Academic literature on the topic 'Cdc42 isoformes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cdc42 isoformes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cdc42 isoformes"

1

Ravindran, Priyadarshini, and Andreas W. Püschel. "An isoform-specific function of Cdc42 in regulating mammalian Exo70 during axon formation." Life Science Alliance 6, no. 3 (December 21, 2022): e202201722. http://dx.doi.org/10.26508/lsa.202201722.

Full text
Abstract:
The highly conserved GTPase Cdc42 is an essential regulator of cell polarity and promotes exocytosis through the exocyst complex in budding yeast andDrosophila. In mammals, this function is performed by the closely related GTPase TC10, whereas mammalian Cdc42 does not interact with the exocyst. Axon formation is facilitated by the exocyst complex that tethers vesicles before their fusion to expand the plasma membrane. This function depends on the recruitment of the Exo70 subunit to the plasma membrane. Alternative splicing generates two Cdc42 isoforms that differ in their C-terminal 10 amino acids. Our results identify an isoform-specific function of Cdc42 in neurons. We show that the brain-specific Cdc42b isoform, in contrast to the ubiquitous isoform Cdc42u, can interact with Exo70. Inactivation of Arhgef7 or Cdc42b interferes with the exocytosis of post-Golgi vesicles in the growth cone. Cdc42b regulates exocytosis and axon formation downstream of its activator Arhgef7. Thus, the function of Cdc42 in regulating exocytosis is conserved in mammals but specific to one isoform.
APA, Harvard, Vancouver, ISO, and other styles
2

Jansson, Thomas, Marisol Castillo-Castrejon, Madhulika B. Gupta, Theresa L. Powell, and Fredrick J. Rosario. "Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction." Clinical Science 134, no. 1 (January 2020): 53–70. http://dx.doi.org/10.1042/cs20190794.

Full text
Abstract:
Abstract Intrauterine growth restriction (IUGR) increases the risk for perinatal complications and metabolic and cardiovascular disease later in life. The syncytiotrophoblast (ST) is the transporting epithelium of the human placenta, and decreased expression of amino acid transporter isoforms in the ST plasma membranes is believed to contribute to IUGR. Placental mechanistic target of rapamycin Complex 2 (mTORC2) signaling is inhibited in IUGR and regulates the trafficking of key amino acid transporter (AAT) isoforms to the ST plasma membrane; however, the molecular mechanisms are unknown. Cdc42 and Rac1 are Rho-GTPases that regulate actin-binding proteins, thereby modulating the structure and dynamics of the actin cytoskeleton. We hypothesized that inhibition of mTORC2 decreases AAT expression in the plasma membrane and amino acid uptake in primary human trophoblast (PHT) cells mediated by down-regulation of Cdc42 and Rac1. mTORC2, but not mTORC1, inhibition decreased the Cdc42 and Rac1 expression. Silencing of Cdc42 and Rac1 inhibited the activity of the System L and A transporters and markedly decreased the trafficking of LAT1 (System L isoform) and SNAT2 (System A isoform) to the plasma membrane. mTORC2 inhibition by silencing of rictor failed to decrease AAT following activation of Cdc42/Rac1. Placental Cdc42 and Rac1 protein expression was down-regulated in human IUGR and was positively correlated with placental mTORC2 signaling. In conclusion, mTORC2 regulates AAT trafficking in PHT cells by modulating Cdc42 and Rac1. Placental mTORC2 inhibition in human IUGR may contribute to decreased placental amino acid transfer and reduced fetal growth mediated by down-regulation of Cdc42 and Rac1.
APA, Harvard, Vancouver, ISO, and other styles
3

Kolyada, Alexey Y., Kathleen N. Riley, and Ira M. Herman. "Rho GTPase signaling modulates cell shape and contractile phenotype in an isoactin-specific manner." American Journal of Physiology-Cell Physiology 285, no. 5 (November 2003): C1116—C1121. http://dx.doi.org/10.1152/ajpcell.00177.2003.

