Academic literature on the topic 'CD30+/CD30L T cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'CD30+/CD30L T cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "CD30+/CD30L T cell"
Younes, A., U. Consoli, V. Snell, K. Clodi, K. O. Kliche, J. L. Palmer, H. J. Gruss, et al. "CD30 ligand in lymphoma patients with CD30+ tumors." Journal of Clinical Oncology 15, no. 11 (November 1997): 3355–62. http://dx.doi.org/10.1200/jco.1997.15.11.3355.
Full textWillis, Cynthia R., Yi-Ling Hu, Anh Leith, and James B. Rottman. "CD30 / CD30L interactions promote class-switched antibody responses to T-dependent antigens (34.3)." Journal of Immunology 182, no. 1_Supplement (April 1, 2009): 34.3. http://dx.doi.org/10.4049/jimmunol.182.supp.34.3.
Full textMori, M., C. Manuelli, N. Pimpinelli, C. Mavilia, E. Maggi, M. Santucci, B. Bianchi, P. Cappugi, B. Giannotti, and M. E. Kadin. "CD30-CD30 Ligand Interaction in Primary Cutaneous CD30+T-Cell Lymphomas: A Clue to the Pathophysiology of Clinical Regression." Blood 94, no. 9 (November 1, 1999): 3077–83. http://dx.doi.org/10.1182/blood.v94.9.3077.
Full textMori, M., C. Manuelli, N. Pimpinelli, C. Mavilia, E. Maggi, M. Santucci, B. Bianchi, P. Cappugi, B. Giannotti, and M. E. Kadin. "CD30-CD30 Ligand Interaction in Primary Cutaneous CD30+T-Cell Lymphomas: A Clue to the Pathophysiology of Clinical Regression." Blood 94, no. 9 (November 1, 1999): 3077–83. http://dx.doi.org/10.1182/blood.v94.9.3077.421k28_3077_3083.
Full textBarbieri, Alessandro, Marzia Dolcino, Elisa Tinazzi, Antonella Rigo, Giuseppe Argentino, Giuseppe Patuzzo, Andrea Ottria, Ruggero Beri, Antonio Puccetti, and Claudio Lunardi. "Characterization of CD30/CD30L+Cells in Peripheral Blood and Synovial Fluid of Patients with Rheumatoid Arthritis." Journal of Immunology Research 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/729654.
Full textRomagnani, Paola, Francesco Annunziato, Roberto Manetti, Carmelo Mavilia, Laura Lasagni, Cinzia Manuelli, Gabriella B. Vannelli, et al. "High CD30 Ligand Expression by Epithelial Cells and Hassal's Corpuscles in the Medulla of Human Thymus." Blood 91, no. 9 (May 1, 1998): 3323–32. http://dx.doi.org/10.1182/blood.v91.9.3323.
Full textRomagnani, Paola, Francesco Annunziato, Roberto Manetti, Carmelo Mavilia, Laura Lasagni, Cinzia Manuelli, Gabriella B. Vannelli, et al. "High CD30 Ligand Expression by Epithelial Cells and Hassal's Corpuscles in the Medulla of Human Thymus." Blood 91, no. 9 (May 1, 1998): 3323–32. http://dx.doi.org/10.1182/blood.v91.9.3323.3323_3323_3332.
Full textRottman, James B., Yi-Ling Hu, and Cynthia Willis. "Blockade of the CD30/CD30L pathway inhibits renal disease in young, SLE-prone NZB/W F1 mice (50.41)." Journal of Immunology 182, no. 1_Supplement (April 1, 2009): 50.41. http://dx.doi.org/10.4049/jimmunol.182.supp.50.41.
Full textGattei, Valter, Massimo Degan, Annunziata Gloghini, Angela De Iuliis, Salvatore Improta, Francesca Maria Rossi, Donatella Aldinucci, et al. "CD30 Ligand Is Frequently Expressed in Human Hematopoietic Malignancies of Myeloid and Lymphoid Origin." Blood 89, no. 6 (March 15, 1997): 2048–59. http://dx.doi.org/10.1182/blood.v89.6.2048.
Full textWiley, S. R., R. G. Goodwin, and C. A. Smith. "Reverse signaling via CD30 ligand." Journal of Immunology 157, no. 8 (October 15, 1996): 3635–39. http://dx.doi.org/10.4049/jimmunol.157.8.3635.
Full textDissertations / Theses on the topic "CD30+/CD30L T cell"
Hirano, Ayumi. "T dependent B cell help in cattle : immunoregulatory function of interleukin-4 and CD40-CD40L interactions /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9841150.
Full textSchubert, Lisa Ann. "Characterization of the transcriptional regulation of the human CD40L gene in CD4 T cells /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8325.
Full textFischer, Marie. "Mast cells in Hodgkin lymphoma : or 'What's a nice cell like you doing in a tumour like this?'." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4620.
Full textHarlin, Helena. "TRAF4 and CD30/TRAF2 in normal T cell function /." 2001. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3019923.
Full textBoyle, Julia Katrina. "The role of CD30 in the regulation of T cell function." Thesis, 2003. http://hdl.handle.net/2429/14546.
Full textChen, Jui-Chieh, and 陳瑞傑. "The inhibition of T cell proliferation by CD30 expression on the Hodgkin’s cancer cell." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/49838763617401022976.
Full text國立臺灣大學
生物化學暨分子生物學研究所
91
英文摘要 Hodgkin''s disease is a type of malignant lymphoma, characterized by the presence of abnormal cells, named Reed-Sternberg cells, in patient’s lymph nodes. CD30 was originally described as a marker of Hodgkin/Reed-Sternberg cells. CD30 and its cognate ligand, CD153, belong to members of the TNFR and TNF superfamilies, respectively. CD30 is expressed on the surface of Hodgkin/Reed-Sternberg (H-RS) cell lines (KM-H2), while expression of CD153 can be induced on the surface of peripheral blood T cells by anti-CD3 or PHA activation. In this study, we addressed the effect of CD30 reverse signaling on T cells. By co-cultures of KM-H2 and PBMC activated by anti-CD3 or PHA, we observed T cell proliferation was inhibited. The inhibition was not dependent on cytokines or substances released from KM-H2, because KM-H2 cells were fixed with paraformaldehyde before the co-culture. We further study the effect of CD30 on T cell proliferation with CD30-expressing Chinese Hamster Ovary (CHO) cells to. In the presence of CD30-positive CHO cells, PHA-treated PBMC failed to achieve significant proliferation. Similar effects were observed if PHA-treated PBMC were cultured in the medium containing chimeric CD30-Fc fusion proteins. Taken together, we discover the inhibitory effect of CD30 reverse signaling on CD153-positive T cells. Furthermore, in order to characterize the protein expression profile in response to CD30 reverse signaling, proteomic technology was used. Several candidate spots were found to be likely regulated by CD30 engagement. One of these spots was identified as Mn-SOD by the use of MALDI-TOF MS. We conclude that H-RS cells are able to inhibit the proliferation of activated T cells through the CD30-CD153 interaction, which may lead to a microenvironment in favor of the growth and survival of the tumor cells.
Snell, Laura Margaret Lucette. "The Role of TNFR Family Members GITR and CD30 on CD8 T Cell Responses." Thesis, 2012. http://hdl.handle.net/1807/36299.
Full text"THE CRITICAL ROLE OF CD4+ TH CELLS IN CD8+ CTL RESPONSES AND ANTI-TUMOR IMMUNITY." Thesis, 2012. http://hdl.handle.net/10388/ETD-2012-04-424.
Full textBook chapters on the topic "CD30+/CD30L T cell"
Kadin, Marshall E., and Francine Foss. "Primary Cutaneous and Systemic CD30+ T-cell Lymphoproliferative Disorders." In T-Cell Lymphomas, 71–86. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-170-7_5.
Full textKaudewitz, Peter, Iannis Anagnostopoulos, Michael Hummel, and Harald Stein. "HTLV-1 Proviral Sequences in Cutaneous CD30-Positive T Large Cell Lymphomas." In Basic Mechanisms of Physiologic and Aberrant Lymphoproliferation in the Skin, 195–204. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-1861-7_14.
Full textKazlouskaya, V., J. Ho, and O. E. Akilov. "Case 42. Primary cutaneous CD30 T-cell posttransplant lymphoproliferative disorder with δ expression." In Cutaneous Lymphomas, 98–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59129-8_42.
Full textWood, G. S., J. W. Gould, and A. C. Gilliam. "Primary cutaneous CD30+ large-cell lymphoma with natural killer-cell phenotype and the t(2;5) translocation." In Cutaneous Lymphomas, 40–41. Heidelberg: Steinkopff, 2001. http://dx.doi.org/10.1007/978-3-642-57624-9_20.
Full text"CD30+ cutaneous large T-cell lymphoma." In Dermatology Therapy, 120. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/3-540-29668-9_525.
Full textKadin, Marshall E. "Primary Cutaneous CD30-Positive T-Cell Lymphoproliferative Disorders." In Hematopathology, 604–16. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-7216-0040-6.00039-3.
Full text"Cd30-Positive Lymphoproliferative Disorders Including Lymphomatoid Papulosis, Borderline Cd30-Positive Lymphoproliferative Disease, Anaplastic Large Cell Lymphoma, and T-Cell-Rich Cd30-Positive Large B Cell Lymphoma." In The Cutaneous Lymphoid Proliferations, 274–311. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118776193.ch13.
Full text"Cd30þ T-cell Lymphoproliferative Disorders Of The Skin." In Cutaneous Lymphomas, 193–210. CRC Press, 2005. http://dx.doi.org/10.1201/9780849346033-33.
Full textConference papers on the topic "CD30+/CD30L T cell"
Rana, Seema, and Rajiv Tangri. "Anaplastic large cell lymphoma ALK negative vs. peripheral T cell lymphoma (NOS) - diagnostic dilemma." In 16th Annual International Conference RGCON. Thieme Medical and Scientific Publishers Private Ltd., 2016. http://dx.doi.org/10.1055/s-0039-1685354.
Full textWu, Yang, Dan Chen, Rong Ma, Jun-ying Zhang, Yuan Zhang, Hai-xia Cao, Zhuo Wang, et al. "Abstract 1444: The new therapy strategy for treatment of peripheral T cell lymphomas: CD30-targeted CAR-modified T cell therapy." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1444.
Full textWu, Yang, Dan Chen, Rong Ma, Jun-ying Zhang, Yuan Zhang, Hai-xia Cao, Zhuo Wang, et al. "Abstract 1444: The new therapy strategy for treatment of peripheral T cell lymphomas: CD30-targeted CAR-modified T cell therapy." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1444.
Full textCaires, Elisana Maria Santos, Régis Resende Paulinelli, Miliana Tostes Lucatto, Eneida Ribeiro Marinho, and Henrique Moura de Paula. "BREAST IMPLANT–ASSOCIATED ANAPLASTIC LARGE CELL LYMPHOMA (BIA-ALCL): A CASE REPORT WITH ATYPICAL SYMPTOMS." In Abstracts from the Brazilian Breast Cancer Symposium - BBCS 2021. Mastology, 2021. http://dx.doi.org/10.29289/259453942021v31s2096.
Full textEscribà-Garcia, Laura, Carmen Alvarez-Fernández, Ana Carolina Caballero, Rydzek Julian, Einsele Hermann, Jorge Sierra, Michael Hudecek, and Javier Briones. "Abstract A028: Memory stem T-cells expressing an optimized CD30-specific chimeric antigen receptor (CAR) efficiently eradicate peripheral T-cell lymphoma in vivo." In Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr18-a028.
Full textCho, Hyun-Il, Chung-Hyo Kang, Sang-Eun Lee, In-Sil Song, Jung-Min Ha, Hyun-Jung Sohn, and Tai-Gyu Kim. "250 Chimeric antigen receptors containing CD30-derived costimulatory domain elicit augmented T cell effector functions and anti-tumor efficacy." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0250.
Full textHeiser, Ryan A., Bryan M. Grogan, Luke S. Manlove, and Shyra J. Gardai. "Abstract 1789: CD30+T regulatory cells, but not CD30+CD8 T cells, are impaired following brentuximab vedotin treatment in vitro and in vivo." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1789.
Full textKua, Lindsay, Chee Hoe Ng, Jin Wei Tan, Richard Ong, Cheah Chen Seh, Fiona Wong, Don Sim, Ivan David Horak, Lionel Low, and Kar Wai Tan. "240 Humanized CD30 chimeric antigen receptor T cells with a novel 4–1BB derived spacer have improved activity and safety against CD30-positive lymphomas." In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0240.
Full textMerz, Christian, Jaromir Sykora, Viola Marschall, David M. Richards, Meinolf Thiemann, Harald Fricke, Oliver Hill, and Christian Gieffers. "Abstract 1760: The hexavalent CD40 agonist HERA-CD40L augments multi-level crosstalk between T cells and antigen-presenting cells." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1760.
Full textKim, Hyemin, Yejin Kim, Jiwon Choi, Mirim Jang, Jiyea Choi, Young-il Hwang, Jae Seung Kang, and Wang Jae Lee. "Abstract 4074: Direct interaction of CD40 on tumor cell with CD40L on T cells increases the proliferation of tumor cells via the enhancement of TGF-b production and Th17 differentiation." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4074.
Full text