Academic literature on the topic 'Cavitating Flows'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cavitating Flows.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cavitating Flows"

1

Wang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang, and Weibin Zhang. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer." Journal of Marine Science and Engineering 10, no. 6 (June 12, 2022): 806. http://dx.doi.org/10.3390/jmse10060806.

Full text
Abstract:
To study instability in the unsteady cavitating flow in a liquid rocket engine inducer, visualization experiments of non-cavitating and cavitating flows inside a model inducer were carried out at different flow conditions. Visual experiments were carried out to capture the evolution of non-cavitating and cavitating flows in a three-bladed inducer by using a high-speed camera. The external characteristic performance, cavitation performance, and pressure pulsation were analyzed based on the observation of non-cavitation and cavitation development and their instabilities. Under non-cavitation conditions, the change of flow rate has a significant impact on the pressure pulsation characteristics in the inducer. The occurrence of cavitation aggravated the instability of the flow and caused the intensity of pressure pulsation at each measuring point to increase. This cavitation structure has strong instability, and the tail region is often accompanied by shedding cavitation clouds perpendicular to the blade surface.
APA, Harvard, Vancouver, ISO, and other styles
2

ZHANG, YAO, XIANWU LUO, SHUHONG LIU, and HONGYUAN XU. "A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES." Modern Physics Letters B 24, no. 13 (May 30, 2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.

Full text
Abstract:
A new transport equation model is proposed for simulating cavitating flows in miniature machines. In the developed model, the surface tension, viscous force, and thermal effect of cavitation are considered to reflect their influence on the cavitation bubble growth. The cavitating flow in a miniature pump is calculated by applying the proposed cavitation model. The comparison between numerical results and experimental data indicates that the new cavitation model is applicable for simulating the cavitating flow in miniature machines.
APA, Harvard, Vancouver, ISO, and other styles
3

Ng’aru, Joseph Mwangi, and Sunho Park. "CFD Simulations of the Effect of Equalizing Duct Configurations on Cavitating Flow around a Propeller." Journal of Marine Science and Engineering 10, no. 12 (December 2, 2022): 1865. http://dx.doi.org/10.3390/jmse10121865.

Full text
Abstract:
This study presented the results of a computational study of cavitating flows of a marine propeller with energy saving equalizing ducts. The main purpose of the study was to estimate the cavitating flows around a propeller with a duct, and to investigate the interaction between a duct and a propeller in cavitating flows. The INSEAN E779A propeller was used as a baseline model. Validation studies were conducted for non-cavitating and cavitating flows around a hydrofoil and a propeller. A comparison with the experimental data showed good agreement in terms of sheet cavity patterns and propulsion performances of the propeller. Various duct configurations have been presented, and it was found that a duct in front of the propeller had effects on the propeller’s cavitation and propulsion performance. Higher angles of attack of the duct showed a significant effect on the propeller’s cavitation behavior, especially with a small duct. The small duct lowered the cavitation inception radius with increase in angle of attack of the duct, while the large duct had more effect on the tip cavitation. The propeller with large duct gave higher thrust, however, the higher torque loading affected the propeller efficiency. Overall, it was found that the propeller with small duct provided a higher propeller efficiency
APA, Harvard, Vancouver, ISO, and other styles
4

Falcucci, Giacomo, Stefano Ubertini, Gino Bella, and Sauro Succi. "Lattice Boltzmann Simulation of Cavitating Flows." Communications in Computational Physics 13, no. 3 (March 2013): 685–95. http://dx.doi.org/10.4208/cicp.291011.270112s.

Full text
Abstract:
AbstractThe onset of cavitating conditions inside the nozzle of liquid injectors is known to play a major role on spray characteristics, especially on jet penetration and break-up. In this work, we present a Direct Numerical Simulation (DNS) based on the Lattice Boltzmann Method (LBM) to study the fluid dynamic field inside the nozzle of a cavitating injector. The formation of the cavitating region is determined via a multi-phase approach based on the Shan-Chen equation of state. The results obtained by the LBM simulation show satisfactory agreement with both numerical and experimental data. In addition, numerical evidence of bubble break-up, following upon flow-induced cavitation, is also reported.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhai, Zhangming, Tairan Chen, and Haiyang Li. "Evaluation of mass transport cavitation models for unsteady cavitating flows." Modern Physics Letters B 34, no. 02 (December 6, 2019): 2050020. http://dx.doi.org/10.1142/s0217984920500207.

Full text
Abstract:
Modeling of unsteady cavitating flow is a critical issue in a lot of practical cases. The objective of this paper is to assess the practical applicability of three widely used mass transport cavitation models under RANS framework, including the Kubota model, Kunz model, and Singhal model, for predicting partial sheet cavitating flow around an axisymmetric body with hemispherical head and unsteady cloud cavitating flow around a Clark-Y hydrofoil. The results show that for the axisymmetric cylindrical body, all three cavitation models could generally predict the pressure distributions. The significant differences are found around the closure region of the attached cavity due to the magnitude and distribution of mass transfer rate. For the unsteady cavitating flow along the hydrofoil, the significant differences with different cavitation model are observed in time-averaged and time-dependent concerning the cavity shapes, multiphase structures and the cloud shedding dynamics. The Singhal model coupling the effect between the vorticity distribution and the cavity dynamics agrees best with the experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Qian Kun, and Ye Gao. "Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies." Applied Mechanics and Materials 226-228 (November 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.

Full text
Abstract:
The hydrodynamic characteristics of bodies are greatly affected by cavitation. Coupling with natural cavitaion model, a multiphase CFD method is developed and is employed to simulate supercavitating and partial cavitating flows over axisymmetric bodies using FLUENT 6.2. The results of supercavitation of a disk cavitator agree well with the boundary element method (BEM), the analytical relations and available experimental results. The present computations and the BEM results are compared with experiments for partial cavitating flows over three typical axisymmetric bodies and the results are discussed. Limitations are on the pressure prediction in the cavity closure region for the BEM, although fairly good quantitative agreement is obtained for three axisymmetric bodies at most of cavitation region. The present computational model on cavitating flows are validated, offering references and bases for hydrodynamic researches.
APA, Harvard, Vancouver, ISO, and other styles
7

DELALE, C. F., G. H. SCHNERR, and J. SAUER. "Quasi-one-dimensional steady-state cavitating nozzle flows." Journal of Fluid Mechanics 427 (January 25, 2001): 167–204. http://dx.doi.org/10.1017/s0022112000002330.

Full text
Abstract:
Quasi-one-dimensional cavitating nozzle flows are considered by employing a homogeneous bubbly liquid flow model. The nonlinear dynamics of cavitating bubbles is described by a modified Rayleigh–Plesset equation that takes into account bubble/bubble interactions by a local homogeneous mean-field theory and the various damping mechanisms by a damping coefficient, lumping them together in the form of viscous dissipation. The resulting system of quasi-one-dimensional cavitating nozzle flow equations is then uncoupled leading to a nonlinear third-order ordinary differential equation for the flow speed. This equation is then cast into a nonlinear dynamical system of scaled variables which describe deviations of the flow field from its corresponding incompressible single-phase value. The solution of the initial-value problem of this dynamical system can be carried out very accurately, leading to an exact description of the hydrodynamic field for the model considered.A bubbly liquid composed of water vapour–air bubbles in water at 20 °C for two different area variations is considered, and the initial cavitation number is chosen in such a way that cavitation can occur in the nozzle. Results obtained, when bubble/bubble interactions are neglected, show solutions with flow instabilities, similar to the flashing flow solutions found recently by Wang and Brennen. Stable steady-state cavitating nozzle flow solutions, either with continuous growth of bubbles or with growth followed by collapse of bubbles, were obtained when bubble/bubble interactions were considered together with various damping mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
8

Luo, Xianwu, Renfang Huang, and Bin Ji. "Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier–Stokes model." Modern Physics Letters B 30, no. 01 (January 10, 2016): 1550262. http://dx.doi.org/10.1142/s0217984915502620.

Full text
Abstract:
For accurate simulations of wall-bounded turbulent cavitating flows, the present paper proposed a partially averaged Navier–Stokes (PANS) method derived from the [Formula: see text]-[Formula: see text] turbulence model. Transient cavitating vortical flows around a NACA66 hydrofoil were simulated by using the [Formula: see text]-[Formula: see text] PANS model with various filter parameters ([Formula: see text] and [Formula: see text], while [Formula: see text]) and a mass transfer cavitation model based on the Rayleigh–Plesset equation. Compared with the available experimental data, the [Formula: see text]-[Formula: see text] PANS model with [Formula: see text] can accurately reproduce the cavitation evolution with more complicated structures due to the reduction in the predicted eddy viscosity. Further analyses, using the vorticity transport equation, indicate that the transition of cavitation structure from two dimension to three dimension is associated with strong vortex–cavitation interaction, where vortex stretching and dilation may play a major role. Therefore, the [Formula: see text]-[Formula: see text] PANS model with the filter parameter of [Formula: see text] is an effective method to numerically predict the transient cavitating vortical flows around hydrofoils. The results obtained in this paper are helpful to provide a physical insight into the mechanisms of cavitation shedding dynamics.
APA, Harvard, Vancouver, ISO, and other styles
9

Gevari, Moein Talebian, Ayhan Parlar, Milad Torabfam, Ali Koşar, Meral Yüce, and Morteza Ghorbani. "Influence of Fluid Properties on Intensity of Hydrodynamic Cavitation and Deactivation of Salmonella typhimurium." Processes 8, no. 3 (March 10, 2020): 326. http://dx.doi.org/10.3390/pr8030326.

Full text
Abstract:
In this study, three microfluidic devices with different geometries are fabricated on silicon and are bonded to glass to withstand high-pressure fluid flows in order to observe bacteria deactivation effects of micro cavitating flows. The general geometry of the devices was a micro orifice with macroscopic wall roughness elements. The width of the microchannel and geometry of the roughness elements were varied in the devices. First, the thermophysical property effect (with deionized water and phosphate-buffered saline (PBS)) on flow behavior was revealed. The results showed a better performance of the device in terms of cavitation generation and intensity with PBS due to its higher density, higher saturation vapor pressure, and lower surface tension in comparison with water. Moreover, the second and third microfluidic devices were tested with water and Salmonella typhimurium bacteria suspension in PBS. Accordingly, the presence of the bacteria intensified cavitating flows. As a result, both devices performed better in terms of the intensity of cavitating flow with the presence of bacteria. Finally, the deactivation performance was assessed. A decrease in the bacteria colonies on the agar plate was detected upon the tenth cycle of cavitating flows, while a complete deactivation was achieved after the fifteenth cycle. Thus, the proposed devices can be considered as reliable hydrodynamic cavitation reactors for “water treatment on chip” applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Orekhov, Genrikh. "Cavitation in swirling flows of hydraulic spillways." E3S Web of Conferences 91 (2019): 07022. http://dx.doi.org/10.1051/e3sconf/20199107022.

Full text
Abstract:
During operation of high-head hydraulic spillway systems, cavitation phenomena often occur, leading to destruction of structural elements of their flow conductor portions. The article is devoted to the study of erosion due to cavitation in the circulation flows of eddy hydraulic spillways, including those equipped with counter-vortex flow energy dissipators. Cavitation destructive effects depend on many factors: intensity consisting in the rate of decrease in the volume or mass of a cavitating body per unit of time, the stage of cavitation, geometric configuration of the streamlined body, the content of air in water, the flow rate, the type of material. The objective of the study consisted in determination of cavitation impacts in circulating (swirling) water flows. The studies were conducted by a method of physical modeling using high-head research installations. Distribution of amplitudes of pulses of shock cavitation impact is obtained according to the frequency of their occurrence depending on the flow velocity, the swirl angle, the height of the cavitating drop wall and the stage of cavitation. The impact energy depending on the stage of cavitation and the flow rate is given for different operating modes of the counter-vortex flow energy dissipators of a hydraulic spillway. In the conclusions, it is noted that cavitation impacts in the circulation flows occur mainly inside the flow, which is a fundamental difference from similar processes in axial flows.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cavitating Flows"

1

Wang, Yi-Chun Brennen Christopher E. "Shock waves in bubbly cavitating flows /." Diss., Pasadena, Calif. : California Institute of Technology, 1996. http://resolver.caltech.edu/CaltechETD:etd-02282006-144334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmed, Zayed. "Quantitative flow measurement and visualization of cavitation initiation and cavitating flows in a converging-diverging nozzle." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35522.

Full text
Abstract:
Master of Science
Department of Mechanical and Nuclear Engineering
B. Terry Beck
Mohammad H. Hosni
Cavitation is the formation of vapor phase from the liquid phase by reduction in its absolute pressure below the saturation pressure. Unlike boiling, where the temperature of the liquid is increased to cause vaporization, the reduction in the pressure alone can cause the liquid to turn into vapor. Cavitation is undesirable in many engineering applications as it is associated with reduction in efficiency and is known to cause damage to pump and propeller components. However, the endothermic nature of cavitation could be utilized to create a region of low temperature that could be utilized to develop a new refrigeration cycle. The work presented in this thesis is part of ongoing research into the potential cooling capacity of cavitation phenomena, where the cavitation in a converging-diverging nozzle is being investigated. Due to the constricting nature of the throat of the converging-diverging nozzle, the liquid velocity at the throat is increased, obeying the continuity law. With an increase in velocity, a reduction in absolute pressure is accompanied at the throat of the nozzle according to the Bernoulli’s principle. The local absolute pressure at the throat can go lower than the saturation vapor pressure, thereby causing the fluid to cavitate. The effect of water temperature on the flowrates, the onset of cavitation within the nozzle, and the resulting length of the cavitation region within the nozzle are the subject of this thesis. Experimental results and analysis are presented which also show that near the onset of cavitation, the flowrate can go beyond the choked flowrate, causing the local pressure in the throat to go well below zero for an extended amount of time in the metastable state, before nucleating (cavitating) into a stable state. Flow visualization using a high speed digital camera under different operating conditions was aimed at investigating the region of cavitation onset, which appears to be associated with boundary layer separation just downstream of the nozzle throat. In order to delay the boundary layer separation point in the downstream section of the nozzle, the diffuser region of the nozzle was modified to enable two flow paths, where one path would suck the flow near the inner walls of the nozzle and the other would allow the bulk of the flow to pass through. This was achieved with the use of inserts. Various inserts were tested in an attempt to capture the effect of inserts on the cavitation phenomena. Their effect on the flowrates, length of two phase region, and cavitation onset are presented in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
3

Preston, Alastair Thomas Colonius Timothy E. "Modeling heat and mass transfer in bubbly cavitating flows and shock waves in cavitating nozzles /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-12182003-150738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sezal, İsmail Hakkı. "Compressible dynamics of cavitating 3-D multi-phase flows." München Verl. Dr. Hut, 2009. http://mediatum2.ub.tum.de/node?id=684068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Şenocak, Inanç. "Computational methodology for the simulation of turbulent cavitating flows." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1001181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jeshani, Mahesh. "Optical characterisation of cavitating flows in diesel fuel injection equipment." Thesis, City University London, 2013. http://openaccess.city.ac.uk/3414/.

Full text
Abstract:
The recent advances in Fuel Injection Equipment (FIE) have led to the identification of deposits found in the fuel filters and injector equipment. The work carried out here identifies the effects of cavitating flows on the physical and chemical properties of diesel fuel in order to try to evaluate the mechanism for deposit formation in FIE equipment using optical techniques to characterise the cavitating flows. Two sets of experiments have been carried out in order to understand the impact of cavitating flow on diesel fuels. The first experiment investigated the effects of sustained cavitating flow using a fuel recirculation rig. Samples of commercial diesel were subjected to forty hours of intense cavitating flow across a diesel injector in a specially designed high-pressure recirculation flow rig. Changes to the optical absorption and scattering properties of the diesel over time were identified by the continuous measurement of spectral attenuation coefficients at 405 nm by means of a simple optical arrangement. Identical diesel samples ~ere maintained at 70°C for forty hours in a heated water bath, in order to distinguish the effects of hydrodynamic cavitation and the regulated temperature on the cavitated diesel samples. The commercial diesel samples subjected to high pressure cavitating flow and heat tests revealed a response to the flow and temperature history that was identified by an increase in the optical attenuation coefficients of the cavitated and heated samples. The contribution of cavitating flow and temperature to the variation in spectral attenuation coefficient was identified. It was hypothesised that the increases observed in the spectral attenuation coefficients of the cavitated commercial diesels were caused by the cavitation affecting the aromatics in the commercial diesel . samples. The fuels were sent for a GC x GC and particle count analysis and results show significant increase in particle number count in the fuels as a result of cavitating flow. An increase in particle count to such high magnitudes was not observed for the heat test samples. Qualitative chemical modelling results of the pyrolysis of fuel vapour cavities during collapse at high pressures and temperatures have shown possible pathways leading to the formation of particulates. The presence of aromatics in diesel fuel was considered to be key species to the formulation of soot particles, however at extreme pressures and temperature paraffins may also have the propensity to breakdown into aromatics and further on to the formation of soot particles as observed by the pathway analysis in the modelling in the appendix. The second study undertaken involved the analysis of the near nozzle external spray dropsizing and atomisation characteristics of fuels with different distillation profiles using LIF-MIE image ratios. The LIF -Mie image ratios were simultaneously captured synchronously with the internal nozzle hole cavitating flow. Internal nozzle flow and sac observations after needle return have led to the conclusions that flow angular momentum is sustained in the sac flow after needle return. This flow was observed to have a high angular momentum which reduced over time. During the end of needle return, bubbles were observed in the sac hole forming as a result of needle cavitation. These bubbles retained the angular momentum of the flow post injection (after needle seal). The vortical motion in the sac lead to regions of high and low pressures in the sac volume and thus resulted in suction and discharge of bubble in the nozzle holes. The bubbles may have a high propensity of containing a mixture of fuel and air vapour whereas the suction and discharge offers a pathway to external gases entering the nozzle holes and sac volume. For operating engine conditions this would be post-combustion exhaust gases re-entering the nozzle holes. The combination of the bubble formation, its vOI1Ical motion due to the angular momentum of the liquid flow, its composition and high temperature, may form ideal conditions for pyrolysis like reactions which may lead to the formation of soot particles and deposits in the nozzle hole, sac and needle. Fuels with different distillation profiles were investigated to observe their external drop sizing distributions at 350 bar injection pressure. Results showed that fuels with lighter fractional compositions which also had lower viscosity produced lower Sauter Mean Diameter (SMD) distributions than fuels with higher distillation fractions and higher viscosity. Whether this is as a consequence of the distillation profile alone and is not influenced by the viscosity differences has not been investigated yet and would form the basis of further investigations and publications.
APA, Harvard, Vancouver, ISO, and other styles
7

Podbevsek, Darjan. "Optical probing of thermodynamic parameters and radical production in cavitating micro-flows." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1210/document.

Full text
Abstract:
Une zone de constriction dans un micro-canal fluidique peut générer, si le débit est suffisant, un écoulement bi-phasique. Ceci est l’origine de la cavitation hydrodynamique. Les échanges de chaleur latente générés par l’apparition et l’implosion des bulles impliquent une variabilité importante de la température dans les zones au-delà de la constriction. En ajoutant des sondes de température nanométriques dans le fluide et en utilisant un microscope confocal on peut déterminer la température en un point. Ainsi on a pu établir des cartographies thermiques en 2 et 3 dimensions à l’intérieur d’un écoulement stationnaire bi-phasique. La technique permet en outre d’avoir accès à la quantité de gaz ce qui permet de corréler les gradients de température avec les zones de transitions de phases. Des zones de très forts refroidissements sont observées après la constriction, là où les bulles apparaissent. Par contre on n’observe pas les zones d’échauffement attendu à cause de la condensation. Une méthode complémentaire, moins sensible, utilisant la spectroscopie Raman a aussi été utilisée pour confirmer ce résultat. Par ailleurs une nouvelle classe de matériaux luminescents sensible à la température et la pression a été étudiée. Enfin une étude de la production de radicaux lors de l’implosion des bulles a été menée en utilisant la chimiluminescence du luminol. La technique utilisée par comptage de photons a permis de quantifier cette production et une cartographie de l’émission du luminol a permis d’associer celle-ci avec la zone d’implosion des bulles
A constriction in the microchannel can be used to establish a two-phase flow, when a sufficient liquid flux is introduced. This is known as hydrodynamic cavitation. The latent heat resulting from the growing and collapsing vapor bubbles makes it interesting to observe the temperature conditions in the flow downstream of the constriction. Using fluorescence microscopy, with the addition of temperature sensitive nano probes into the working fluid, we can determine the temperature at a single point, averaged over the integration time. Coupled with a confocal microscope, we were able to produce two and three dimensional temperature maps of the steady state flow in the microchannel by the use of ratiometric intensity measurements. This technic allows us to observe temperature gradients in two-phase flow as well yielding the void fraction information. Areas of substantial cooling are observed downstream the constriction in the two-phase flow, linked to the bubble growth, while heating regions due to condensations are missing. A complementary, yet less sensitive probe-less technique using the inherent Raman scattering signal of the liquid, was used to confirm the findings. A separate study evaluating a new group of luminescent materials for optical temperature and pressure probes is performed and discussed herein. Finally, the luminol chemiluminescent reaction with radicals produced by the cavitating flow, is used to obtain a corresponding photon yield. By counting the photons produced, an estimate on the radical yield can be obtained. Additionally, rudimentary mapping of the chemiluminescence signal allows the localization of the bubble collapse regions
APA, Harvard, Vancouver, ISO, and other styles
8

Gaschler, Maria [Verfasser], and Moustafa [Akademischer Betreuer] Abdel-Maksoud. "Numerical modelling and simulation of cavitating marine propeller flows / Maria Gaschler ; Betreuer: Moustafa Abdel-Maksoud." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2017. http://d-nb.info/1136955143/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Egerer, Christian [Verfasser], Nikolaus A. [Akademischer Betreuer] [Gutachter] Adams, and Stefan [Gutachter] Hickel. "Large-Eddy Simulation of Turbulent Cavitating Flows / Christian Egerer ; Gutachter: Stefan Hickel, Nikolaus A. Adams ; Betreuer: Nikolaus A. Adams." München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1124154744/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beban, Bruno [Verfasser], Nikolaus A. [Akademischer Betreuer] Adams, Romuald [Gutachter] Skoda, and Nikolaus A. [Gutachter] Adams. "Numerical Simulation of Submerged Cavitating Throttle Flows / Bruno Beban ; Gutachter: Romuald Skoda, Nikolaus A. Adams ; Betreuer: Nikolaus A. Adams." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1187443921/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Cavitating Flows"

1

author, Kirschner Ivan N., and Uhlman James S. author, eds. The hydrodynamics of cavitating flows. Fair Lawn, NJ: Backbone Publishing Company, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cavitation and bubble dynamics. New York: Oxford University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

C, Humphrey J. A., American Society of Mechanical Engineers. Winter Meeting, and American Society of Mechanical Engineers. Heat Transfer Division., eds. Significant questions in buoyancy affected enclosure or cavity flows. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leighton, T. G. The cavitation of bubbles containing mon-, di-. and tri-atomic gases: Discussion through modelling of dynamics using the Gilmore equation. Southampton, U.K: University of Southampton, Institute of Sound and Vibration Research, Fluid Dynamics and Acoustics Group, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leighton, T. G. Sonoluminescence from flow over a hydrofoil in a cavitation tunnel. Southampton, England: University of Southampton, Institute of Sound and Vibration Research, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greenspan, Donald. Molecular cavity flow. Arlington: Dept. of Mathematics, University of Texas at Arlington, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Symposium on Cavitation and Multiphase Flow Noise (1986 Anaheim, Calif.). International Symposium on Cavitation and Multiphase Flow Noise--1986: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, December 7-12, 1986. New York, N.Y. (345 E. 47th St., New York 10017): ASME, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. National Aeronautics and Space Administration. and U.S. Army Research Laboratory., eds. An efficient numerical procedure for thermodydrodynamic [sic] analysis of cavitating bearings. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

D, Vijayaraghavan, United States. National Aeronautics and Space Administration., and U.S. Army Research Laboratory., eds. Film temperatures in the presence of cavitation. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

D, Vijayaraghavan, United States. National Aeronautics and Space Administration., and U.S. Army Research Laboratory., eds. Film temperatures in the presence of cavitation. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cavitating Flows"

1

Adams, Nikolaus A., and Steffen J. Schmidt. "Shocks in Cavitating Flows." In Bubble Dynamics and Shock Waves, 235–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34297-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tsujimoto, Yoshinobu. "Stability Analysis of Cavitating Flows Through Inducers." In Fluid Dynamics of Cavitation and Cavitating Turbopumps, 191–210. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Saurel, Richard, and Fabien Petitpas. "A hyperbolic non equilibrium model for cavitating flows." In Fluid Dynamics of Cavitation and Cavitating Turbopumps, 279–316. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salvetti, Maria-Vittoria, E. Sinibaldi, and F. Beux. "Towards the simulation of cavitating flows in inducers through a homogeneous barotropic flow model." In Fluid Dynamics of Cavitation and Cavitating Turbopumps, 317–51. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saurel, Richard, Olivier Le Métayer, and Pierre Boivin. "From Cavitating to Boiling Flows." In Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 259–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, C. J., Y. S. He, X. Chen, and Y. Chen. "Numerical and Experimental Research on Cavitating Flows." In New Trends in Fluid Mechanics Research, 45–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abbassi, Aicha, Rabeb Badoui, Lassaad Sahli, and Ridha Zgolli. "Numerical Modelling of Cavitating Flows in Venturi." In Advances in Mechanical Engineering and Mechanics, 231–38. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19781-0_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Goncalves, E., J. Decaix, and B. Charriere. "Numerical Study of 3D Turbulent Cavitating Flows." In Progress in Hybrid RANS-LES Modelling, 455–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70031-1_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Örley, F., T. Trummler, M. S. Mihatsch, S. J. Schmidt, and S. Hickel. "LES of Cavitating Nozzle and Jet Flows." In Direct and Large-Eddy Simulation X, 133–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63212-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goncalves, Eric. "Numerical Simulation of Cavitating Flows with Different Cavitation and Turbulence Models." In Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines, 179–233. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49719-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Cavitating Flows"

1

Xu, Changhai, Stephen D. Heister, Stephen H. Collicott, and Che-Ping Yeh. "Modeling Cavitating Venturi Flows." In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peles, Yoav, and Brandon Schneider. "Hydrodynamic Cavitation and Boiling in Refrigerant (R-123) Flow Inside Microchannels." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96030.

Full text
Abstract:
This report investigates the effect that hydrodynamic cavitation has on heat transfer. The fluid medium is refrigerant R-123 flowing through 227 μm hydraulic diameter microchannels. The cavitation is instigated by the inlet orifice. Adiabatic tests were conducted to study the two-phase cavitating flow morphologies and hydrodynamic characteristics of the flow. Diabatic experiments were performed resulting in surface temperatures under heat fluxes up to 213 W/cm2 and mass velocities from 622 kg/m2s to 1368 kg/m2s. Results were compared to non-cavitating flows at the same mass velocities. It was found that the cavitating flows can significantly enhance the heat transfer. The heat transfer coefficient of the cavitating flows was larger than the non-cavitating flows by as much as 84%.
APA, Harvard, Vancouver, ISO, and other styles
3

Ahuja, Vineet, Ronald Ungewitter, and Ashvin Hosangadi. "Simulation of Cavitating Flows in Turbopumps." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kinzel, Michael, Jules Lindau, Leonard Peltier, Robert Kunz, and Venkateswaran Sankaran. "Detached-Eddy Simulations for Cavitating Flows." In 18th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-4098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamanishi, Nobuhiro, Chisachi Kato, and Yoichiro Matsumoto. "LES Analysis of a Rocket Turbopump Inducer in Non-Cavitating and Cavitating Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45406.

Full text
Abstract:
A large eddy simulation (LES) of a rocket turbopump inducer in non-cavitating and cavitating flows is presented. The computation takes full account of the interaction between the rotating inducer and the stationary casing by using a multi-frame-of-reference dynamic overset grid approach. A streamline-upwind finite element formulation with second-order accuracy both in time and space is used to discretize the governing equation. It is implemented in parallel by a domain-decomposition-programming model. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. The internal flow of an inducer is simulated and compared with water tunnel experiments at the design (φ = 0.078) and off-design conditions (φ = 0.05 and 0.09) in non-cavitating flows. The overall head-flow characteristics of computed results show good agreement with experiments. Such results show that the applied LES code can be used as a design tool for rocket turbopump inducers.
APA, Harvard, Vancouver, ISO, and other styles
6

De Giorgi, Maria Grazia, Pietro Marco Congedo, Maria Giovanna Rodio, and Antonio Ficarella. "Shape Optimization for Cryogenic Cavitating Flows Past an Isolated Hydrofoil." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55119.

Full text
Abstract:
The aim of this paper is shape optimization of a cryogenic flow past an isolated hydrofoil in order to reduce the cavitation. The numerical simulation of cavitating flows has been performed by way of the commercially available code Fluent (release 6.3), implementing a cavitation model by using external routines. The model is based on a simplified Rayleigh-Plesset equation, and takes into account both nucleation and thermal effects. This study has been divided in two parts. Firstly the cavitation model has been validated by comparison with experimental data, in particular, water cavitation on a NACA0015 airfoil and hydrogen cavitating flow over an external profile. Secondly, Fluent has been coupled with a multi-objective genetic algorithm (MOGA). Genetic algorithms have proved their interest with respect to gradient-based methods because of their high flexibility, and also because of their ability to find global optima of multi-modal problem. The representation of the design space has been previously investigated through a Design of Experiment (DOE) procedure. A shape optimization of an hydrofoil has been computed in order to minimize the vapor volume in different operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

De Giorgi, Maria Grazia, Antonio Ficarella, and Donato Fontanarosa. "Active Control of Unsteady Cavitating Flows in Turbomachinery." In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-92041.

Full text
Abstract:
Abstract A preliminary 2D numerical investigation of the active control of unsteady cavitation by means of one single synthetic jet actuator (SJA) is presented. The SJA has been applied to hinder the intrinsic instabilities of a cloud cavitating flow of water around a NACA 0015 hydrofoil with an angle of attack of 8° and ambient conditions. It has been placed inside the inception region at a distance of 16% of the chord from the leading edge. Concerning the numerical approach, a Eulerian homogeneous mixture/mass transfer model has been used, in combination with an extended Schnerr-Sauer cavitation model and a Volume of Fluid (VOF) interface tracking method. The synthetic jet has been modeled by means of a user-defined velocity boundary conditions based on a sinusoidal waveform. A sensitivity analysis has been first performed in order to evaluate the influence of the main control parameters, namely the momentum coefficient Cμ, the dimensionless frequency F+ and the jet angle αjet. By combining the cavitating vapor content and the impact on the hydrodynamic performance, the best performing SJA configuration has been retrieved. Then, a deeper analysis of the vapor cavity dynamics and the vorticity field has been conducted in order to understand the modification of the main flow produced by the synthetic jet. The best SJA configuration was observed at Cμ = 0.0002, F+ = 0.309 and αjet = 90°, which led to a reduction of both the average vapor content and the average torsional load in the measure of 34.6% and 17.8% respectively. A reduction of the average pulsation frequency of the pressure upstream confirmed the beneficial effect of the SJA. The analysis of the coupled dynamics between vapor cavity-vorticity and their POD-based modal structures highlighted that the benefit of the SJA lies on preventing the growth of a thick sheet cavity which tends to cause the development of the highly cavitating cloud dynamics after the cavity breakup. This is mainly due to an additional vorticity close to the hydrofoil surface just downstream the SJA, as well as a local pressure modification close the SJA during the blowing stroke.
APA, Harvard, Vancouver, ISO, and other styles
8

Zeidan, D., E. Goncalves, and A. Slaouti. "Computer simulations of cavitating two-phase flows." In 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013: ICNAAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4825457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bagaev, D., S. Yegorov, M. Lobachev, A. Rudnichenko, and A. Taranov. "Numerical simulation of cavitating flows in shipbuilding." In THE EIGHTH POLYAKHOV’S READING: Proceedings of the International Scientific Conference on Mechanics. Author(s), 2018. http://dx.doi.org/10.1063/1.5034631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Goncalvès, Eric, Maxime Champagnac, and Regiane Fortes Patella. "Numerical Simulations of Cavitating Flows in Venturi." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991047.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Cavitating Flows"

1

Lindau, Jules W. Modeling of Cavitating Flow through Waterjet Propulsors. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada621898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chahine, G. L., K. Sarkar, and R. Duraiswami. Strong Bubble/Flow Interactions and Cavitation Inception. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada324534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bastawissi, Hagar Alm El-Din, and Medhat Elkelawy. JAECFD Simulation Analysis of Cavitating Flow in a Real Size Diesel Engine Injector Nozzle. Warrendale, PA: SAE International, October 2012. http://dx.doi.org/10.4271/2012-32-0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bastawissi, Hagar, and Medhat Elkelawy. CFD Simulation Analysis of Cavitating Flow in a Real Size Diesel Engine Injector Nozzle. Warrendale, PA: SAE International, September 2010. http://dx.doi.org/10.4271/2010-32-0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharpe, D. R., G. Leduc, C. S. Smart, and J. Shaw. Georgian Bay bedrock erosion: evidence for regional floods, Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331409.

Full text
Abstract:
We provide an updated presentation of the spectacular erosion forms at French River Ontario (Kor et al. 1991) based on new methods of data collection and wider observations. This work includes ~ 10 more detailed study sites, documentation of the range of forms over a larger area, the use of extensive drone image capture and ground surveys, as well as a detailed inventory of forms. Key sites are illustrated using video images. The update extends the conclusions of the Kor paper regarding the significance and scale of subglacial meltwater erosion with some novel findings. We document the importance of plucking (including hydraulic plucking) and, the control of structure on s-forms, which were not highlighted in the Kor study. Apparent cavitation erosion forms are prominent across the study area and provide support for inferred high-velocity meltwater flow. A growing interpretative framework includes discussion of evidence to test a theorized hydraulic sequence of sheet-channel-distributed flow, followed by re-grounding of glacial ice as meltwater flow waned. This hydraulic sequence may also be complementary to observations in thick sediment terrain down flow.
APA, Harvard, Vancouver, ISO, and other styles
6

Kamiya, Akira. Prediction of the Cavitation Effect on the Flow Around the Outboard Motor Propeller Blade Hydrofoil Section Using CFD. Warrendale, PA: SAE International, October 2013. http://dx.doi.org/10.4271/2013-32-9157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cohen, Shabtai, Melvin Tyree, Amos Naor, Alan N. Lakso, Terence L. Robinson, and Yehezkiel Cohen. Influence of hydraulic properties of rootstocks and the rootstock-scion graft on water use and productivity of apple trees. United States Department of Agriculture, 2001. http://dx.doi.org/10.32747/2001.7587219.bard.

Full text
Abstract:
This one year exploratory project investigated hydraulic architecture of apple dwarfing rootstocks. The hypothesis was that hydraulic conductance is correlated with rootstock vigor. A previous study of trees on three rootstocks in Israel showed that dwarfed trees used less water than un-dwarfed trees. Analysis showed that if the tree maintains leaf water potentials above minimum values, then this implies that the dwarfed trees have lower leaf conductance, which may also be the cause of dwarfing. The current project studied small 2-year old unworked rootstock trees, and full sized trees bearing commercial yields. In both cases hydraulic conductance was determined with two methods - the non-destructive evaporative flux (EF)-leaf water potential (L WP) method, and a destructive method in which water was forced through the plant at known pressure using the "high pressure flow meter" (HPFM). Detailed work allowed measurement of conductance of the rootstock-scion union. This was achieved both with the HPFM and with the EF-LWP methods, the former in the US and the latter in Israel. Direct measurements of leaf conductance were made, and carbon isotope ratios ( d ¹³ C) were determined for leaves sampled at the end of the season. The latter can indicate sustained differences in leaf conductance behavior. HPFM and EF-LWP methods did not give the same results. In the small plants results were similar in magnitude, but not significantly correlated. In large trees, EF- L WP measurements were a fraction of those obtained with the HPFM. The latter indicates that some of the xylem is not normally functional but transports water when pressurized. Additional experimental work targeted this result. Xylem was stained before and after perfusion with water at high pressure. This showed that at least for one rootstock a significant amount of xylem was blocked before perfusion. The "air method" for determining xylem vessel properties was improved and employed. Length, radius and density of xylem vessels of different rootstocks were found to be similar, and significant differences found were not clearly related to rootstock vigor. Measurements in the commercial orchard in Israel showed that the graft union in a dwarfing rootstock was a large obstacle for water transport (i.e. had a high resistance). This apparently led to low leaf conductance to water vapor, as indicated by lower d ¹³ C, which implies low internal CO ₂ concentrations. In the US orchard, d ¹³ C in 2001 was correlated with rootstock vigor, and significant differences were found in leaf conductance. However, the d ¹³ C differences were not observed in 2002, were opposite to those found in the Israeli orchard, and measurements of the graft union with the HPFM did not find large resistances. We speculate that the graft union is not necessarily a large impediment to water transport unless the scion starts to separate from the rootstock. It was concluded that significant differences in hydraulic conductance exist between different dwarfing rootstocks. These differences may be caused by differences in xylem properties and in the degree of cavitation, as well as resistance in the graft union. However, no general relationship to rootstock vigor was found. Therefore, hydraulic conductance alone cannot explain dwarfing, but may be one of two or more factors that lead to dwarfing. Future work should integrate more factors with hydraulic relations, e.g. nutrient and solute transport and production of hormones.
APA, Harvard, Vancouver, ISO, and other styles
8

Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/10103973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography