Academic literature on the topic 'Cavitation in hydrodynamic machine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cavitation in hydrodynamic machine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cavitation in hydrodynamic machine"
Zakrzewska, D. E., and A. K. Krella. "Cavitation Erosion Resistance Influence of Material Properties." Advances in Materials Science 19, no. 4 (December 1, 2019): 18–34. http://dx.doi.org/10.2478/adms-2019-0019.
Full textGhiban, Brandusa, Carmen Anca Safta, and Vlad Motoiu. "Stainless Steels as Erosion Resistant Materials for Hydraulic Machines." Key Engineering Materials 750 (August 2017): 75–79. http://dx.doi.org/10.4028/www.scientific.net/kem.750.75.
Full textMicu, Lavinia Madalina, Iosif Lazar, Adrian Circiumaru, Ilare Bordeasu, Liviu Daniel Pirvulescu, and mihai Hluscu. "New Results Regarding Cavitation Behavior of Polymers Modified with Anorganic Substances Coated on Bronze Surfaces." Materiale Plastice 55, no. 3 (September 30, 2018): 460–63. http://dx.doi.org/10.37358/mp.18.3.5051.
Full textEfremova, K. D., and V. N. Pilgunov. "Glycerin-containing Working Fluids for Hydraulic Drives for Special Purposes." Radio Engineering, no. 6 (December 26, 2020): 1–16. http://dx.doi.org/10.36027/rdeng.0620.0000182.
Full textUsman, Ali, and Cheol Woo Park. "Numerical optimization of surface texture for improved tribological performance of journal bearing at varying operating conditions." Industrial Lubrication and Tribology 70, no. 9 (November 19, 2018): 1608–18. http://dx.doi.org/10.1108/ilt-10-2017-0286.
Full textZhang, Yu, Guoding Chen, and Lin Wang. "Effects of thermal and elastic deformations on lubricating properties of the textured journal bearing." Advances in Mechanical Engineering 11, no. 10 (October 2019): 168781401988379. http://dx.doi.org/10.1177/1687814019883790.
Full textMa, Chenbo, Yanjun Duan, Bo Yu, Jianjun Sun, and Qiaoan Tu. "The comprehensive effect of surface texture and roughness under hydrodynamic and mixed lubrication conditions." Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 231, no. 10 (February 8, 2017): 1307–19. http://dx.doi.org/10.1177/1350650117693146.
Full textHatakenaka, Kiyoshi, Masato Tanaka, and Kenji Suzuki. "A Theoretical Analysis of Floating Bush Journal Bearing With Axial Oil Film Rupture Being Considered." Journal of Tribology 124, no. 3 (May 31, 2002): 494–505. http://dx.doi.org/10.1115/1.1454104.
Full textLeighton, M., Nicholas Morris, Gareth Trimmer, Paul D. King, and Homer Rahnejat. "Efficiency of disengaged wet brake packs." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, no. 6 (March 10, 2018): 1562–69. http://dx.doi.org/10.1177/0954407018758567.
Full textPapulov, Vladimir. "BUILDING A THREE-DIMENSIONAL MODEL OF AXIAL JET IN SOLIDWORKS." Interexpo GEO-Siberia 7 (2019): 76–79. http://dx.doi.org/10.33764/2618-981x-2019-7-76-79.
Full textDissertations / Theses on the topic "Cavitation in hydrodynamic machine"
Kadlec, Jan. "Hydraulický návrh induceru palivového čerpadla pro raketový motor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444265.
Full textOdeyemi, Babatunde O. "Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)." Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Full textChanda, Suranjit Kumar. "Disintegration of sludge using ozone-hydrodynamic cavitation." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43105.
Full textSkelton, Hedley John. "Applying hydrodynamic cavitation to the activated sludge process." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613352.
Full textTran, David. "Hydrodynamic cavitation applied to food waste anaerobic digestion." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128268.
Full textAbrahamsson, Louise. "Improving methane production using hydrodynamic cavitation as pre-treatment." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-128783.
Full textDet behövs innovativa lösningar för att utveckla anaerob rötning i syfte att öka metangasutbytet från biogassubstrat. Beroende på substratets egenskaper, kan förbehandling möjliggöra sönderdelning av bakterieflockar, uppbrytning av cellväggar, elimination av inhiberande ämnen och frigörelse av intracellulära organiska ämnen, som alla kan leda till en förbättring av den biologiska nedbrytningen i rötningen. För att uppnå detta har den lågenergikrävande förebehandlingsmetoden hydrodynamisk kavitation prövats på biologiskt slam, matavfall, makroalger respektive gräs, i jämförelse med ångexplosion. Effekten på substraten av dessa två förbehandlingar har uppmäts genom att undersöka distribution av partikelstorlek, löst organiskt kol (sCOD), biometan potential (BMP) och nedbrytningshastigheten. Efter 2 minuters hydrodynamisk kavitation (8 bar) minskade partikelstorleken från 489- 1344 nm till 277- 281 nm (≤77 % reduktion) för de olika biomassorna. Liknande påverkan observerades efter tio minuters ångexplosion (210 °C, 30 bar) med en partikelstorlekreducering mellan 40 och 70 % för alla behandlade substrat. Efter behandling med hydrodynamisk kavitation, i jämförelse med obehandlad biomassa, ökade metanproduktionens hastighetskonstant (K) för matavfall (+65%), makroalgen S. latissima (+3%), gräs (+16 %) samtidigt som den minskade för A. nodosum (-17 %). Förbehandlingen med ångexplosion ökade hastighetskonstanten för S. latissima (+50 %) och A. nodosum (+65 %) medan den minskade för gräs (-37 %), i jämförelse med obehandlad biomassa. Vad gäller BMP värden, orsakade hydrodynamisk kavitation små variationer där endast A. nodosum visade en ökning efter behandling (+44 %) i jämförelse med obehandlad biomassa. Biomassa förbehandlade med ångexplosion visade en ökning för A .nodosum (+86 %), gräs (14 %) och S. latissima (4 %). Sammantaget visar hydrodynamisk kavitation potential som en effektiv behandling före rötning och kapabel att konkurrera med den traditionella ångexplosionen gällande kinetik och energibalans (+14%) samt metanutbytet för A. nodosum.
Ramirez, David A. "Improvement of Ethanol Production on Dry-Mill Process Using Hydrodynamic Cavitation Pretreatment." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354646654.
Full textLunnbäck, Johan. "Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs)." Thesis, Linköpings universitet, Tema Miljöförändring, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140685.
Full textPamidi, Taraka Rama Krishna. "Process Intensification by Ultrasound Controlled Cavitation." Licentiate thesis, Luleå tekniska universitet, Drift, underhåll och akustik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-73856.
Full textBangaru, Balasundaram. "A detailed investigation of microbial cell disruption by hydrodynamic cavitation for selective product release." Doctoral thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/5345.
Full textHydrodynamic cavitation is a novel method for microbial cell disruption, mediated by intense pressure fluctuations caused by cavity oscillation and collapse. Selective release of intracellular microbial products is desirable to reduce the cost involved in their downstream processing. A study of the process variables that affect microbial cell disruption by hydrodynamic cavitation is presented in order to ascertain the conditions required for a selective release. Two model systems were considered (yeast and E. coil). Enzymes from different locations of the cell were studied and the release compared with other methods of disruption.
Books on the topic "Cavitation in hydrodynamic machine"
Hydraulics of pipelines: Pumps, valves, cavitation, transients. New York: Wiley, 1989.
Find full textBrewe, David E. Effect of vibration amplitude on vapor cavitation in journal bearings. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Find full textRanade, Vivek V. Hydrodynamic Cavitation: Devices, Design and Applications. Wiley & Sons, Limited, John, 2021.
Find full textOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Find full textOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Find full textApplication Of Hydrodynamic Cavitation In Environmental Engineering. CRC Press, 2012.
Find full textOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Find full textOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. CRC Press, 2012. http://dx.doi.org/10.1201/b11825.
Full textOzonek, Janusz. Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, 2012.
Find full textHydrodynamic Performance of the Large Cavitation Channel (LCC). Storming Media, 2002.
Find full textBook chapters on the topic "Cavitation in hydrodynamic machine"
Brujan, Emil-Alexandru. "Hydrodynamic Cavitation." In Cavitation in Non-Newtonian Fluids, 117–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15343-3_4.
Full textGogate, Parag R., and Aniruddha B. Pandit. "Cavitation Generation and Usage Without Ultrasound: Hydrodynamic Cavitation." In Theoretical and Experimental Sonochemistry Involving Inorganic Systems, 69–106. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3887-6_3.
Full textManuello, A., R. Malvano, O. Borla, A. Palumbo, and A. Carpinteri. "Neutron Emissions from Hydrodynamic Cavitation." In Fracture, Fatigue, Failure and Damage Evolution, Volume 8, 175–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21611-9_22.
Full textBark, Göran, and Rickard E. Bensow. "Hydrodynamic Processes Controlling Cavitation Erosion." In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, 185–220. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8539-6_8.
Full textPandit, A. B. "Hydrodynamic Cavitation Technology: Industrial Applications." In The Mind of an Engineer, 329–40. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-10-0119-2_43.
Full textDesikan, Ramesh, Sivakumar Uthandi, and Kiruthika Thangavelu. "Pretreatment via Hydrodynamic Cavitation Process." In Methods in Molecular Biology, 23–29. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1323-8_2.
Full textCervone, Angelo, Lucio Torre, Angelo Pasini, and Luca d’Agostino. "Cavitation and Turbopump Hydrodynamics Research at Alta S.P.A. and Pisa University." In Fluid Machinery and Fluid Mechanics, 80–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89749-1_11.
Full textGogate, Parag R. "Application of Hydrodynamic Cavitation for Food and Bioprocessing." In Food Engineering Series, 141–73. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7472-3_6.
Full textMahanti, Naveen Kumar, Subir Kumar Chakraborty, S. Shiva Shankar, and Ajay Yadav. "Hydrodynamic Cavitation Technology for Food Processing and Preservation." In Emerging Thermal and Nonthermal Technologies in Food Processing, 199–224. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9780429297335-8.
Full textCeccio, Steven L., and Simo A. Mäkiharju. "Experimental Methods for the Study of Hydrodynamic Cavitation." In Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 35–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_2.
Full textConference papers on the topic "Cavitation in hydrodynamic machine"
Mishra, Chandan, and Yoav Peles. "Hydrodynamic Cavitation in Flow Through Micro-Constriction Elements Entrenched in Rectangular Microchannels." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77406.
Full textPyun, Kwon Bum, Woo Chul Kwon, Kyoung Taek Oh, and Joon Yong Yoon. "Investigation of the Performance for a Heat Generator Using Hydrodynamic Cavitation." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-22045.
Full textZávorka, Dalibor, and Vladimír Habán. "Monitoring of hydraulic machines and hydrodynamic cavitation using acoustic emissions." In 37TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. Author(s), 2018. http://dx.doi.org/10.1063/1.5049930.
Full textSkelley, Stephen. "Inducer Hydrodynamic Forces in a Cavitating Environment." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56115.
Full textPeles, Yoav, and Chandan Mishra. "Cavitation in MicroElectroMechanical Systems (MEMS): Importance, Deviations From Conventional Scale, and Preliminary Results." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77405.
Full textGe, Mingming, Guangjian Zhang, Navid Nematikourabbasloo, Kamel Fezzaa, and Olivier Coutier-Delgosha. "Application of Fast Synchrotron X-ray Imaging in Velocimetry of Cavitating Flows." In SNAME 26th Offshore Symposium. SNAME, 2021. http://dx.doi.org/10.5957/tos-2021-15.
Full textUhkoetter, Stephan, Stefan aus der Wiesche, Michael Kursch, and Christian Beck. "Development and Validation of a Three-Dimensional Multiphase Flow CFD Analysis for Journal Bearings in Steam and Heavy Duty Gas Turbines." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68201.
Full textSeto, Mae L., Rubens Campregher, Stefan Murphy, and Julio Militzer. "Prediction of Ship Acoustic Signature Due to Fluid Flow." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43343.
Full textKerr, Thomas, and Adolfo Delgado. "Novel Approach for Optical Characterization of Thrust Collar Lubricated Area: Experimental and Numerical Results." In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15467.
Full textTerence Stoop, A. H., T. W. Bakker, H. J. M. Kramer, and G. J. Witkamp. "Hydrodynamic Cavitation at Elevated Backpressure." In 8th International Symposium on Cavitation. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2826-7_203.
Full textReports on the topic "Cavitation in hydrodynamic machine"
Park, Joel T., J. M. Cutbirth, and Wesley H. Brewer. Hydrodynamic Performance of the Large Cavitation Channel (LCC). Fort Belvoir, VA: Defense Technical Information Center, December 2002. http://dx.doi.org/10.21236/ada416700.
Full textThomas, Catherine, Afrachanna Butler, Victor Medina, Chris Griggs, and Alan Katzenmeyer. Physicochemical treatment of cyanobacteria and microcystin by hydrodynamic cavitation and advanced oxidation. Engineer Research and Development Center (U.S.), March 2019. http://dx.doi.org/10.21079/11681/32313.
Full text