Academic literature on the topic 'CDC25Mm'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CDC25Mm.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "CDC25Mm"

1

Ferguson, Angela M., Lynn S. White, Peter J. Donovan, and Helen Piwnica-Worms. "Normal Cell Cycle and Checkpoint Responses in Mice and Cells Lacking Cdc25B and Cdc25C Protein Phosphatases." Molecular and Cellular Biology 25, no. 7 (April 1, 2005): 2853–60. http://dx.doi.org/10.1128/mcb.25.7.2853-2860.2005.

Full text
Abstract:
ABSTRACT The Cdc25 family of protein phosphatases positively regulates cell division by activating cyclin-dependent protein kinases (CDKs). In humans and rodents, there are three Cdc25 family members—denoted Cdc25A, Cdc25B, and Cdc25C—that can be distinguished based on their subcellular compartmentalizations, their abundances and/or activities throughout the cell cycle, the CDKs that they target for activation, and whether they are overexpressed in human cancers. In addition, murine forms of Cdc25 exhibit distinct patterns of expression throughout development and in adult tissues. These properties suggest that individual Cdc25 family members contribute distinct biological functions in embryonic and adult cell cycles of mammals. Interestingly, mice with Cdc25C disrupted are healthy, and cells derived from these mice exhibit normal cell cycles and checkpoint responses. Cdc25B − / − mice are also generally normal (although females are sterile), and cells derived from Cdc25B − / − mice have normal cell cycles. Here we report that mice lacking both Cdc25B and Cdc25C are obtained at the expected Mendelian ratios, indicating that Cdc25B and Cdc25C are not required for mouse development or mitotic entry. Furthermore, cell cycles, DNA damage responses, and Cdc25A regulation are normal in cells lacking Cdc25B and Cdc25C. These findings indicate that Cdc25A, or possibly other phosphatases, is able to functionally compensate for the loss of Cdc25B and Cdc25C in mice.
APA, Harvard, Vancouver, ISO, and other styles
2

Lammer, C., S. Wagerer, R. Saffrich, D. Mertens, W. Ansorge, and I. Hoffmann. "The cdc25B phosphatase is essential for the G2/M phase transition in human cells." Journal of Cell Science 111, no. 16 (August 15, 1998): 2445–53. http://dx.doi.org/10.1242/jcs.111.16.2445.

Full text
Abstract:
Cdc25 phosphatases play key roles in cell cycle progression by activating cyclin-dependent kinases. In human cells, cdc25 proteins are encoded by a multigene family, consisting of cdc25A, cdc25B and cdc25C. While cdc25A plays a crucial role at the G1/S phase transition, cdc25C is involved in the dephosphorylation and activation of the mitotic kinase, cdc2/cyclinB. In addition, cdc25C itself is regulated by cdc2/cyclinB which then creates a positive feedback loop that controls entry into mitosis. In this study we show that the activity of cdc25B appears during late S phase and peaks during G2 phase. Both in vitro and in vivo cdc25B is activated through phosphorylation during S-phase. Using a cell duplication, microinjection assay we show that ablation of cdc25B function by specific antibodies blocks cell cycle progression in Hs68 cells by inhibition of entry into mitosis. Cdc25B function neither plays a role in later stages of mitosis nor for the inititation of DNA replication. These results indicate that cdc25B is a mitotic regulator that might act as a ‘starter phosphatase’ to initiate the positive feedback loop at the entry into M phase.
APA, Harvard, Vancouver, ISO, and other styles
3

Cen, H., A. G. Papageorge, W. C. Vass, K. E. Zhang, and D. R. Lowy. "Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor." Molecular and Cellular Biology 13, no. 12 (December 1993): 7718–24. http://dx.doi.org/10.1128/mcb.13.12.7718-7724.1993.

Full text
Abstract:
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.
APA, Harvard, Vancouver, ISO, and other styles
4

Cen, H., A. G. Papageorge, W. C. Vass, K. E. Zhang, and D. R. Lowy. "Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor." Molecular and Cellular Biology 13, no. 12 (December 1993): 7718–24. http://dx.doi.org/10.1128/mcb.13.12.7718.

Full text
Abstract:
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.
APA, Harvard, Vancouver, ISO, and other styles
5

Lindqvist, Arne, Helena Källström, Andreas Lundgren, Emad Barsoum, and Christina Karlsson Rosenthal. "Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1–Cdk1 at the centrosome." Journal of Cell Biology 171, no. 1 (October 10, 2005): 35–45. http://dx.doi.org/10.1083/jcb.200503066.

Full text
Abstract:
Cdc25 phosphatases are essential for the activation of mitotic cyclin–Cdks, but the precise roles of the three mammalian isoforms (A, B, and C) are unclear. Using RNA interference to reduce the expression of each Cdc25 isoform in HeLa and HEK293 cells, we observed that Cdc25A and -B are both needed for mitotic entry, whereas Cdc25C alone cannot induce mitosis. We found that the G2 delay caused by small interfering RNA to Cdc25A or -B was accompanied by reduced activities of both cyclin B1–Cdk1 and cyclin A–Cdk2 complexes and a delayed accumulation of cyclin B1 protein. Further, three-dimensional time-lapse microscopy and quantification of Cdk1 phosphorylation versus cyclin B1 levels in individual cells revealed that Cdc25A and -B exert specific functions in the initiation of mitosis: Cdc25A may play a role in chromatin condensation, whereas Cdc25B specifically activates cyclin B1–Cdk1 on centrosomes.
APA, Harvard, Vancouver, ISO, and other styles
6

Wickramasinghe, D., S. Becker, M. K. Ernst, J. L. Resnick, J. M. Centanni, L. Tessarollo, L. B. Grabel, and P. J. Donovan. "Two CDC25 homologues are differentially expressed during mouse development." Development 121, no. 7 (July 1, 1995): 2047–56. http://dx.doi.org/10.1242/dev.121.7.2047.

Full text
Abstract:
The cdc25 gene product is a tyrosine phosphatase that acts as an initiator of M-phase in eukaryotic cell cycles by activating p34cdc2. Here we describe the cloning and characterization of the developmental expression pattern of two mouse cdc25 homologs. Sequence comparison of the mouse genes with human CDC25 genes reveal that they are most likely the mouse homologs of human CDC25A and CDC25B respectively. Mouse cdc25a, which has not been described previously, shares 84% sequence identity with human CDC25A and has a highly conserved phosphatase domain characteristic of all cdc25 genes. A glutathione-S-transferase-cdc25a fusion protein can hydrolyze para-nitro-phenylphosphate confirming that cdc25a is a phosphatase. In adult mice, cdc25a transcripts are expressed at high levels in the testis and at lower levels in the ovary, particularly in germ cells; a pattern similar to that of twn, a Drosophila homolog of cdc25. Lower levels of transcript are also observed in kidney, liver, heart and muscle, a transcription pattern that partially overlaps, but is distinct from that of cdc25b. Similarly, in the postimplantation embryo cdc25a transcripts are expressed in a pattern that differs from that of cdc25b. cdc25a expression is observed in most developing embryonic organs while cdc25b expression is more restricted. An extended analysis of cdc25a and cdc25b expression in preimplantation embryos has also been carried out. These studies reveal that cdc25b transcripts are expressed in the one-cell embryo, decline at the two-cell stage and are re-expressed at the four-cell stage, following the switch from maternal to zygotic transcription which mirrors the expression of string, another Drosophila homolog of cdc25. In comparison, cdc25a is not expressed in the preimplantation embryo until the late blastocyst stage of development, correlating with the establishment of a more typical G1 phase in the embryonic cell cycles. Both cdc25a and cdc25b transcripts are expressed at high levels in the inner cell mass and the trophectoderm, which proliferate rapidly prior to implantation. These data suggest the cdc25 genes may have distinct roles in regulating the pattern of cell division during mouse embryogensis and gametogenesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Mei-Shya, Jonathan Hurov, Lynn S. White, Terry Woodford-Thomas, and Helen Piwnica-Worms. "Absence of Apparent Phenotype in Mice Lacking Cdc25C Protein Phosphatase." Molecular and Cellular Biology 21, no. 12 (June 15, 2001): 3853–61. http://dx.doi.org/10.1128/mcb.21.12.3853-3861.2001.

Full text
Abstract:
ABSTRACT The Cdc25 family of protein phosphatases positively regulate the cell division cycle by activating cyclin-dependent protein kinases. In humans and rodents, three Cdc25 family members denoted Cdc25A, -B, and -C have been identified. The murine forms of Cdc25 exhibit distinct patterns of expression both during development and in adult mouse tissues. In order to determine unique contributions made by the Cdc25C protein phosphatase to embryonic and adult cell cycles, mice lacking Cdc25C were generated. We report thatCdc25C −/− mice are viable and do not display any obvious abnormalities. Among adult tissues in whichCdc25C is detected, its transcripts are most abundant in testis, followed by thymus, ovary, spleen, and intestine. Mice lackingCdc25C were fertile, indicating that Cdc25Cdoes not contribute an essential function during spermatogenesis or oogenesis in the mouse. T- and B-cell development was also found to be normal in Cdc25C −/− mice, andCdc25C −/− mouse splenic T and B cells exhibited normal proliferative responses in vitro. Finally, the phosphorylation status of Cdc2, the timing of entry into mitosis, and the cellular response to DNA damage were unperturbed in mouse embryo fibroblasts lacking Cdc25C. These findings indicate thatCdc25A and/or Cdc25B may compensate for loss ofCdc25C in the mouse.
APA, Harvard, Vancouver, ISO, and other styles
8

Jacquet, Eric, Soria Baouz, and Andrea Parmeggiani. "Characterization of mammalian C-CDC25Mm exchange factor and kinetic properties of the exchange reaction intermediate p21.cntdot.C-CDC25Mm." Biochemistry 34, no. 38 (September 1995): 12347–54. http://dx.doi.org/10.1021/bi00038a031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhou, Xiaokun, Danping Lu, Wenxiang Yi, and Dan Xu. "Downregulation of CDC25C in NPCs Disturbed Cortical Neurogenesis." International Journal of Molecular Sciences 24, no. 2 (January 12, 2023): 1505. http://dx.doi.org/10.3390/ijms24021505.

Full text
Abstract:
Cell division regulators play a vital role in neural progenitor cell (NPC) proliferation and differentiation. Cell division cycle 25C (CDC25C) is a member of the CDC25 family of phosphatases which positively regulate cell division by activating cyclin-dependent protein kinases (CDKs). However, mice with the Cdc25c gene knocked out were shown to be viable and lacked the apparent phenotype due to genetic compensation by Cdc25a and/or Cdc25b. Here, we investigate the function of Cdc25c in developing rat brains by knocking down Cdc25c in NPCs using in utero electroporation. Our results indicate that Cdc25c plays an essential role in maintaining the proliferative state of NPCs during cortical development. The knockdown of Cdc25c causes early cell cycle exit and the premature differentiation of NPCs. Our study uncovers a novel role of CDC25C in NPC division and cell fate determination. In addition, our study presents a functional approach to studying the role of genes, which elicit genetic compensation with knockout, in cortical neurogenesis by knocking down in vivo.
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Min, Aera Bang, Ok Choi, and Seung Han. "Comparative analysis of two murine CDC25B isoforms." Archives of Biological Sciences 69, no. 1 (2017): 35–44. http://dx.doi.org/10.2298/abs160315062k.

Full text
Abstract:
CDC25B phosphatase plays a pivotal role in the cell cycle process by dephosphorylating and activating the CDC2 kinase of maturation-promoting factor (MPF). In mice, two transcripts of Cdc25B are generated by the alternative splicing of one gene. We compared the properties of these two forms of CDC25B. When the expression pattern of Cdc25B was examined using RT-PCR, both forms were detected in almost all mouse tissues tested. The expression of two forms of the CDC25B protein in various mouse tissues was confirmed using Western blotting with generated isoform specific antibodies. CDC25B1 tends to accumulate more in the cytosol than CDC25B2 does, and they have different binding capacity for 14-3-3 proteins. CDC25B1 was more effective in dephosphorylating in vitro substrate para-nitrophenyl phosphate and showed higher activity in the modified histone H1 kinase assay than CDC25B2. These results suggest that the two forms of CDC25B play different roles in cell cycle regulation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "CDC25Mm"

1

BAOUZ, SORIA. "Caracterisation et regulation de cdc25mm, facteur d'echange gdp/gtp de souris des proteines ras." Paris 6, 1998. http://www.theses.fr/1998PA066404.

Full text
Abstract:
La proteine h-ras p21 est un element essentiel au controle de la division et de la differenciation cellulaire. Elle existe sous deux conformations : l'une inactive liee au gdp, l'autre active liee au gtp. Deux types de regulateurs determinent la concentration de la forme biologiquement active : les gaps (gtpase activating proteins) qui accelerent l'hydrolyse du gtp et les gefs (guanine nucleotides exchange factors) qui stimulent l'echange gdp/gtp. La proteine cdc25mm de souris contenant 1262 acides amines est un gef de la p21 qui est exprime essentiellement dans les cellules neuronales. Son role est lie a des recepteurs membranaires couples a des proteines g heterotrimeriques. Nous nous sommes interesses aux proprietes biochimiques de son domaine catalytique (c-cdc25mm) de 285 acides amines. La purification a homogeneite de ce domaine et du complexe p21 _c-cdc25mm, nous a permis de caracteriser la reaction d'echange. Nous sommes parvenus a purifier la forme entiere de cdc25mm en tant que proteine recombinante exprimee chez e. Coli et nous avons montre, dans un systeme in vitro, que la region amino terminale de la proteine inhibe l'activite du domaine catalytique. Nous avons teste l'effet de la calmoduline et de la calpaine, deux proteines dependantes du calcium, sur l'activite de cdc25mm, suggerant ainsi une connection entre l'activation de la voie ras/cdc25mm et la voie calcique dans la cellule neuronale. L'influence de la gap sur l'activite de cdc25mm a ete etudiee ; ces deux regulateurs ne peuvent pas interagir de facon simultanee avec la forme active de ras. L'activation de cdc25mm in vivo est associee a sa phosphorylation. Afin d'etudier l'effet de ces modifications post-traductionnelles, nous avons identifie des serines/threonines phosphorylees in vitro par la pka, a l'aide de la methode de degradation d'edman ainsi que de la spectrometrie de masse. Ces residus se trouvent regroupes pour la plupart dans une region contenant des sequences pest clivees par la calpaine. Nous avons initie une etude par mutagenese dirigee de cdc25mm en substituant des residus phosphoryles pour evaluer les effets fonctionnels de la phosphorylation.
APA, Harvard, Vancouver, ISO, and other styles
2

METALLI, DAVID. "Development of Cdc25Mn derivatives as anticancer agents." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2009. http://hdl.handle.net/10281/7476.

Full text
Abstract:
Le proteine Ras sono proteine G monomeriche, a basso peso molecolare e dotate di una bassa attività GTPasica intrinseca che svolgono un ruolo chiave nelle vie di trasduzione del segnale coinvolte in processi di crescita e differenziamento cellulare. Ras può funzionare come un vero e proprio interruttore molecolare, trovandosi alternativamente in due stati: uno attivo (legato a GTP) ed uno inattivo (legato a GDP). I passaggi dallo stato attivo a quello inattivo e viceversa possono avvenire spontaneamente, ma la velocità delle due reazioni in questo caso sarebbe molto bassa. Per questo motivo l’attività di Ras è regolata da due classi di proteine. Le proteine GAP (GTPase Activating Protein) sono in grado di catalizzare una più efficiente idrolisi del nucleotide da GTP a GDP, portando all’inattivazione di Ras. I GEF (Guanine nucleotide Exchange Factors), invece, sono in grado di favorire la dissociazione del nucleotide idrolizzato ed il conseguente scambio GDP/GTP, contribuendo alla modulazione positiva del pathway. Varianti mutate dei geni ras sono state identificate con alta incidenza in molteplici forme di patologie tumorali. Per tale ragione le proteine Ras sono considerate target molecolari d’eccellenza nella terapia di disordini proliferativi. Nel nostro laboratorio è stato dimostrato come una singola sostituzione amminoacidica all’interno del GEF Ras-specifico Cdc25Mm sia in grado di convertire lo stesso in una proteina dotata di proprietà dominanti negative, capace di inibire specificamente l’attività di Ras in vitro e di attenuarne il circuito di segnalazione in vivo, diminuendo il potenziale oncogenico di fibroblasti murini trasformati dall’oncogene k- ras. Inoltre, recentemente abbiamo dimostrato come anche singoli peptidi isolati dall’intero GEF (derivati dalle zone recanti le mutazioni puntiformi di cui sopra) mantengano, almeno parzialmente tali proprietà. Scopo della presente tesi è lo sviluppo di peptidi derivati del GEF Cdc25Mm come agenti Ras inibitori e la loro validazione in linee cellulari di tumore alla vescica. Considerato il meccanismo d'azione di tali peptidi, un requisito fondamentale per il loro funzionamento nei modelli cellulari d'interesse è la presenza di una correlazione tra il fenotipo trasformato di quest'ultimi e lo stato di attivazione di Ras. Dal momento che dati di letteratura suggeriscono un coinvolgimento del fattore di crescita IGF-I nelle patologie tumorali della vescica e dato il noto collegamento tra tale fattore di crescita ed il pathway di Ras, abbiamo inizialmente analizzato gli effetti della stimolazione da IGF-I su due linee cellulari derivate da carcinoma alla vescica (5636 e T24). Sorprendentemente tale fattore di crescita non ha evidenziato grandi effetti sul potenziale proliferativo delle linee oggetto di studio, rivelandosi tuttavia estremamente efficace nello stimolare una aumentata motilità cellulare, come evidenziato da saggi di migrazione, invasione e wound-healing. A livello molecolare tali effetti sono accompagnati da un forte innalzamento dei livelli di Ras•GTP e dalla successiva attivazione delle vie di segnalazione a valle di Ras, come MAPK e AKT. La stimolazione da IGF-I è inoltre in grado di determinare la fosforilazione e l'attivazione di Paxillina (una proteina adattatrice nota per il suo importante ruolo nei fenomeni di migrazione cellulare) e la sua colocalizzazione con FAK (Focal Adhesion Kinase) a livello dei punti di adesione focale. Infine, tale attivazione di Paxillina, così come l'aumentata motilità cellulare indotta da IGF-I, risulta essere dipendente, in modo diretto o indiretto, dall'attività di MAPK e AKT. L'utilizzo di inibitori chimici di suddette vie o di siRNA specifici per le suddette chinasi in grado di regolarne negativamente l'espressione è in grado di attenuare infatti gli effetti indotti da IGF-I sia a livello biochimico sia a livello fenotipico. Nel complesso, questi dati evidenziano come il pathway dell'IGF-I sia di fondamentale importanza nella regolazione della motilità in cellule tumorali di vescica, fenomeno strettamente collegato al potenziale metastatico. Questi stessi dati suggeriscono inoltre l'importanza per questi stessi fenomeni di due vie di trasduzione parallele (MAPK e AKT), la cui attivazione potrebbe tuttavia essere guidata da un unico segnale a monte, ovvero l'innalzamento dei livelli di Ras•GTP. Per questo motivo lo sviluppo di molecole Ras inibitorie altamente specifiche, in grado di attenuare il circuito di segnalazione a monte di entrambe le suddette vie, potrebbe risultare di enorme interesse per il trattamento della patologia in esame. Per questo motivo abbiamo esplorato la possibilità di migliorare le proprietà farmacocinetiche e farmacodinamiche dei peptidi derivati da Cdc25Mm e dotati di proprietà Ras sequestranti. Allo scopo di ottenere una migliore veicolabilità in cellula, ad esempio, tali peptidi sono stati ingegnerizzati tramite l'aggiunta della sequenza responsabile delle proprietà auto-penetranti della proteina Tat. Tale sequenza (PTD, Protein-Transduction-Domain, aa 47-57 YGRKKRRQRRR) è costituita prevalentemente da aminoacidi carichi positivamente ed è in grado di veicolare l’internalizzazione di molteplici proteine, fungendo da carrier. Abbiamo innanzitutto dimostrato, tramite saggi di transattivaizone fos-luciferasici, come l'aggiunta di tale dominio non alteri in maniera significativa le proprietà inibitorie dei peptidi di partenza e come tali peptidi siano in grado di essere effettivamente internalizzati da cellule di mammifero (fibroblasti murini NIH3T3) qualora somministrati nel mezzo di coltura. Successivamente la ricerca è proseguita con l'ottenimento di varianti più piccole dei peptidi in oggetto, presumibilmente dotate di migliori proprietà farmacocinetiche e facilmente sintetizzabili a livello industriale. È stato quindi effettuato un design struttura-guidato, sulla base degli elementi di struttura primaria e secondaria maggiormente coinvolti nell’interazione Ras•GEF. Le varianti minimizzate sono state quindi selezionate sulla base delle proprietà Ras inibitorie misurate tramite saggi di transattivazione fos-luciferasici ed i candidati più promettenti ottenuti tramite sintesi chimica. Dato il ruolo cruciale emerso a carico delle vie di trasduzione a valle di Ras nei fenomeni di migrazione ed invasioni stimolati dalla presenza di IGF-I in linee cellulari di vescica, tali peptidi sono stati testati in saggi di migrazione ed invasione nei modelli cellulari caratterizzati precedentemente. Tutti i peptidi Ras inibenti, anche se con intensità diversa, si sono rivelati estremamente attivi nel ridurre l'aumentata motilità indotta da IGF-I delle cellule in esame a concentrazioni sub-μM.
APA, Harvard, Vancouver, ISO, and other styles
3

Thomas, Yann. "Etude de la régulation de la protéolyse de CDC25B1." Montpellier 2, 2009. http://www.theses.fr/2009MON20127.

Full text
Abstract:
Les phosphatases à double spécificité de la famille CDC25 jouent un rôle prépondérant à différents points du cycle cellulaire en activant les complexes CDK/Cyclines. Afin de restreindre l'activation de ces complexes, les CDC25s, au nombre de trois (A, B et C) dans les cellules de mammifères, sont finement régulées au cours du cycle cellulaire tant au niveau de leur activité, de leur localisation que de leur stabilité. La phosphatase CDC25B, en activant initialement le complexe CDK1/Cycline B au niveau des centrosomes, est considérée comme le starter de la mitose. Bien que dégradée par le protéasome, peu d'informations sur la régulation de sa dégradation étaient connues. Le but de ce travail a donc été de caractériser le(s) mécanisme(s) impliqué(s), ainsi que les déterminants moléculaires présents sur CDC25B, régulant sa stabilité au cours du cycle cellulaire. Une étude in cellulo de différents mutants ponctuels de la protéine nous a permis d'identifier le motif DDGFVD comme étant nécessaire à l'interaction de CDC25B avec la protéine F-Box TrCP. La perte de cette interaction entraîne une stabilisation de CDC25B à la transition métaphase-anaphase. Cette stabilisation anormale de CDC25B engendre un retard de sortie de mitose accompagné de défauts cellulaires caractéristiques d'une instabilité génétique accrue et d'une fragmentation du matériel péricentriolaire. Par ailleurs, par vidéomicroscopie nous avons observé que les cellules exprimant le mutant stabilisé de CDC25B présentent des caractéristiques morphologiques différentes des cellules exprimant la protéine sauvage, avec une vitesse de déplacement plus importante. Sachant que la surexpression de CDC25B est détectée dans de nombreux cancers généralement très agressifs, et que, comme nous l'avons montrée, une stabilisation de CDC25B en mitose induit une instabilité génétique, nous pouvons supposer que dans certains cancers cette surexpression pourrait résulter d'un défaut de dégradation de la phosphatase. Aussi, une meilleure compréhension des mécanismes de dégradation de CDC25B permettrait d'envisager le développement d'approches thérapeutiques ayant pour but d'agir sur sa stabilité
CDC25 proteins are highly conserved dual specificity phosphatases that play an essential role by activating the CDK/Cyclin complexes all along the cell cycle. To restrain CDK/Cyclin activities, these phosphatases must be tightly regulated in terms of activity, localization and stability. One of the three mammalian members, CDC25B, is considered as the starter of the mitosis through the activation of CDK1/Cyclin B complexes at the centrosomes, at the G2-M transition. This protein is known to be degraded by the proteasome but the exact mechanisms involved in this process are still unclear. To obtain a deeper insight into the regulation of CDC25B stability, we have investigated the molecular determinants and the exact mechanisms involved in CDC25B degradation in vitro as well as in cellulo. Analysis of various mutants of CDC25B led us to identify the DDGFVD motif as a motif required for the interaction of CDC25B with the F-box protein TrCP. The lack of interaction causes a stabilisation of the phosphatase in metaphase-anaphase transition. This stabilisation entails a delay in mitotic exit and several cellular defects related to genetic instability, and the fragmentation of pericentriolar matrix during mitosis. Videomicroscopy's observations indicate that cells expressing the stabilized mutant of the CDC25B exhibit an increased mobility compared to cells expressing wild type protein. Since CDC25B is frequently overexpressed in many cancers cells and that a stabilisation of the protein entails genetic instability, we propose that in some cancers this overexpression could be a consequence of a lack of CDC25B degradation. A better understanding of mechanisms regulating CDC25B degradation could lead to new therapeutical approaches focused on the control of CDC25B stability
APA, Harvard, Vancouver, ISO, and other styles
4

Scrivens, Paul James. "Regulation and chemotherapeutic targeting of human Cdc25A phosphatase." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103293.

Full text
Abstract:
The Cdc25 phosphatases are highly conserved from yeast through humans and play pivotal roles in regulating the activities of cyclin-dependent kinases (Cdks). Cdc25A is one of three human Cdc25 family members, and has previously been shown to be overexpressed in numerous cancers and to transform rodent fibroblasts. Cdc25A therefore represents a rational target for chemotherapeutic development. Further, a thorough understanding of its biology and regulation in normal and transformed cells may facilitate the development of strategies to specifically interfere with the proliferation of cancerous cells. In this work I describe experiments which demonstrate that bisperoxoVanadium compounds, and specifically bpV(Me2Phen), inhibit Cdc25A phosphatase in vitro and in vivo. Further, these compounds cause cell-cycle arrest, are cytotoxic to cancer cells, and slow the growth of tumours in mouse models. With respect to the fundamental biology of Cdc25A, I have identified a sequence element (NLS) responsible for nuclear localization of Cdc25A phosphatase. An analysis of this sequence demonstrated high conservation of flanking phosphoacceptor sites, notably Serine 292. S292 was predicted to be a consensus PKA or CamKII substrate. Using site-directed mutagenesis I have shown that S292 is the sole site of PKA phosphorylation in vitro. The functional importance of S292 phosphorylation was investigated via transfections of phospho-mimetic mutants of S292 (S292E) expressed as GFP-fusion proteins; these studies indicate that S292 phosphorylation may promote nuclear localization. Studies by other groups have indicated that S292 is a phosphorylation site for inhibitory kinases, namely Chk1 and Chk2 (4). I generated a phospho-specific antibody to this site and demonstrate by immunofluorescence and western blotting an unexpected pattern of S292 phosphorylation associated with nuclear bodies and the mitotic apparatus. I provide evidence to suggest that these sites represent local fine-tuning of Cdc25A, allowing Cdk activity to be controlled at the level of specific subcellular structures. These studies highlight the complexity of Cdc25 regulation and indicate a previously unappreciated degree of control of their activity such that these enzymes exist in multiple discrete pools within a given cell.
APA, Harvard, Vancouver, ISO, and other styles
5

Sayegh, Raphael Santa Rosa. "Flexibilidade conformacional do domínio catalítico da fosfatase Cdc25B." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-22082016-080806/.

Full text
Abstract:
A fosfatase Cdc25B atua na progressão do ciclo celular através da ativação de complexos Cdk/Ciclina. Atualmente, nos modelos estruturais propostos do domínio catalítico da Cdc25B não estão incluídos os últimos 16 resíduos da região C-terminal. Este segmento tem importante papel no reconhecimento do substrato proteico e pode estar envolvido na complexação de pequenas moléculas com a Cdc25B. Assim, o principal objetivo desta tese foi avaliar a flexibilidade conformacional do domínio catalítico completo da Cdc25B em solução através de simulações computacionais e por medidas experimentais de ressonância magnética nuclear (RMN). A similaridade entre as estruturas cristalográficas e em solução foi confirmada pela previsão de ângulos diedrais φ/ψ da cadeia principal a partir dos deslocamentos químicos (CS) e pela concordância entre os acoplamentos dipolares residuais (RDC) medidos e calculados a partir da geometria cristalina. Medidas de parâmetros de relaxação de 15N e RDC evidenciaram a presença de desordem conformacional na região C-terminal, em acordo com a ausência de densidade eletrônica desse segmento no experimento de difração de raios-X. Através da comparação entre CS experimentais e previstos de simulações de dinâmica molecular (DM) longas (total de 6µs de duração) foram apontados artefatos de cristalização, possíveis erros nos campos de força usados nas simulações, falhas na composição do sistema simulado e estados conformacionais populados pela Cdc25B em solução distintos da geometria cristalográfica. De maneira geral, os CS previstos a partir das simulações para a flutuação estrutural dos resíduos da região C-terminal desordenada estão em acordo com os valores experimentais, sugerindo que os estados conformacionais deste segmento foram razoavelmente bem amostrados nas simulações. Em particular, verificou-se que o contato tipo cátion-π entre as cadeias laterais dos resíduos 550W do C-terminal desordenado e 482R do núcleo proteico, ausente na estrutura cristalográfica, pode ser importante em solução. A formação desse contato na simulação de DM também está de acordo com medidas experimentais de perturbação de deslocamentos químicos (CSP) entre construções completa e truncada do domínio catalítico da Cdc25B. Assim, através do uso conjunto de simulações computacionais e medidas experimentais foi possível obter uma representação mais completa e realista da flexibilidade conformacional do domínio catalítico da Cdc25B em solução, incluindo a determinação de possíveis contatos intramoleculares entre a região C-terminal desordenada e o núcleo proteico. Essas informações poderão ser usadas na construção de um ensemble conformacional da Cdc25B.
Cdc25B phosphatase acts on the progression of cell cycle through the activation of Cdk/Cyclin complexes. Currently, the proposed structural models of Cdc25B catalytic domain lack the last 16 residues from the C-terminal region. This segment is important for protein substrate recognition and might be involved in small molecule binding to Cdc25B. Thus, the main goal of this thesis was to evaluate the conformational flexibility of the complete catalytic domain from Cdc25B through computer simulations and experimental nuclear magnetic resonance (NMR) measurements. Similarity between crystal and in solution structures was confirmed by the prediction of backbone φ/ψ dihedral angles from chemical shifts (CS) and by the agreement between observed and back-calculated residual dipolar couplings (RDC). 15N relaxation and RDC measurements pointed to the conformational disorder of the C-terminal region, in agreement with the X-ray diffraction experiment where this segment showed no electronic density. Comparison between experimental and predicted CS from long molecular dynamics (MD) simulations (6µs total running time) pointed to the presence of crystallographic artifacts, possible deficiencies in simulation force fields, inaccurate composition of the simulated system and conformational states visited by Cdc25B in solution that were not observed in the crystallographic geometry. Generally, CS predicted from simulations for the structural fluctuation of the disordered C-terminal region were in agreement with experimental values, suggesting that the simulations sampled the conformational states populated by this segment reasonably well. In particular, a cation-π contact not observed in the crystal structure between side chains of residue 550W from the disordered C-terminal tail and residue 482R from the protein core might be important in solution. This contact is also in agreement with experimental chemical shift perturbations (CSP) measured between complete and truncated constructs of Cdc25B catalytic domain. Therefore, the joint use of computer simulations and experimental measurements allowed the achievement of a more complete and realistic representation of the conformational flexibility of the Cdc25B catalytic domain in solution, including intramolecular contacts between the disordered C-terminal region and the protein core. This information might be used to obtain a conformational ensemble of Cdc25B.
APA, Harvard, Vancouver, ISO, and other styles
6

Theis-Febvre, Nathalie. "REGULATION DE L'ACTIVITE ET DE LA LOCALISATION DES PHOSPHATASES CDC25B." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00010054.

Full text
Abstract:
L'activation séquentielle des Kinases Dépendantes des Cyclines (CDK), associées à leur sous-unité régulatrice la cycline, contrôle la progression des cellules eucaryotes dans le cycle cellulaire. L'activité des complexes CDK/cycline est notamment régulée par une balance entre phosphorylation inhibitrice (Wee, Myt) et déphosphorylation activatrice par les phosphatases CDC25. Dans les cellules humaines, trois phosphatases à double spécificité CDC25A, B et C sont impliquées dans la régulation de ces complexes en différents points du cycle cellulaire. CDC25A agit à la transition G1/S alors que CDC25C contrôle l'entrée en mitose. Par contre, CDC25B agirait en phase S ainsi qu'à la transition G2/M. L'existence de trois variants de CDC25B (B1, B2 et B3) issus d'un épissage alternatif pourrait expliquer cette controverse. Afin d'étudier les rôles et les implications de chaque variant de CDC25B, nous avons d'abord étudié leur régulation par la protéine kinase CK2, kinase qui pourrait jouer un rôle dans le contrôle de la transition G2/M. Nos études in vitro ont démontré que CK2 phosphoryle les trois variants de CDC25B mais pas la protéine CDC25C. Une analyse par spectrométrie de masse de CDC25B indique qu'au moins deux résidus, les sérines 186 et 187, sont phosphorylés in vitro par CK2. De plus, CDC25B interagit avec CK2 in vitro et in vivo dans des cellules humaines et d'insectes. Enfin, la phosphorylation de CDC25B par CK2 augmente son activité phosphatase in vitro ainsi qu'in vivo. CK2 est donc un régulateur positif de l'activité catalytique des CDC25B. Au cours du cycle cellulaire ou en réponse aux points de contrôle, CDC25B est également régulée au niveau de sa localisation intracellulaire. En effet, la phosphatase réalise une navette entre le cytoplasme et le noyau, navette qui peut être régulée notamment par phosphorylation. Nous avons montré que la protéine kinase AKT/PKB phosphoryle in vitro CDC25B sur la sérine 353 et qu'elle provoque son accumulation dans le cytoplasme. L'activation d'AKT/PKB par le peroxyde d'hydrogène reproduit la relocalisation de CDC25B. Par contre, si la mutation de la sérine 353 abolit sa phosphorylation par AKT/PKB, elle n'induit qu'un retard dans la relocalisation cytoplasmique de CDC25B ce qui indique que d'autres mécanismes participent à ce phénomène. Ainsi nos différents travaux ont permis d'identifier deux nouveaux régulateurs de CDC25B, CK2 qui régule son activité catalytique et AKT/PKB qui participe au contrôle de sa localisation intracellulaire, et nous permettent de mieux comprendre la régulation de cette phosphatase même si de nombreux partenaires doivent encore être identifiés.
APA, Harvard, Vancouver, ISO, and other styles
7

Akhtar, Nazia. "Structural & biochemical characterisation of Cdc25C : a dual specificity phosphatase." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5602/.

Full text
Abstract:
The dual specificity Cdc25 phosphatases regulate mitosis and are expressed in eukaryotes. Cdc25 phosphatases have an active site motif, HCX5R, in common with other phosphatases. However, unlike the classical tyrosine phosphatases, they can dephosphorylate phospho-threonine in addition to phospho-tyrosine and have a much shallower active site. Increased expression of Cdc25 is correlated with poor prognosis in a range of cancers. In particular, increased expression of Cdc25C has been associated with prostate cancer making this protein an attractive target for drug discovery. However, drug discovery for these proteins has been hampered due to the shallow nature of the active site, difficulty in identifying specific inhibitors and toxicity. The thesis aim was to structurally and biochemically characterize Cdc25C using a range of techniques which include NMR, SAXS and X-ray crystallography in order to aid future drug design. The Characterisation of the Cdc25C full length revealed the regulatory domain to be intrinsically disordered and flexible. Construct and solution conditions were optimised to improve the solubility of the Cdc25C catalytic domain. Although, the \(^1\)H, \(^1\)\(^5\)N HSQC was well dispersed backbone assignments proved to be refractory. From a panel of inhibitors tested a few were shown to bind via WaterLOGSY and \(^1\)H-\(^1\)\(^5\)N HSQC.
APA, Harvard, Vancouver, ISO, and other styles
8

Morris, May Catherine. "Régulation de la phosphatase double spécificité cdc25C humaine par phosphorylation." Montpellier 1, 1997. http://www.theses.fr/1997MON1T021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vidal-Fernandez, Anne. "Rôle et régulations de la phosphatase CDC25A dans les hémopathies malignes." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/412/.

Full text
Abstract:
La phosphatase CDC25A active les complexes CDK/Cycline permettant la progression à travers le cycle cellulaire eucaryote. Cette phosphatase agit lors de la phase G1 et en transition G1/S en activant les complexes CDK2/Cycline E et CDK2/Cycline A, et a aussi été décrite comme un régulateur de la mitose à travers la déphosphorylation du complexe CDK1/Cycline B. De manière importante, CDC25A est retrouvée sur-exprimée dans de nombreux cancers. Cependant, les mécanismes moléculaires conduisant à sa sur-expression ne sont pas encore clairement identifiés. Nous avons recherché l'implication de CDC25A dans la prolifération des cellules de leucémies aiguës myéloïdes (LAM) en réponse à l'adhésion sur une matrice extracellulaire de fibronectine. Nous avons constaté une augmentation de la prolifération de ces cellules, concomitante avec une entrée en phase S accélérée, ainsi qu'avec l'augmentation du niveau d'expression de CDC25A. A l'inverse, la prolifération de cellules hématopoïétiques normales CD34+ est inhibée par leur adhésion sur fibronectine, et le niveau d'expression de CDC25A y est fortement diminué, suggérant que la réponse en terme de prolifération dépendante de l'adhésion est modifiée lors du processus de leucémogénèse. .
The CDC25A phosphatase activates cyclin-dependent kinase complexes, allowing timely ordered progression throughout the eukaryotic cell cycle. This phosphatase acts during the G1 phase and at the G1/S transition by activating the CDK2/cyclin E and CDK2/cyclin A complexes, and was also described as a mitotic regulator through dephosphorylation of the Cyclin B/CDK1 complex. Importantly, CDC25A is up-regulated in various cancers, and the molecular mechanisms leading to this up-regulation are far from being understood. First, we investigated the implication of CDC25A in adhesion-dependent proliferation of acute myeloid leukemia cells (AML). We observed an increased rate of proliferation of AML cells when adhered to fibronectin, concomitant with accelerated S phase entry and accumulation of CDC25A, in contrast to normal CD34+ cells, in which both CDC25A level and cell proliferation were decreased upon adhesion to fibronectine. Importantly, both CDC25A siRNA and a CDC25s pharmacological inhibitor impaired this adhesion-dependent proliferation. The PI3-Kinase/AKT pathway appears to be a major regulator of CDC25A stability in this system. These data suggest that the adhesion-dependent proliferation properties of hematopoïetic cells may be modified during leukemogenesis. We then investigated the status of CDC25A in other hematological malignancies such as Anaplastic Large Cell Lymphomas (ALCL) expressing the NPM-ALK oncogene, Chronic Myeloid Leukemia induced by the fusion protein BCR-ABL and AML expressing a mutated form of FLT3-receptor : FLT3-ITD. In these three models, CDC25A protein levels are abnormally increased by the presence of theses oncogenes and the PI3-Kinase pathway is also essential for this process. .
APA, Harvard, Vancouver, ISO, and other styles
10

Manzanedo, Lopez Ana. "Élaboration et caractérisation de peptides inhibiteurs de l'interaction cycline B-cdc25C." Montpellier 2, 2005. http://www.theses.fr/2005MON20196.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "CDC25Mm"

1

Chen, Luping. Murine CDC25-related proteins: Activators of Ras. Ottawa: National Library of Canada, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Identification of murine Cdc25 homologues expressed in the mitotic and meiotic cell cyles during gametogenesis and examination of their potential functions. 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "CDC25Mm"

1

van Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis, et al. "CDC25Mm." In Encyclopedia of Signaling Molecules, 364. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis, et al. "CDC25L." In Encyclopedia of Signaling Molecules, 364. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

van Roy, Frans, Volker Nimmrich, Anton Bespalov, Achim Möller, Hiromitsu Hara, Jacob P. Turowec, Nicole A. St. Denis, et al. "CDC25." In Encyclopedia of Signaling Molecules, 364. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0461-4_100219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gabrielli, Brian, and Andrew Burgess. "Cdc25 Family Phosphatases in Cancer." In Protein Tyrosine Phosphatases in Cancer, 283–306. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3649-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rudolph, Johannes. "Targeting Cdc25 Phosphatases in Cancer Therapy." In Checkpoint Controls and Targets in Cancer Therapy, 261–69. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-178-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nilsson, Ida, and Ingrid Hoffmann. "Cell cycle regulation by the Cdc25 phosphatase family." In Progress in Cell Cycle Research, 107–14. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4253-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alphey, Luke, Helen White-Cooper, and David Glover. "The Meiotic Role of twine, A Drosophila Homologue of cdc25." In The Cell Cycle, 51–57. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2421-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sturani, E., R. Zippel, E. Martegani, M. Vanoni, C. Ferrari, P. Coccetti, and L. Alberghina. "Further Characterization of CDC25 Mm , a Mammalian Activator of p21ras." In Molecular Oncology and Clinical Applications, 147–51. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-5663-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jessus, Catherine, and René Ozon. "Function and regulation of cdc25 protein phosphatase through mitosis and meiosis." In Progress in Cell Cycle Research, 215–28. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1809-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Girard, Franck, Anne Fernandez, and Ned Lamb. "cdc25 protein phosphatase in mammalian fibroblasts: cell cycle expression and intracellular localization." In Tyrosine Phosphorylation/Dephosphorylation and Downstream Signalling, 347–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-78247-3_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "CDC25Mm"

1

Shen, Tao, Hongyu Zhou, and Shile Huang. "Abstract 3810: Ciclopirox olamine downregulates Cdc25A expression in tumor cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramadan, Stephanie, and Khaled Machaca. "Optimizing The Expression And Purification Of Eukaryotic Cdc25c In E. Coli." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2014. http://dx.doi.org/10.5339/qfarc.2014.hbpp0065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yoshimi, Akihide, Takashi Toya, Masahito Kawazu, Toshihide Ueno, Ayato Tsukamoto, Hiromitsu Iizuka, Masahiro Nakagawa, et al. "Abstract 3439: Recurrent CDC25C mutations drive malignant transformation in FPD/AML." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Caleb C., and James Manfredi. "Abstract 5094: Investigating the role of CDC25B in inhibition of cellular proliferation." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Caleb C., and James Manfredi. "Abstract 3774: Investigating the role of CDC25B in inhibition of cellular proliferation." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brunetto, Emanuela, Anna Talarico, Francesca Rampoldi, Elena Dal Cin, Greta Grassini, Isabella Sassi, Mattia Barbareschi, Lorenza Pecciarini, Claudio Doglioni, and Maria Giulia Cangi. "Abstract 3147: HER2 gene amplification and CDC25A overexpression in human breast cancer." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Caleb C., and James Manfredi. "Abstract 574: Investigating the role of CDC25B in inhibition of cellular proliferation." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Dongping, Leslie A. Parsels, Mary A. Davis, Lili Zhao, Jonathan Maybaum, Theodore S. Lawrence, Yi Sun, and Meredith A. Morgan. "Abstract 1582: Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancer cells by modulation of CDC25C." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-1582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takehito Azuma, Hisao Moriya, Hayato Matsumuro, and Hiroaki Kitano. "A robustness analysis of eukaryotic cell cycle concerning Cdc25 and wee1 proteins." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Azuma, Takehito, Hisao Moriya, Hayato Matsumuro, and Hiroaki Kitano. "A Robustness Analysis of Eukaryotic Cell Cycle concerning Cdc25 and Wee1 Proteins." In 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286135.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "CDC25Mm"

1

Kiyokawa, Hiroaki. Role of CDC25A in Breast Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada415692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manfredi, James J. Role of Cdc25C Phosphatases in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, March 2006. http://dx.doi.org/10.21236/ada472361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manfredi, James J. Role of Cdc25C Phosphatases in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada474891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galaktionov, Konstantin I. Role of cdc25 Phosphatases in Cellular Immortalization. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada369304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Galaktionov, Konstantin. Role of cdc25 Phosphatases in Cellular Immortalization. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada391626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Manfredi, James J. Role of cdc25 Phosphatases in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2007. http://dx.doi.org/10.21236/ada484236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Manfredi, James J. Role of cdc25 Phosphatases in Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada487929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography