Dissertations / Theses on the topic 'Cavitation in hydrodynamic machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 37 dissertations / theses for your research on the topic 'Cavitation in hydrodynamic machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kadlec, Jan. "Hydraulický návrh induceru palivového čerpadla pro raketový motor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444265.
Full textOdeyemi, Babatunde O. "Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Full textChanda, Suranjit Kumar. "Disintegration of sludge using ozone-hydrodynamic cavitation." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43105.
Full textSkelton, Hedley John. "Applying hydrodynamic cavitation to the activated sludge process." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613352.
Full textTran, David. "Hydrodynamic cavitation applied to food waste anaerobic digestion." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128268.
Full textAbrahamsson, Louise. "Improving methane production using hydrodynamic cavitation as pre-treatment." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128783.
Full textDet behövs innovativa lösningar för att utveckla anaerob rötning i syfte att öka metangasutbytet från biogassubstrat. Beroende på substratets egenskaper, kan förbehandling möjliggöra sönderdelning av bakterieflockar, uppbrytning av cellväggar, elimination av inhiberande ämnen och frigörelse av intracellulära organiska ämnen, som alla kan leda till en förbättring av den biologiska nedbrytningen i rötningen. För att uppnå detta har den lågenergikrävande förebehandlingsmetoden hydrodynamisk kavitation prövats på biologiskt slam, matavfall, makroalger respektive gräs, i jämförelse med ångexplosion. Effekten på substraten av dessa två förbehandlingar har uppmäts genom att undersöka distribution av partikelstorlek, löst organiskt kol (sCOD), biometan potential (BMP) och nedbrytningshastigheten. Efter 2 minuters hydrodynamisk kavitation (8 bar) minskade partikelstorleken från 489- 1344 nm till 277- 281 nm (≤77 % reduktion) för de olika biomassorna. Liknande påverkan observerades efter tio minuters ångexplosion (210 °C, 30 bar) med en partikelstorlekreducering mellan 40 och 70 % för alla behandlade substrat. Efter behandling med hydrodynamisk kavitation, i jämförelse med obehandlad biomassa, ökade metanproduktionens hastighetskonstant (K) för matavfall (+65%), makroalgen S. latissima (+3%), gräs (+16 %) samtidigt som den minskade för A. nodosum (-17 %). Förbehandlingen med ångexplosion ökade hastighetskonstanten för S. latissima (+50 %) och A. nodosum (+65 %) medan den minskade för gräs (-37 %), i jämförelse med obehandlad biomassa. Vad gäller BMP värden, orsakade hydrodynamisk kavitation små variationer där endast A. nodosum visade en ökning efter behandling (+44 %) i jämförelse med obehandlad biomassa. Biomassa förbehandlade med ångexplosion visade en ökning för A .nodosum (+86 %), gräs (14 %) och S. latissima (4 %). Sammantaget visar hydrodynamisk kavitation potential som en effektiv behandling före rötning och kapabel att konkurrera med den traditionella ångexplosionen gällande kinetik och energibalans (+14%) samt metanutbytet för A. nodosum.
Ramirez, David A. "Improvement of Ethanol Production on Dry-Mill Process Using Hydrodynamic Cavitation Pretreatment." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354646654.
Full textLunnbäck, Johan. "Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs)." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140685.
Full textPamidi, Taraka Rama Krishna. "Process Intensification by Ultrasound Controlled Cavitation." Licentiate thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73856.
Full textBangaru, Balasundaram. "A detailed investigation of microbial cell disruption by hydrodynamic cavitation for selective product release." Doctoral thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/5345.
Full textHydrodynamic cavitation is a novel method for microbial cell disruption, mediated by intense pressure fluctuations caused by cavity oscillation and collapse. Selective release of intracellular microbial products is desirable to reduce the cost involved in their downstream processing. A study of the process variables that affect microbial cell disruption by hydrodynamic cavitation is presented in order to ascertain the conditions required for a selective release. Two model systems were considered (yeast and E. coil). Enzymes from different locations of the cell were studied and the release compared with other methods of disruption.
Kubina, Dávid. "Dynamika kavitujícího proudění za clonou." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-378401.
Full textHilares, Ruly Terán. "Hydrodynamic cavitation as a new approach for sugarcane bagasse pretreatment aiming to second generation ethanol production." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/97/97131/tde-07082018-153234/.
Full textO uso de fontes de energia renováveis tem sido proposto como uma alternativa viável para reduzir o consumo e a dependência de combustíveis fósseis. Entre as alternativas disponíveis, a biomassa lignocelulósica apresenta grande potencial para geração de bioenergia, sendo que biocombustíveis como o etanol podem ser obtidos por fermentação a partir de açúcares presentes em suas frações celulósicas e hemicelulósicas. No entanto, para a liberação eficiente de açúcares fermentáveis na etapa de hidrólise enzimática, é necessário um processo prévio de pré-tratamento para modificar a estrutura e composição do material. Neste contexto, no presente trabalho a cavitação hidrodinâmica (CH) foi proposta como uma nova e promissora alternativa para o pré-tratamento do bagaço de cana-de-açúcar. Em uma primeira etapa, as variáveis concentração de NaOH, relação sólido/líquido (S/L) e tempo de processo foram otimizadas no pré-tratamento assistido por CH. Em condições otimizadas (0,48 mol/L de NaOH, 4,27% de relação S/L e 44,48 min), elevados valores de remoção de lignina (60,4%) e digestibilidade enzimática da fração de celulose (97,2%) foram obtidos. Com base nesses resultados, novas variáveis (pressão à montante, temperatura e concentração de álcali) foram incluídas para avaliação em uma segunda etapa do estudo com o objetivo de reduzir o tempo de pré-tratamento com CH. Neste caso, a temperatura e a concentração de álcalis foram as mais importantes na remoção de lignina e influenciaram na hidrólise das frações carboidrato da biomassa pré-tratada. Não houve diferença significativa na eficiência do pré-tratamento em 20 e 30 minutos de tempo de processo nas melhores condições (70 ° C, 3 bar de pressão a montante e 0,3 mol/L de NaOH). A influência do adimensional -número de cavitação? também foi avaliada em dois níveis (0,017 e 0,048), resultando em maior eficiência usando o número de cavitação mais baixo, que foi obtido usando placa de orifício com 16 furos (1 mm de diâmetro). Usando estas condições otimizadas e menor temperatura (60 ° C ao invés de 70 ° C) para evitar a formação de espuma quando o licor negro é reutilizado, outros álcalis (Ca (OH)2, Na2CO3, KOH) foram avaliados em combinação com CH e comparados com o uso de NaOH. Conversões enzimáticas elevadas das frações carboidrato foram observadas em material pré-tratado utilizando KOH-CH e NaOH-CH; além disso, o licor negro de NaOH foi reutilizado em 10 bateladas sequenciais. As biomassas pré-tratadas com licor negro reutilizado e fresco foram misturadas e utilizadas em processo de sacarificação e fermentação simultâneas (SSF) em reatores de coluna interligados, resultando em 62,33% de hidrólise das frações carboidrato e 17,26 g/L de produção de etanol (0,48 g de etanol/g de glicose e xilose consumidos). Finalmente, a adição de agente oxidante (H2O2) no processo alcalino-CH foi otimizado. Nas condições selecionadas (0,29 mol/L de NaOH, 0,78% v/v de H2O2 e 9,8 min), 95,43% e 81,34% de rendimento de hidrólise enzimática das frações de celulose e hemicelulose, respectivamente, foram obtidos utilizando 5% de carregamento de sólidos (S/L) no processo de hidrólise. Quando foi utilizado reator de coluna de leito fixo com 20% de S/L, atingiu-se 74,7% de rendimento de hidrólise de celulose. Os açúcares presentes no hidrolisado também foram fermentados em etanol em um reator de coluna de bolhas, resultando em um valor de rendimento de 0,49 g/g e 0,68 g/L.h de produtividade. Analisando-se os resultados de uma forma global, demonstrou-se que a CH é uma tecnologia promissora para acelerar o tempo de pré-tratamento em condições amenas, mostrando vantagens como simplicidade do sistema e possibilidade de aplicação em escala industrial.
SWANSON, LUKE A. "A DETAILED EXAMINATION OF THE PRESSURE PRODUCED BY A HYDRODYNAMIC RAM EVENT." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1195587339.
Full textČupr, Pavel. "Hydroelastic Response of Hydrofoil Under Cavitation Conditions." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-446789.
Full textWalker, Daniel Lloyd Norris. "The influence of blockage and cavitation on the hydrodynamic performance of ice class propellers in blocked flow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23111.pdf.
Full textMiranda, Gregorio do Couto. "The Detection of Journal Bearing Cavitation with Use of Ultrasound Technology." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459969270.
Full textBernardi, Jean de. "Aspects expérimentaux et théoriques des instabilités de cavitation dans les turbopompes de moteurs de fusée." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0217.
Full textHydraulic loop instabilities and radial forces generated by partial cavitation on a turbopump inducer were investigated in water with the 4-bladed inducers of the ARIANE 5 VULCAIN engine liquid hydrogen and oxygen turbopumps. With the help of the synchronization of high speed movies with radial load measurements on the inducer shaft and with the dynamic pressures signals, we could establish an identification method and an analysis approach to the instabilities in a turbopump cavitating inducer. Characteristic frequencies of unsteady cavitation phenomenon were identified at various operating points. This analysis clearly demonstrates the evolution of radial loads with cavitation number : (1) constant, (2) rotating and supersynchronous, (3) chaotic, (4) constant. The evolution of radial load is strongly related to cavitation configurations. Instabilities of cavitating 4-bladed inducer have been explained qualitatively and imbalances have been estimated in terms of radial loads and cavity lengths. This study has been completed by a theoretical model of the inducer based on the actuator disk theory in which the cavitating volume appears to be the main parameter. A measuring method of the cavitating volume in the rotary inducer is therefore proposed which could give results with a 90% accuracy
Gomes, Jaime Federici. "Campo de pressões : condições de incipiência à cavitação em vertedouros em degraus com declividade 1V:0,75H." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2006. http://hdl.handle.net/10183/11336.
Full textHydraulic researchers have to accomplish the technological and construction materials innovations to new security design project criteria compatible to low costs requirement. At 70’s years, with the development of the Roller Compact Concrete (RCC), the use of stepped spillways has become an attractive solution for gravity dams. In steeply sloping stepped spillways, the large step macro-roughness promotes the occurrence of negative pressures on the step cavity, particularly near the external edge of the vertical step face. Consequently one may expect the occurrence of sub-atmospheric pressure conditions capable to induce cavitation for velocities lower than those observed in smooth chute spillways. Predicting cavitation damage is more complex than predicting cavitation inception. Flow conditions leading to the onset of cavitation are generally conservative in predicting damage. The severity of damage that may be expected is related both to intensity of cavitation and time of exposure. There is still no consensus on the maximum unit discharge or flow velocity which assures cavitation safe design of stepped spillways.The study carried through in the Institute of Hydraulic Research (UFRGS - Brazil), had the main goal: described, characterized and modeled experimental measurements of hydrodynamic pressures on the faces of the steps and established limits of incipient cavitation. Three stepped chutes with declivity 1V:0.75H and 0.03 m; 0.06 m and 0.09 m steps heights were projected. The samples of pressures were registered with pressure transmitters with 50 Hz and 3 minutes duration. Long-duration test were also conducted (12 hours sample size) that permitted characterize the pressure field, identifying critical zones, as well as, evaluating its statistical behaviour. The largest fluctuating pressures had been registered in the outer corner on the steps and at the inception point of air entrainment. At this last position can be expected negative pressure values close to 0.69 times the vertical distance between the crest and the analyzed section. The dominant frequencies found varied between 7-18 Hz. The dimensionless number of Strouhal calculated with the predominant frequencies and the clear equivalent depth, had diminished of 0.40 the 0.04 in the direction of the flow. The pressure measurements indicated specific discharge between 11.3-15.6 m²/s and average velocity in order of 17 m/s to inception cavitation process near the inception point.
Emerson, Sean Christian. "Synthesis of Nanometer-size Inorganic Materials for the Examination of Particle Size Effects on Heterogeneous Catalysis." Digital WPI, 2000. https://digitalcommons.wpi.edu/etd-dissertations/253.
Full textPodbevsek, Darjan. "Optical probing of thermodynamic parameters and radical production in cavitating micro-flows." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1210/document.
Full textA constriction in the microchannel can be used to establish a two-phase flow, when a sufficient liquid flux is introduced. This is known as hydrodynamic cavitation. The latent heat resulting from the growing and collapsing vapor bubbles makes it interesting to observe the temperature conditions in the flow downstream of the constriction. Using fluorescence microscopy, with the addition of temperature sensitive nano probes into the working fluid, we can determine the temperature at a single point, averaged over the integration time. Coupled with a confocal microscope, we were able to produce two and three dimensional temperature maps of the steady state flow in the microchannel by the use of ratiometric intensity measurements. This technic allows us to observe temperature gradients in two-phase flow as well yielding the void fraction information. Areas of substantial cooling are observed downstream the constriction in the two-phase flow, linked to the bubble growth, while heating regions due to condensations are missing. A complementary, yet less sensitive probe-less technique using the inherent Raman scattering signal of the liquid, was used to confirm the findings. A separate study evaluating a new group of luminescent materials for optical temperature and pressure probes is performed and discussed herein. Finally, the luminol chemiluminescent reaction with radicals produced by the cavitating flow, is used to obtain a corresponding photon yield. By counting the photons produced, an estimate on the radical yield can be obtained. Additionally, rudimentary mapping of the chemiluminescence signal allows the localization of the bubble collapse regions
Hamberg, Micaela, and Signe Dahlin. "Numerical Study on Hydrodynamic Characteristics of Flood Discharge Tunnel in Zipingpu Water Conservancy Project : Using RANS equations and the VOF model." Thesis, Uppsala universitet, Elektricitetslära, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-387206.
Full textPospíšil, Dan. "Vliv tvaru výstupní hrany lopatkové mříže na parametry hydraulického stroje." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230902.
Full textBimestre, Thiago Averaldo. "Modelagem teórica e experimental de um reator de cavitação hidrodinâmica com tubo de Venturi para pré-tratamento de bagaço de cana-de-açúcar /." Guaratinguetá, 2020. http://hdl.handle.net/11449/192156.
Full textResumo: A agroindústria nacional brasileira dispõe de uma grande variedade de unidades agrícolas que geram elevada quantidade de resíduos como o bagaço de cana-de-açúcar. Mesmo diante da crescente utilização desse material, o excedente ainda é da ordem de milhões de toneladas, causando problemas de estocagem e poluição ambiental. Devido a sua estrutura complexa e sua recalcitrância, a etapa de pré-tratamento representa o desafio mais crítico para a viabilização da utilização do bagaço de cana-de-açúcar dentro do contexto de uma biorrefinaria. O pré-tratamento busca facilitar o acesso aos componentes estruturais da biomassa, permitindo sua utilização na cadeia produtiva. Existem diferentes métodos de pré-tratamento como os físicos, químicos e biológicos ou uma combinação de todos esses, de modo que a geração de resíduos ambientalmente perigosos e/ou altos insumos energéticos é o gargalo. Neste sentido, rotas tecnológicas alternativas vem sendo estudadas e a cavitação hidrodinâmica desponta-se como uma promissora rota para o pré-tratamento de biomassa liberando grandes magnitudes de energia e induzindo a transformações físicas e químicas, favorecendo o rompimento da matriz carboidrato-lignina. Neste contexto, este trabalho empregou a cavitação hidrodinâmica para potencializar o pré-tratamento alcalino do bagaço de cana-de-açúcar. Para isto, projetou-se um reator de cavitação hidrodinâmica com tubo de Venturi utilizando como base uma abordagem computacional para a dinâmica dos fluidos. ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The Brazilian national agroindustry has a large variety of agricultural units that generate high amounts of waste such as sugarcane bagasse. Even with the increasing use of this material, the surplus is still in the order of millions of tons, causing problems of stocking and environmental pollution. Due to its complex structure and recalcitrance, the pretreatment stage represents the most critical challenge for the feasibility of using sugarcane bagasse within the context of biorefinery. Pretreatment seeks to facilitate access to the structural components of biomass, allowing its use in the production chain. There are different pretreatment methods such as physical, chemical, physicochemical and biological or a combination of all of these, so that the generation of environmentally hazardous waste and / or high energy inputs is the bottleneck. In this sense, alternative technological routes have been studied and hydrodynamic cavitation emerges as a promising route for biomass pretreatment releasing large energy magnitudes and inducing physical and chemical transformations, favoring the rupture of the carbohydrate-lignin matrix. In this context, this thesis employed hydrodynamic cavitation as a physical means to improve the alkaline pre-treatment of sugarcane bagasse. The hydrodynamic cavitation reactor with Venturi tube was modeled by a computational approach to fluid dynamics, in order to evaluate the influence of the pressure ratio, the length and diameter of the throat and ... (Complete abstract click electronic access below)
Doutor
Gherca, Andrei. "Modélisation de la lubrification des surfaces texturées - Application à la butée en régime hydrodynamique." Phd thesis, Université de Poitiers, 2013. http://tel.archives-ouvertes.fr/tel-00943143.
Full textPisklák, Jan. "Vliv přimknutí na tření ve valivém ložisku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230584.
Full textDakel, Zaki. "Stabilité et dynamique non linéaire de rotors embarqués." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0087/document.
Full textRotors are excited not only by the rotating mass unbalance but also by the different motions of their support: vehicle turbochargers, aircraft turbo-engines, carried vacuum pumps, are different industrial applications. Thus the design of robust rotors able to run well under such conditions (extreme excitations) and to avoid catastrophic failure is required. The present work aims to predict the dynamic behavior of an on-board rotor mounted on rigid or elastic hydrodynamic journal bearings and subjected to rigid support excitations. The kinetic and strain energies as well as the virtual work of the rotating flexible rotor components are computed. The proposed on-board rotor model is based on TIMOSHENKO beam finite elements. It includes the effects relative to the rotating inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric asymmetry of shaft and/or rigid disk and considers six types of deterministic motions (rotations and translations) of the support. Depending on the type of analysis used for the bearing, the restoring fluid film forces acting on the shaft and computed with the REYNOLDS equation are linear/non-linear. The use of LAGRANGE’s equations yields the linear/non-linear differential equations of vibratory motion of the on-board rotor in bending with respect to the moving rigid support which represents a non-inertial reference frame. The equations of motion contain periodic parametric coefficients because of the geometric asymmetry of the rotor and time-varying parametric coefficients because of the support rotations. These parametric coefficients are considered as sources of internal excitation and can lead to lateral dynamic instability. In the proposed numerical application examples, three rotor configurations are studied. Firstly, a symmetric rotor mounted on rigid bearings is subjected to rotating mass unbalance combined with constant rotation and sinusoidal translation of the support. Secondly, a rotor with geometric asymmetry due to the disk mounted on rigid bearings is excited by the mass unbalance effect and by the combination of a constant rotation and a sinusoidal translation of the support. Thirdly, a symmetric rotor mounted on linearized/non-linear hydrodynamic bearings is subjected to the excitation due to the mass unbalance and to the sinusoidal rotational or translational excitations of the support
Rebufa, Jocelyn. "Vibrations de ligne d'arbre sur paliers hydrodynamiques : influence de l'état de surface." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC044/document.
Full textThe hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotordynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings’ surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as "oil whirl" phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings
Bruyère, Vincent. "Une modélisation multi-physique et multi-phasique du contact lubrifié." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00782322.
Full textAuret, Johannes Gerhardus. "Cavitation erosion : the effect of fluid and flow parameters." Thesis, 2016. http://hdl.handle.net/10539/21329.
Full textGR 2016
Liu, Kou-Lin, and 劉國麟. "A Study of Cavitation in a Hydrodynamic Bearing - Finite Elment Analysis." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/45600359827234172214.
Full text(6593138), David W. Richardson. "Hydrodynamic Lubrication of Floating Valve Plate in an Axial Piston Pump." Thesis, 2019.
Find full textThe valve plate/cylinder block interface in an axial piston pump is often subject to extreme pressures, which can cause wear of the valve plate and ultimately, failure of the pump. The purposes of this study were to: a) experimentally investigate the film thickness generated between a floating valve plate and cylinder block in situ using proximity probes, b) develop a model which can predict the motion, film thickness and pressures of the floating valve plate and corroborate with experimental results, c) investigate surface pockets to provide additional lubricant at the valve plate interface by measuring the flow velocities and cavitation areas in a thrust washer bearing, d) numerically investigate surface modifications of the floating valve plate to observe any changes in lubricant pressure, temperature, cavitation, or valve plate deformation. Two different test rigs were designed, developed and used to investigate the performance of axial piston pumps and surface pockets. The axial piston pump test rig (APTR) was designed to operate and measure the steady state conditions of an axial piston pump. The APTR utilizes three non-contact proximity probes to measure the valve plate motion and film thickness between the cylinder block at various speeds and pressures. A thrust washer test rig (TWTR) was developed to measure the cavitation areas and flow velocities of lubricant in a pocketed thrust washer using μPIV. Through a novel interpolation approach, the depths of the micro-particles in the bearing pocket were determined using an analytical model. Using this approach, the μPIV measured 2D velocity field was employed to develop a 3D velocity field, which illustrates the fluid motion inside a pocketed thrust bearing at various speeds and viscosities. A dynamic lubrication model was developed using the thermal Reynolds equation augmented with the JFO boundary condition and the energy equation to determine the pressure, cavitation regions and temperature of the lubricant at the valve plate cylinder block interface. The lubricating pressures were then coupled with the equations of motion of the floating valve plate to develop a dynamic lubrication model. The stiffness and damping coefficients of the floating valve plate system used in the dynamic lubrication model were determined using a parametric study. The elastic deformation of the valve plate was also considered using the influence coefficient matrix approach. The experimental and analytical motion of the valve plate were then corroborated and found to be in good agreement. 4 and 8 pocket designs were then added as surface modifications to the floating valve plate in the dynamic lubrication model. The addition of surface modifications improved the lubricating conditions at the valve plate/cylinder block interface and resulted in increased minimum film thicknesses and lowered lubricant temperatures at the same operating conditions.
Jose, July. "Modeling cavitation in a high intensity agitation cell." Master's thesis, 2011. http://hdl.handle.net/10048/1914.
Full textChemical Engineering
Milly, Paul Jesse. "Utilizing hydrodynamic cavitation and ultraviolet irradiation to improve the saftey of minimally processed fluid food." 2007. http://purl.galileo.usg.edu/uga%5Fetd/milly%5Fpaul%5Fj%5F200705%5Fphd.
Full textWalker, Daniel Lloyd Norris. "The influence of blockage and cavitation on the hydrodynamic performance of ice class propellers in blocked flow /." 1996.
Find full textWu, Chendi. "A fundamental study of bubble-particle interactions through zeta-potential distribution analysis." Master's thesis, 2011. http://hdl.handle.net/10048/1849.
Full textChemical Engineering
(9746363), Thomas Ransegnola. "A Strongly Coupled Simulation Model of Positive Displacement Machines for Design and Optimization." Thesis, 2020.
Find full text(10135868), Meike H. Ernst. "Enabling High-Pressure Operation with Water for the Piston-Cylinder Interface In Axial Piston Machines." Thesis, 2021.
Find full textWater is inflammable, non-toxic, environmentally friendly--- desirable traits, for a hydraulic fluid. However, its extremely low viscosity diminishes the load-bearing and sealing capacity of lubricating interfaces. Case in point: axial piston machines of swash plate design are compact, highly efficient positive displacement machines at the heart of hydraulic systems in forestry, construction, aerospace, and agricultural equipment, as well as industrial applications (presses, etc.); however, the three main lubricating interfaces decisive to the performance of such units in terms of both component life and efficiency are challenged by the use of water as working fluid. Especially during high-pressure operation, this low-viscosity lubricant can cause the these interfaces to fail in carrying the imposed load, resulting in severe wear, or even pump failure. The piston-cylinder interface is particularly challenging to design for water because it stands under obligation to carry the heavy side load that acts on the pistons of these machines, which increases with operating pressure. Furthermore, the architecture of axial piston machines of swash plate design does not allow this interface to be hydrostatically balanced.
Through the development of a methodology that separates the fluid pressure fields of the three main lubricating interfaces of axial piston machines into their hydrostatic and hydrodynamic components, the present work enables a direct comparison of these interfaces in terms of how they support load. A case study of a 75 cc unit running on hydraulic oil conducted via this methodology at three different operating conditions (low pressure/low speed, low pressure/high speed, and high pressure/low speed) demonstrates that in the piston-cylinder interface, the force from hydrostatic pressure reaches such high magnitudes over the high-pressure stroke that less than half of it is needed to counter the load. The excess force from hydrostatic pressure then becomes the load. Consequentially, hydrodynamic pressure must counter a force from hydrostatic pressure that exceeds the original load. In the other two interfaces, by contrast, over half the load is being carried by hydrostatic pressure, thus significantly diminishing the amount of hydrodynamic pressure the interfaces are required to generate in order to achieve full load support. Moreover, nearly all of the moment on the piston is countered by hydrodynamic pressure, while less than half of the moment on the block is countered by hydrodynamic pressure, and the moment on the slipper is negligible by comparison.
While this case study only investigates one pump, it shows how critical hydrodynamic pressure can be to load support in the piston-cylinder interface. The use of a low-viscosity fluid, e.g. water, reduces the hydrodynamic pressure that is generated in this interface, which, at challenging operating conditions, can lead to metal-to-metal contact. However, the performance of the interface can be improved via micro surface shaping, i.e. by giving the surface of the piston, or the bore that it moves through, a shape on the order of microns in height. The aim of present work is to pursue design trends leading to surface shapes that will enable this interface to function at higher pressures than currently achievable.
This pursuit takes the form of systematic virtual design studies, an optimization procedure, and an algorithm developed specifically for tailoring the bore surfaces through which the pistons travel to piston tilt and deformation. From this emerges not only a set of design trends corresponding to the dimensions of two particularly powerful types of micro surface shaping, but also a profound insight into the behavior of the water-lubricated piston-cylinder interface fluid film, and how that behavior can be manipulated by changing the component surfaces that constitute its borders. Furthermore, in collaboration with Danfoss High Pressure Pumps, a physical prototype of a 444 cc axial piston pump with surface shaping generated via the aforementioned algorithm has been constructed and tested, achieving a total pump efficiency roughly 3% higher than that achievable by the commercial unit that the geometry of the prototype is based on.