lopamudra Giri. "U-Net-Based HeLa Cell Segmentation with Zero Manual Labeling Using DBSCAN-Generated Annotations." In 2024 IEEE International Conference on E-health Networking, Application & Services (HealthCom), 1–3. IEEE, 2024. https://doi.org/10.1109/healthcom60970.2024.10880723.
Full textChen, Jian, Chengliang Wang, Xing Wu, Longrong Ran, Zailin Yang, and Yao Liu. "Weakly Supervised Segmentation of Plasma Cells in Bone Marrow via Scribble Annotations." In 2024 International Joint Conference on Neural Networks (IJCNN), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10651396.
Full textZhai, Yuyao, Liang Chen, and Minghua Deng. "Realistic Cell Type Annotation and Discovery for Single-cell RNA-seq Data." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/552.
Full textZhai, Yuyao, Liang Chen, and Minghua Deng. "Distribution-Independent Cell Type Identification for Single-Cell RNA-seq Data." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/679.
Full textJiang, Yangbo, Shuting Zhang, Jinggen Wu, Xumei Zhu, Xiao Liu, and Nenggan Zheng. "AL-Annotator: An Active Learning-based Cervical Cell Annotation System." In 2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2023. http://dx.doi.org/10.1109/icpads60453.2023.00079.
Full textLin, Lu, Wen Xue, Xindian Wei, Wenjun Shen, Cheng Liu, Si Wu, and Hau San Wong. "SCTrans: Multi-scale scRNA-seq Sub-vector Completion Transformer for Gene-selective Cell Type Annotation." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/658.
Full textReports on the topic "Cell Annotation"
Blumwald, Eduardo, and Avi Sadka. Sugar and Acid Homeostasis in Citrus Fruit. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697109.bard.
Full textRabethge, Nico, and Kurt-Georg Ciesinger. KI in der Schmutzwäsche-Sortierung. Kompetenzzentrum Arbeitswelt.Plus, January 2023. http://dx.doi.org/10.55594/wgct6835.
Full text