Full text
Abstract:
Rho family small GTPases (Rho, Rac, and Cdc42) play an important role in cell motility, adhesion, and cell division by signaling reorganization of the actin cytoskeleton. Here, we report an isoactin-specific, Rho GTPase-dependent signaling cascade in cells simultaneously expressing smooth muscle and nonmuscle actin isoforms. We transfected primary cultures of microvascular pericytes, cells related to vascular smooth muscle cells, with various Rho-related and Rho-specific expression plasmids. Overexpression of dominant positive Rho resulted in the formation of nonmuscle actin-containing stress fibers. At the same time, α-vascular smooth muscle actin (αVSMactin) containing stress fibers were disassembled, resulting in a dramatic reduction in cell size. Rho activation also yielded a disassembly of smooth muscle myosin and nonmuscle myosin from stress fibers. Overexpression of wild-type Rho had similar but less dramatic effects. In contrast, dominant negative Rho and C3 exotransferase or dominant positive Rac and Cdc42 expression failed to alter the actin cytoskeleton in an isoform-specific manner. The loss of smooth muscle contractile protein isoforms in pericyte stress fibers, together with a concomitant decrease in cell size, suggests that Rho activation influences “contractile” phenotype in an isoactin-specific manner. This, in turn, should yield significant alteration in microvascular remodeling during developmental and pathologic angiogenesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Fediuk, Jena, Anurag S. Sikarwar, Nora Nolette, and Shyamala Dakshinamurti. "Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling." American Journal of Physiology-Lung Cellular and Molecular Physiology 307, no. 11 (December 1, 2014): L877—L887. http://dx.doi.org/10.1152/ajplung.00036.2014.

Full text
Abstract:
In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms regulating thromboxane-mediated actin polymerization are potential targets for future PPHN pharmacotherapy.
APA, Harvard, Vancouver, ISO, and other styles
5

Wirth, Alexander, Chen Chen-Wacker, Yao-Wen Wu, Nataliya Gorinski, Mikhail A. Filippov, Ghanshyam Pandey, and Evgeni Ponimaskin. "Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties." Biochemical Journal 456, no. 3 (November 22, 2013): 311–22. http://dx.doi.org/10.1042/bj20130788.

Full text
Abstract:
Here we demonstrated that the brain-specific small GTPase Cdc42-palm can be both palmitoylated and prenylated. We also found that Cdc42-palm is critically involved in the formation of spines in neurons, demonstrating that dual lipidation represents an important regulator of morphogenic signalling.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Rihong, Zhen Guo, Charles Watson, Emily Chen, Rong Kong, Wenxian Wang, and Xuebiao Yao. "Polarized Distribution of IQGAP Proteins in Gastric Parietal Cells and Their Roles in Regulated Epithelial Cell Secretion." Molecular Biology of the Cell 14, no. 3 (March 2003): 1097–108. http://dx.doi.org/10.1091/mbc.e02-07-0425.

Full text
Abstract:
Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Fotiadou, Poppy P., Chiaki Takahashi, Hasan N. Rajabi, and Mark E. Ewen. "Wild-Type NRas and KRas Perform Distinct Functions during Transformation." Molecular and Cellular Biology 27, no. 19 (July 16, 2007): 6742–55. http://dx.doi.org/10.1128/mcb.00234-07.

Full text
Abstract:
ABSTRACT The ras proto-oncogenes, of which there are four isoforms, are molecular switches that function in signal transduction pathways to control cell differentiation, proliferation, and survival. How the Ras isoforms orchestrate cellular processes that affect behavior is poorly understood. Further, why cells express two or more Ras isoforms is unknown. Here, using a genetically defined system, we show that the presence of both wild-type KRas and NRas isoforms is required for transformation because they perform distinct nonoverlapping functions: wild-type NRas regulates adhesion, and KRas coordinates motility. Remarkably, we find that Ras isoforms achieve functional specificity by engaging different signaling pathways to affect the same cellular processes, thereby coordinating cellular outcome. Although we find that signaling from both isoforms intersects in actin and microtubule cytoskeletons, our results suggest that KRas signals through Akt and Cdc42 while NRas signals through Raf and RhoA. Our analyses suggest a previously unappreciated convergence of different Ras isoforms on the dynamics of the processes involved in transformation.
APA, Harvard, Vancouver, ISO, and other styles
8

CARGINALE, Vincenzo, Rosaria SCUDIERO, Clemente CAPASSO, Antonio CAPASSO, Peter KILLE, Guido di PRISCO, and Elio PARISI. "Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels." Biochemical Journal 332, no. 2 (June 1, 1998): 475–81. http://dx.doi.org/10.1042/bj3320475.

Full text
Abstract:
Reverse transcriptase-mediated PCR has been used to isolate two distinct metallothionein (MT) cDNA species from RNA extracted from icefish liver, namely MT-I and MT-II. Northern blot analysis with these cDNA species revealed that significant endogenous levels of MT mRNA were present in liver tissues of normal animals despite the fact that no MT protein could be found accumulating in the same tissue. However, multiple injections of CdCl2 induced high levels of both MT mRNA and MT protein. Sequence analysis of the cDNA species that were present after cadmium injection revealed the presence of both isoforms. Quantification of the MT-I and MT-II transcripts from normal and heavy-metal-treated fish showed an alteration in the ratio of the MT isoform transcripts. Endogenous transcripts consisted mostly of MT-II, whereas the MT-I transcript was preferentially accumulated only in response to the cadmium salt. The protein encoded by each cDNA isoform was isolated from the heavy-metal-treated fish and the availability of the specific MT mRNA for translation was demonstrated by translation in vitro. These results show that: (1) there is a discrepancy between the significant endogenous levels of MT mRNA and the absence of MT protein; (2) the accumulation of MT in icefish liver can be triggered by heavy metals; (3) genes encoding distinct MT isoforms are differentially regulated by heavy metals.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Hung-Hsi, Yu-Chiuan Wang, and Ming-Ji Fann. "Identification and Characterization of the CDK12/Cyclin L1 Complex Involved in Alternative Splicing Regulation." Molecular and Cellular Biology 26, no. 7 (April 1, 2006): 2736–45. http://dx.doi.org/10.1128/mcb.26.7.2736-2745.2006.

Full text
Abstract:
ABSTRACT CrkRS is a Cdc2-related protein kinase that contains an arginine- and serine-rich (SR) domain, a characteristic of the SR protein family of splicing factors, and is proposed to be involved in RNA processing. However, whether it acts together with a cyclin and at which steps it may function to regulate RNA processing are not clear. Here, we report that CrkRS interacts with cyclin L1 and cyclin L2, and thus rename it as the long form of cyclin-dependent kinase 12 (CDK12L). A shorter isoform of CDK12, CDK12S, that differs from CDK12L only at the carboxyl end, was also identified. Both isoforms associate with cyclin L1 through interactions mediated by the kinase domain and the cyclin domain, suggesting a bona fide CDK/cyclin partnership. Furthermore, CDK12 isoforms alter the splicing pattern of an E1a minigene, and the effect is potentiated by the cyclin domain of cyclin L1. When expression of CDK12 isoforms is perturbed by small interfering RNAs, a reversal of the splicing choices is observed. The activity of CDK12 on splicing is counteracted by SF2/ASF and SC35, but not by SRp40, SRp55, and SRp75. Together, our findings indicate that CDK12 and cyclin L1/L2 are cyclin-dependent kinase and cyclin partners and regulate alternative splicing.
APA, Harvard, Vancouver, ISO, and other styles
10

Scalia, Pierluigi, Carmen Merali, Carlos Barrero, Antonio Suma, Vincenzo Carnevale, Salim Merali, and Stephen J. Williams. "Novel Isoform DTX3c Associates with UBE2N-UBA1 and Cdc48/p97 as Part of the EphB4 Degradation Complex Regulated by the Autocrine IGF-II/IRA Signal in Malignant Mesothelioma." International Journal of Molecular Sciences 24, no. 8 (April 17, 2023): 7380. http://dx.doi.org/10.3390/ijms24087380.

Full text
Abstract:
EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein–protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as “DTX3c”), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cdc42 isoformes"

1

Ravichandran, Yamini. "Cdc42 isoforms : localization, functions and regulation." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS405.

Full text
Abstract:
Les mutations sont responsables de diverses pathologies du développement, en particulier chez les patients atteints de maladies rares ou pour lesquels il n’y a pas de diagnostic clinique clair. Cdc42 est une protéine clé pour la polarité cellulaire, une étape cruciale de nombreux processus cellulaires, comme la migration cellulaire, la division cellulaire ou la réponse immunitaire. Les mutations de Cdc42 entrainent une variété de pathologies, par exemple des dérégulations de la croissance ou de la morphologie faciale ainsi que des anomalies immunologiques, hématologiques et du développement neuronal. Les fonctions de Cdc42 reposent en grande partie sur la localisation de cette protéine dans la cellule. La comparaison des différentes formes de Cdc42 et de certaines formes mutantes montrent que les derniers acides aminés de la protéine jouent un rôle clé dans sa localisation et donc dans sa fonction. Nous avons centré notre étude sur l’identification : 1) des acides aminés essentiels à la localisation de la protéine ; et 2) de nouveaux mécanismes de régulation de Cdc42 responsables de sa localisation intracellulaire. Nous avons aussi montré que les deux isoformes jouent des rôles différents au cours de la migration cellulaire. Ce travail devrait nous permettre de mieux comprendre les pathologies liées aux mutations de Cdc42
Mutations in proteins cause diverse developmental disorders, particularly for individuals with rare diseases or for whom a unifying clinical diagnosis is unknown. Cdc42 is one such protein; vital for establishing cell polarity, a crucial step in many biological processes such as cell migration, division and immune responses. Not surprisingly, mutations in Cdc42 cause a range of diseases such as growth dysregulation, facial dysmorphism and neurodevelopmental, immunological, and hematological abnormalities. In vertebrates there are two isoforms of Cdc42. The first being the ubiquitous isoform, has almost exclusively been studied and the role of the second isoform, being the brain isoform, is largely unknown. We have shown that the two isoforms are localized differently in cells. The ubiquitous isoform is mostly found in the cell cytoplasm and at the plasma membrane, while the Brain isoform localizes at the Golgi apparatus and on intracellular vesicles. We have also shown that the two isoforms carry out different functions during cell migration, suggesting that the differences between these two isoforms which only differs by the last 10 amino acids are responsible for their distinct localisation and function. Interestingly, a mutation in the C-ter sequence of Cdc42 ubiquitous isoform alters Cdc42 localisation and causes a generalized pustular psoriasis disease. Two main objectives have been studied in this project 1) the impact of the last amino acids of the protein in Cdc42 localization; and 2) new regulatory mechanisms of Cdc42 responsible for its intracellular localization. These findings will bring a better understanding of pathologies related to Cdc42 mutations
APA, Harvard, Vancouver, ISO, and other styles
2

Fediuk, Jena. "Thromboxane receptor signaling and Rho GTPase activation on actin polymerization and contraction in hypoxic neonatal pulmonary arterial myocytes." Am J Physiol Lung Cell Mol Physiol, 2012. http://hdl.handle.net/1993/23862.

Full text
Abstract:
INTRODUCTION: Persistent Pulmonary Hypertension of the Newborn (PPHN) is defined as the failure of normal circulatory relaxation in the lungs at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. Actin polymerization (APM), regulated by Rho GTPases, stabilizes force generation. We studied basal and thromboxane (TP)-induced APM and contraction in normoxic and hypoxic PA myocytes and rings. We also examined the downstream signaling pathways regulating hypoxia and TP-induced APM, and the role that actin plays in TP receptor internalization. METHODS: Smooth muscle myocytes from 2nd to 6th generation PAs of newborn piglets were cultured and exposed to hypoxia (10% O2) or normoxia (21% O2) for 72 hrs, then challenged with 10-6M TP-agonist U46619. APM was quantified by laser-scanning cytometry and stress fiber isolation. Downstream signaling pathways of TP receptor were studied by immunoprecipitation, Rhotekin-RBD and PAK-PBD affinity precipitation, Western blot, immunofluoresence and ELISA. Isometric force to serial concentrations of U46619 was measured in resistant PAs from PPHN and 3-day control swine. RESULTS: Hypoxia induced 2-fold APM via alpha- and gamma-actin isoforms, which contributed to increase U46619-induced contraction. Hypoxia decreased TP association with G12/13 in favor of Gαq. Basal RhoA and Cdc42 activity increased in hypoxia, while Rac activity decreased. U46619-challenge did not further alter RhoA activity in hypoxic cells, but increased Cdc42 and Rac activity. Hypoxia increased phosphorylation of LIMK and PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia, but increased after U46619 exposure. Jasplakinolide significantly stabilized gamma filaments, increasing force generation; cytochalasin D depolymerized all actin isoforms, which attenuated contractile force. Both actin-modifying agents prevented TP endocytosis in NM, while normalizing TP internalization in HM. CONCLUSIONS: PA myocytes exhibit marked RhoA- and Rac-dependent APM in hypoxia. The additional APM response to U46619 challenge is independent of RhoA, but requires Cdc42 signaling. Hypoxia induces APM in PA myocytes, particularly causing an increase in filamentous alpha- and gamma-actin that contributes to increased U46619-induced force generation, a characteristic of PPHN. Dynamic actin also facilitates internalization of the TP receptor. Determining the mechanism that controls TP-mediated APM maybe beneficial as a potential target for PPHN.
APA, Harvard, Vancouver, ISO, and other styles
3

Kiso, Marina. "Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network." Kyoto University, 2018. http://hdl.handle.net/2433/235980.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cdc42 isoformes"

1

Kiso, Marina, Sunao Tanaka, Masakazu Toi, and Fumiaki Sato. "Abstract 2862: Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiso, Marina, Sunao Tanaka, Masakazu Toi, and Fumiaki Sato. "Abstract 2862: Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography