Academic literature on the topic 'Cavity ring-down spectrometer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cavity ring-down spectrometer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cavity ring-down spectrometer"

1

Gatti, Davide, Tommaso Sala, Riccardo Gotti, Lorenzo Cocola, Luca Poletto, Marco Prevedelli, Paolo Laporta, and Marco Marangoni. "Comb-locked cavity ring-down spectrometer." Journal of Chemical Physics 142, no. 7 (February 21, 2015): 074201. http://dx.doi.org/10.1063/1.4907939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Engeln, Richard, and Gerard Meijer. "A Fourier transform cavity ring down spectrometer." Review of Scientific Instruments 67, no. 8 (August 1996): 2708–13. http://dx.doi.org/10.1063/1.1147092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tan, Zhongqi, and Xingwu Long. "A Developed Optical-Feedback Cavity Ring-Down Spectrometer and its Application." Applied Spectroscopy 66, no. 5 (May 2012): 492–95. http://dx.doi.org/10.1366/11-06291.

Full text
Abstract:
A developed spectrometer based on optical-feedback cavity ring-down spectroscopy (OF-CRDS) has been demonstrated with a distributed feedback laser diode and a V-shaped glass ceramic cavity. The laser is coupled to the V-shaped cavity, which creates an absorption path length greater than 2.8 km, and resonance between the laser frequency and the cavity modes is realized by modulating the cavity length instead of tuning the laser wavelength to obtain a higher resolution. A noise-equivalent absorption coefficient of ∼2.6 × 10−8 cm−1Hz−1/2 (1σ) is determined with spectral resolution of ∼0.003 cm−1 and spectral range of 1.2 cm−1. As an application example, the absorption spectrum measurement of water vapor in the spectral range of 6590.3∼6591.5 cm−1 is demonstrated with this spectrometer.
APA, Harvard, Vancouver, ISO, and other styles
4

Cygan, A., D. Lisak, P. Masłowski, K. Bielska, S. Wójtewicz, J. Domysławska, R. S. Trawiński, R. Ciuryło, H. Abe, and J. T. Hodges. "Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer." Review of Scientific Instruments 82, no. 6 (June 2011): 063107. http://dx.doi.org/10.1063/1.3595680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, H., Z. D. Reed, V. T. Sironneau, and J. T. Hodges. "Cavity ring-down spectrometer for high-fidelity molecular absorption measurements." Journal of Quantitative Spectroscopy and Radiative Transfer 161 (August 2015): 11–20. http://dx.doi.org/10.1016/j.jqsrt.2015.03.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hodges, Joseph T., and Roman Ciuryło. "Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer." Review of Scientific Instruments 76, no. 2 (February 2005): 023112. http://dx.doi.org/10.1063/1.1850633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stowasser, C., A. D. Farinas, J. Ware, D. W. Wistisen, C. Rella, E. Wahl, E. Crosson, and T. Blunier. "A low-volume cavity ring-down spectrometer for sample-limited applications." Applied Physics B 116, no. 2 (May 28, 2014): 255–70. http://dx.doi.org/10.1007/s00340-013-5528-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Bing, Jin Wang, Yu R. Sun, Peng Kang, An-wen Liu, Jian-ying Li, Xiao-lei He, and Shui-ming Hu. "Broad-Range Detection of Water Vapor using Cavity Ring-down Spectrometer." Chinese Journal of Chemical Physics 28, no. 4 (August 27, 2015): 440–44. http://dx.doi.org/10.1063/1674-0068/28/cjcp1507160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Johnson, Jennifer E., and Chris W. Rella. "Effects of variation in background mixing ratios of N<sub>2</sub>, O<sub>2</sub>, and Ar on the measurement of <i>δ</i><sup>18</sup>O–H<sub>2</sub>O and <i>δ</i><sup>2</sup>H–H<sub>2</sub>O values by cavity ring-down spectroscopy." Atmospheric Measurement Techniques 10, no. 8 (August 24, 2017): 3073–91. http://dx.doi.org/10.5194/amt-10-3073-2017.

Full text
Abstract:
Abstract. Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Vogel, F. R., L. Huang, D. Ernst, L. Giroux, S. Racki, and D. E. J. Worthy. "Evaluation of a cavity ring-down spectrometer for in-situ observations of <sup>13</sup>CO<sub>2</sub>." Atmospheric Measurement Techniques Discussions 5, no. 4 (August 23, 2012): 6037–58. http://dx.doi.org/10.5194/amtd-5-6037-2012.

Full text
Abstract:
Abstract. With the emergence of wide-spread application of cavity ring-down spectrometers (CRDS) to monitor δ13C in atmospheric CO2 there is a growing need to ensure well calibrated measurements. We characterized a cavity ring-down spectrometer system used for continuous in-situ monitoring of atmospheric 13CO2. We found no concentration dependency of the δ13C ratio within the range of 303–437 ppm. We designed a calibration scheme according to the diagnosed instrumental drifts and established a quality assurance protocol. We find that the repeatability of 10 min measurements is 0.25‰ and 0.15‰ for 20 min integrated averages. We found the cross-sensitivity to C4 in the samples to be 0.42 ± 0.02‰ ppm−1. Our ongoing target measurements yield standard deviations of 0.26–0.28‰ for 10 min averages. We furthermore estimate the reproducibility of the system for ambient air samples from weekly measurements of a long-term target gas to be 0.18‰. We find only a miniscule offset of 0.002 ± 0.025‰ of the CRDS and Environment Canada's isotope ratio mass spectrometer (IRMS) results for four target gases used over the course of one year.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cavity ring-down spectrometer"

1

Bîrzǎ, Petre A. "Development of a cw-cavity ring down spectrometer and electronic spectroscopy of transient species /." Basel : [s.n.], 2004. http://edoc.unibas.ch/diss/DissB_6934.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vasilchenko, Semen. "Development of an ultrasensitive cavity ring down spectrometer in the 2.10-2.35 µm region : application to water vapor and carbon dioxide." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY037/document.

Full text
Abstract:
Un spectromètre utilisant la technique CRDS a été développé entre 2.00 et 2.35 µm afin de réaliser la spectroscopie en absorption de molécules d’intérêt atmosphérique et planétologique avec une très grande sensibilité et à haute résolution spectrale. Cette région du spectre correspond à une fenêtre de transparence de la vapeur d’eau et du dioxyde de carbone. Ces fenêtres sont des zones de très faible absorption utilisées pour le sondage des atmosphères terrestre et vénusienne dans lesquelles la vapeur d’eau et le dioxyde de carbone représentent respectivement les absorbants gazeux principaux dans l’infrarouge.La technique CRDS consiste à injecter des photons dans une cavité optique de haute finesse et à mesurer la durée de vie des photons dans cette cavité. Celle-ci est mesurée en interrompant l’injection des photons dans la cavité optique lors du passage en résonance du laser avec l’un des modes longitudinaux. Cette durée de vie dépend de la réflectivité des miroirs et des pertes intra-cavité comme celles induites par un gaz qui absorbe. Mesurer ces pertes en fonction de la longueur d’onde permet d’obtenir le spectre d’absorption du gaz en question. L’extrême réflectivité des miroirs permet d’atteindre dans une cavité d’un peu plus d’1 m de longueur une sensibilité équivalente à celle qui serait obtenue classiquement avec une cellule d’absorption longue de plusieurs milliers de kilomètres.Trois diodes laser DFB émettant autour de 2.35, 2.26 et 2.21 µm ont été utilisées avec ce spectromètre. Grâce à une rétro-action optique provenant d’une cavité externe, certaines de ces diodes ont pu être affinées, ce qui a permis de mieux injecter la cavité haute finesse et ainsi de réduire le niveau de bruit du spectromètre. Parallèlement grâce à une collaboration avec l’Institut d’Electronique (IES, UMR 5214) à Montpellier et la société Innoptics nous avons pu tester le prototype d’un VECSEL (Vertical-External-Cavity Surface-Emitting-Laser). Ce laser a permis de couvrir une gamme spectrale de 80 cm-1, entre 4300 et 4380 cm-1, équivalente à quatre diodes laser DFB. La sensibilité obtenue en routine avec ce spectromètre, correspondant au coefficient minimum détectable, est typiquement de 1×10-10 cm-1. Le chapitre introductif (Chapitre 1) fait le point sur les différentes techniques permettant d’acquérir des spectres en absorption dans la gamme spectrale étudiée et sur les sensibilités atteintes. A notre connaissance l’instrument développé ici est le plus sensible dans cette région du spectre. Le fonctionnement de ce spectromètre CRDS est détaillé dans le chapitre 2.Pour démontrer les performances obtenues avec notre instrument celui-ci a été utilisé pour enregistrer des transitions quadrupolaires donc de très faible intensité. Ainsi la transition S(3) de la bande 1–0 de HD a été enregistrée pour la première fois et son intensité mesurée (S=2.5×10-27 cm/molecule). La sensibilité obtenue en routine a encore pu être améliorée en réalisant une moyenne d’une centaine de spectres sur une gamme spectrale réduite pour atteindre 1×10-11 cm-1. Grâce à cela nous avons pu mesurer la position et l’intensité de la raie quadrupolaire électrique O(14) de la bande 2–0 de N2 qui est très fortement interdite avec une intensité de 1.5×10-30 cm/molecule. Ces mesures font l’objet du chapitre 3 de cette thèse.Les deux derniers chapitres sont dédiés à la caractérisation de l’absorption du CO2, au centre de la fenêtre de transparence, et à celle de la vapeur d’eau. Dans les deux cas, les transitions permises du monomère et la contribution du continuum ont été étudiées. Ce dernier correspond à une absorption variant lentement avec la longueur d’onde. Les sections efficaces du « self-continuum » de la vapeur d’eau ont notamment été mesurées en plusieurs points de la fenêtre de transparence avec une incertitude beaucoup plus faible que les mesures existantes. Elles représentent un jeu de données décisif pour tester les modèles décrivant ce continuum
A cavity ring down spectrometer has been developed in the 2.00-2.35 µm spectral range to achieve highly sensitive absorption spectroscopy of molecules of atmospheric and planetologic interest and at high spectral resolution. This spectral region corresponds to a transparency window for water vapor and carbon dioxide. Atmospheric windows, where absorption is weak, are used to sound the Earth’s and Venus’ atmospheres where water vapor and carbon dioxide represent the main gaseous absorbers in the infrared, respectively.The CRDS technique consists of injecting photons inside a high finesse optical cavity and measuring the photon’s life time of this cavity. This life-time depends on the mirror reflectivity and on the intra-cavity losses due to the absorbing gas in the cavity. Measuring these losses versus the wavelength allow obtaining the absorption spectrum of the gas. The extreme reflectivity of the mirrors allows reaching, for a 1-meter long cavity, a sensitivity equivalent to the one obtained classically with absorption cells of several thousands of kilometers.Three DFB laser diodes emitting around 2.35, 2.26, 2.21 µm were used with this spectrometer giving access to the 4249-4257, 4422-4442 and 4516-4534 cm-1 interval, respectively. Thanks to optical feedback from an external cavity, two of these diodes were spectrally narrowed leading to a better injection of the high finesse cavity thus reducing the noise level of the spectrometer. In parallel, we tested a VECSEL (Vertical-external-Cavity, Surface Emitting laser) through a collaboration with the Institu d’Electronique (IES, UMR 5214) in Montpellier and the Innoptics firm. This laser source is able to cover a 80 cm-1 spectral range centered at 4340 cm-1, equivalent to four DFB laser diodes. In routine the achieved sensitivity with this spectrometer, corresponding to the minimum detectable coefficient is typically of 1×10-10 cm-1. The introductive chapter (Chapter 1) makes the point on the different techniques allowing absorption spectra recordings in the studied spectral region and on their sensitivity. The experimental set-up, the characteristics and performances by the CRD spectrometer developed in this work are detailed in Chapter 2. To our knowledge this instrument is the most sensitive in the considered spectral region.In Chapter 3, detection of quadrupolar electric transitions of HD and N2 illustrate the level of sensitivity reached: (i) the S(3) transition in the 1-0 band of HD has been recorded for the first time and its intensity measured (S=2.5×10-27 cm/molecule), (ii) the position and intensity of the highly forbidden O(14) quadrupolar electric transition of the 2-0 band of N2 have also been newly determined.The two last chapters are devoted to the characterization of the CO2 absorption, in the centre of the transparency window, and of the water vapor absorption. In both cases, we not only studied the allowed transitions of the monomer, but also the continuum absorption. This latter correspond to a weak background absorption varying slowly with the wave length. The self-continuum cross-sections of the water vapor continuum were measured in many spectral points through the transparency window with a much better accuracy compared to existing measurements. These CRDS data constitute a valuable data set to validate the reference model (MT_CKD) for the continuum which is implemented in most of the atmospheric radiative transfer codes
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cavity ring-down spectrometer"

1

"Analytical Techniques Applied to Archaeological Materials." In Archaeological Chemistry, 28–103. 3rd ed. The Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/bk9781782624264-00028.

Full text
Abstract:
This chapter provides a survey of the most widely used analytical methods in modern archaeological chemistry. A brief review of atomic structure leads into a summary of the basics of analytical spectrometry. The various methods of elemental analysis are treated first, starting from the historical beginnings of optical emission methods through atomic absorption to inductively coupled plasma emission spectrometry, with comparisons of the analytical capabilities of each. X-ray techniques including fluorescence, electron microscopy and proton-induced X-ray emission are described in detail. Neutron activation analysis has long played a critical role in the chemical characterisation of archaeological ceramics; a section is devoted to the nuclear reactions and gamma ray measurements underpinning these measurements. Mass spectrometry is now widely used in both elemental and organic analyses, and is revolutionising the study of protein residues in archaeology. Coupling mass spectrometry with chromatographic separations in the gas and liquid phases has been essential for understanding both small molecule residues and proteins, respectively, particularly with compound-specific stable isotope analysis. Other methods that see somewhat less use in archaeological studies — including infrared and Raman, laser-induced breakdown, and cavity ring-down spectroscopies — are treated briefly. A section new to the 3rd edition discusses the issues that arise in combining or comparing new data with so-called ‘legacy data’.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cavity ring-down spectrometer"

1

Schundler, Elizabeth, David J. Mansur, Robert Vaillancourt, Ryan Benedict-Gill, Scott P. Newbry, James R. Engel, and Julia Rentz Dupuis. "Fourier transform infrared phase shift cavity ring down spectrometer." In SPIE Defense, Security, and Sensing, edited by Mark A. Druy and Richard A. Crocombe. SPIE, 2013. http://dx.doi.org/10.1117/12.2014392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rentz Dupuis, Julia, and James R. Engel. "Fourier transform infrared phase shift cavity ring down spectrometer." In SPIE Defense, Security, and Sensing, edited by Mark A. Druy and Richard A. Crocombe. SPIE, 2012. http://dx.doi.org/10.1117/12.917318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schundler, Elizabeth, David J. Mansur, Robert Vaillancourt, Ryan Benedict-Gill, Scott P. Newbry, James R. Engel, and Julia Rentz Dupuis. "Fourier transform infrared phase shift cavity ring down spectrometer." In SPIE Sensing Technology + Applications, edited by Mark A. Druy and Richard A. Crocombe. SPIE, 2014. http://dx.doi.org/10.1117/12.2049147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Bing, Ming Wei, Lu Yao, Zhenyu Xu, Chengguang Yang, Jun Ruan, Huihui Xia, and Ruifeng Kan. "Trace H2O detection using a cavity ring-down spectrometer." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu5a.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salffner, Katharina, Michael Bohm, Oliver Reich, and Hans-Gerd Lohmannsroben. "A broadband cavity ring-down spectrometer for the near infrared." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Shui-Ming, An-Wen Liu, Yu Sun, Cunfeng Cheng, Yan Lu, Jin Wang, and Yan Tan. "MOLECULAR LINE PARAMETERS PRECISELY DETERMINED BY A CAVITY RING-DOWN SPECTROMETER." In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.wf05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dubroeucq, Romain, and Lucile Rutkowski. "Fourier transform cavity ring-down spectroscopy using an optical frequency comb source." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sf2f.2.

Full text
Abstract:
We demonstrate a new broadband multiplexed cavity ring-down approach based on a near-infrared frequency comb source and a time-resolved Fourier transform spectrometer. We apply the technique to spectroscopy of atmospheric CO2 and H2O.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Xing, and Zeyi Zhou. "Uncertainty assessment of carbon dioxide concentration measurement with a cavity ring-down spectrometer." In 2015 4th International Conference on Sustainable Energy and Environmental Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icseee-15.2016.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chu, P. M., J. T. Hodges, G. C. Rhoderick, D. Lisak, and J. C. Travis. "Methane-in-air standards measured using a 1.65μm frequency-stabilized cavity ring-down spectrometer." In Optics East 2006, edited by Steven D. Christesen, Arthur J. Sedlacek III, James B. Gillespie, and Kenneth J. Ewing. SPIE, 2006. http://dx.doi.org/10.1117/12.684931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dubroeucq, Romain, Aleksander Głuszek, Grzegorz Soboń, and Lucile Rutkowski. "Optical frequency comb cavity ring-down spectroscopy using a time-resolved Fourier transform spectrometer." In Applied Industrial Spectroscopy. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ais.2021.jtu2e.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cavity ring-down spectrometer"

1

Marcus, Logan S., Ellen L. Holthoff, and Paul M. Pellegrino. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada608710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stromer, Bobbi, Anthony Bednar, Milo Janjic, Scott Becker, Tamara Kylloe, John Allen, Matt Trapani, John Hargrove, and James Hargrove. Trace explosives detection by cavity ring-down spectroscopy (CRDS). Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41520.

Full text
Abstract:
We built three successive versions of a thermal decomposition cavity ring-down spectrometer and tested their response to explosives. These explosive compound analyzers successfully detected nitroglycerine, 2,4,6-trinitrotoluene (TNT), pentaerythryl tetranitrate, hexahydro-1,3,5-trinitro-s-triazine and triacetone triperoxide (TATP). We determined the pathlength and limits of detection for each, with the best limit of detection being 13 parts per trillion (ppt) of TNT. For most of the explosive tests, the peak height was higher than the expected value, meaning that peroxy radical chain propagation was occurring with each of the explosives and not just the peroxide TATP.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography