Academic literature on the topic 'Cattle Breeding'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cattle Breeding.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Cattle Breeding"
Garmaev, D. T., and A. V. Tsydypova. "CATTLE BREEDING IN THE REPUBLIC OF BURYATIA: PROBLEMS AND PROSPECTS FOR DEVELOPMENT." Scientific Review Theory and Practice 11, no. 7 (2021): 2070–82. http://dx.doi.org/10.35679/2226-0226-2021-11-7-2070-2082.
Full textPenny, Colin. "Controlled breeding in cattle." In Practice 20, no. 7 (July 1998): 351–57. http://dx.doi.org/10.1136/inpract.20.7.351.
Full textХАЙНАЦКИЙ, В. Ю. "BEEF CATTLE BREEDING INFRACTRUCTURE." Molochnoe i miasnoe skotovodstvo, no. 5 (October 14, 2022): 3–8. http://dx.doi.org/10.33943/mms.2022.65.86.001.
Full textIVANOV, YU A., and V. Y. SIDOROVA. "ZOOROBOT FOR CATTLE BREEDING." Техника и технологии в животноводстве, no. 1 (2024): 4–10. http://dx.doi.org/10.22314/27132064-2024-1-4.
Full textDatrianto, Dwi Sunu, Soedarmanto Indarjulianto, Alfarisa Nururrozi, Alsi Dara Paryuni, Topas Wicaksono Priyo Jr, Yosua Kristian Adi, and Azzahra Fairuz Vervena Egan. "The Study of Body Condition Score and Macro Minerals on Fertile and Repeat Breeding Cattle in Ngaglik Sub-District." Scholars Journal of Agriculture and Veterinary Sciences 11, no. 03 (May 7, 2024): 26–29. http://dx.doi.org/10.36347/sjavs.2024.v11i03.001.
Full textShumeiko, N. "Efficiency of breeding work in dairy cattle breeding." IOP Conference Series: Earth and Environmental Science 274 (June 7, 2019): 012081. http://dx.doi.org/10.1088/1755-1315/274/1/012081.
Full textDerry, Margaret E. "North American Beef Breeding and the Modernization of the International Cattle Breeding Industries, 1950–2000." Agricultural History 96, no. 1-2 (May 1, 2022): 187–221. http://dx.doi.org/10.1215/00021482-9619838.
Full textRomjali, Endang. "Local Beef Cattle Breeding Program in Indonesia." Indonesian Bulletin of Animal and Veterinary Sciences 28, no. 4 (February 21, 2019): 199. http://dx.doi.org/10.14334/wartazoa.v28i4.1813.
Full textБОГОЛЮБОВА, Л. П., С. В. НИКИТИНА, Е. А. МАТВЕЕВА, and Е. Е. ТЯПУГИН. "BREEDS COMPOSITION IN THE BREEDING MEAT CATTLE BREEDING IN RUSSIA." Molochnoe i miasnoe skotovodstvo, no. 1 (February 24, 2021): 10–12. http://dx.doi.org/10.33943/mms.2021.29.45.002.
Full textTombuku, Anggella T., and Ratri Retno Ifada. "Level of Glucose, Cholesterol and Albumin of repeatedly breed Madura Cattle." E3S Web of Conferences 316 (2021): 03013. http://dx.doi.org/10.1051/e3sconf/202131603013.
Full textDissertations / Theses on the topic "Cattle Breeding"
Skrypzeck, Heidi. "An assessment of the contributions of Afrikaner, Hereford and Simmentaler in composite breed development in beef cattle." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51591.
Full textENGLISH ABSTRACT: The objective of this study was to obtain more information regarding the characterisation of Afrikaner (A), Hereford (H) and Simmentaler (S) breeds in an initial crossbreeding programme and subsequent composite development. This involves the estimation of breed additive effects, breed maternal, individual heterotic effects and maternal heterotic effects in the initial crossbreeding phase and the estimation of genetic parameters and prediction of breeding values in later generations for birth weight (BW), weaning weight (WW) and cow efficiency (CE; WW/dam weight" 75 x 100) in an intensive environment under high stocking rates. In the analysis of the initial crossbreeding phase, the S breed direct effects, expressed as deviation from the general mean, were positive (P :s; 0.01) for both BW and WW. Hereford and A breed direct effects were negative (P :s; 0.01) for both BW and WW. Afrikaner direct maternal effects were positive (P :s; 0.01) for both BW and WW. The H direct maternal effect was negative (P :s; 0.05) (- 2.8%) for WW. Simmentaler maternal effect was negative (P :s; 0.01) for BW but non-significant (P ;:::0:.05) for WW. Individual heterotic effects for BW were significant (P:S; 0.01) in H x S (3.5%) and S x A (11.0%) only. Individual heterotic effects were positive (P :s; 0.01) for WW, with that of the H x A (9.8%) and S x A (6.7%) crosses exceeding the H x S (3.1%) cross. Maternal heterotic effects were non-significant (P ;:::0:.05) for both BW and WW. Investigations of the contributions of the A, Hand S during composite development in later generations, respectively, were made to estimate direct heritabilities (h2 a) and maternal heritabilities (h2 m) for BW and WW of the calf and CE of the dam. Calves were born between 1968 and 1993 (n = 52628). Calves of this composite population had varying levels of A, Hand S genes ranging from o to 75%, 0 to 100% and 0 to 96.9%, with an average of 4.3,19.3 and 33.4%, respectively. For the A, direct heritabilities fitting unitrait models were 0.67, 0.53 and 0.19 for BW, WW and CE, respectively, with corresponding estimates of h2mbeing 0.22, 0.36 and 0.58. Genetic correlations between direct and maternal effects (ram)were negative for all three traits, varying from -0.32 to - 0.62. Direct breeding values for BW increased and reached a maximum value at 0.11 proportion of A. The maternal breeding values for BW decreased linearly between 1.6 to 37.5% A proportion and increased linearly between 37.5 to 75% A proportion. For WW, the direct breeding values decreased linearly with increasing A proportion, while the maternal breeding values were not affected by proportion of A. Cow efficiency was unaffected by an increase in proportion of A. For the H, direct heritabilities fitting unitrait models were 0.67,0.52 and 0.21 for BW, WW and CE, respectively, with corresponding estimates of h2mbeing 0.22, 0.36 and 0.60. Genetic correlations between direct and maternal effects (ram)were negative for all three traits, varying from -0.32 to - 0.64. Direct breeding values and maternal breeding values for BW and WW decreased with increasing proportion of H. Direct breeding value for CE increased, while the maternal breeding value for CE reached minimum value at 0.62 proportion ofH. For the S, direct heritabilities fitting unitrait models were 0.66, 0.53 and 0.21 for BW, WW and CE, respectively, with corresponding estimates of h2m being 0.22, 0.36 and 0.59. Genetic correlations between direct and maternal effects (ram)were negative for all three traits, varying from -0.32 to - 0.63. Direct breeding values for BW and WW decreased and maternal breeding values increased with increasing proportion of S. Cow efficiency was unaffected by an increase in proportion of S. The study suggests that in the initial crossbreeding phase, purebred S breeding seems to be the best breeding practice for this environment and that during composite development, high A and H contributions could lead to low BW and WW (except the maternal contribution of the A for BW and WW). The advantage of the S lies more in the maternal contribution than in the direct contribution suggesting that the S is a large-framed maternal line rather than a terminal sire line.
AFRIKAANSE OPSOMMING: 'N WAARDEBEP ALING VAN DIE BYDRAE VAN DIE AFRIKANER, SIMMENTALER EN HEREFORD TYDENS KOMPOSIETE RASONTWIKKELING BY VLEISBEESTE: Die doel van die studie was om inligting aangaande die karakterisering van die Afrikaner (A), Hereford (H) en Simmentaler (S) rasse tydens die oorspronklike aanvangsfase van kruisteling en daaropvolgende komposiet ontwikkeling te verkry. Dit het die beraming van direkte additiewe, individuele heterose, direkte materne en materne heterotiese effekte tydens die aanvangsfase van die kruisteeltprogram, die beraming van genetiese parameters en die voorspelling van die teeltwaardes in latere generasies behels. Die eienskappe wat ingesluit is, is geboortegewig (BW), speengewig (WW) en koeidoeltreffendheid (CE; WW/koeigewigo.75 ). Hierdie kudde is in 'n intensiewe maar onder 'n hoë weidingsdruk omgewing aangehou. Tydens die ontleding van die eerste kruisteeltfase is die direkte additiewe effekte vir die S, uitgedruk as afwyking van die algemene gemiddelde, vir beide BW en WW positief (P ~ 0.01). Direkte additiewe effekte vir die H en A was vir beide BW en WW negatief (P ~ 0.01). Afrikaner materne effekte was vir beide BW en WW (P ~ 0.01) positief. Die H direkte materne effekte was negatief (-2.8%) (P ~ 0.05) vir WW. Simmentaler maternal effekte was ook vir BW negatief (P ~ 0.01), maar nie-betekenisvol (P 20.05) vir WW. Individuele heterose was slegs betekenisvol (P ~ 0.01) vir kombinasies van H x S (3.5%) en S x H (11.0%) vir BW. Individuele heterose was positief (P ~ 0.01) vir WW waar H x A (9.8%) en S x A (6.7%) kruisings dié van die H x S (3.1%) kruising oortrefhet. Materne heterose was vir beide BW en WW nie-betekenisvol (P 2 0.05). Die relatiewe bydraes van die A, H en S is ook tydens komposiet-ontwikkeling bereken. Direkte additiewe oorerflikhede (h2 a) en materne oorerflikhede (h2m) is vir BW en WW van die kalf en CE van die koei beraam. Kalwers in die komposiet kudde, gebore tussen 1968 en 1993 (n = 52628), het variërende vlakke van A, H en S gene. Die samestelling het gevarieer van 0 - 75%, 0 - 100% en 0 - 96.9%, met 'n gemiddeld van 4.3, 19.3 en 33.4%. Vir die A was die direkte erfbaarhede (h2 a), soos deur die passing van 'n enkeleienskapmodel beraam, 0.67, 0.53 en 0.19 vir onderskeidelik BW, WW en CE, met ooreenstemmende beramings van 0.22, 0.36 en 0.58 vir h2 rn- Genetiese korrelasies tussen direkte en mateme effekte (ram)was almal negatief en het tussen -0.32 en -0.62 gewissel. Direkte teelwaardes vir BW het met toenemende A-bydrae gestyg en het 'n maksimum waarde by 0.11 bereik. Die mateme teelwaardes vir BW het lineêr gedaal tussen 1.6 en 37.5% A-bydrae en het weer lineêr tussen 37.5 en 75% Abydrae gestyg. Vir WW het die direkte teelwaardes lineêr met toenemende A-bydrae gestyg, terwyl die mateme teelwaardes nie deur A-bydrae beïnvloed was nie. Koeidoeltreffendheid was nie deur 'n toename in A-bydrae beïnvloed nie. Vir die H was die direkte erfbaarhede (h2 a), soos deur die passing van 'n enkeleienskapmodel beraam 0.67, 0.52 en 0.21 vir onderskeidelik BW, WW en CE, met ooreenstemmende beramings van 0.22, 0.36 en 0.60 vir h2 rn- Genetiese korrelasies tussen direkte en mateme effekte (ram)was almal negatief en het tussen -0.32 en -0.64 gewissel. Direkte teelwaardes en mateme teelwaardes vir BW en WW het met toenemende H-bydrae gedaal. Direkte teelwaarde vir CE het ook met toenemende If-bydrae gedaal, terwyl die mateme teelwaarde 'n minimum waarde by 0.62 H-bydrae bereik het. Vir die S was die direkte erfbaarhede (h2a), soos deur die passing van 'n enkeleienskapmodel beraam 0.66, 0.53 en 0.21 vir onderskeidelik BW, WW en CE, met ooreenstemmende beramings van 0.22, 0.36 en 0.59 vir h2 m- Genetiese korrelasies tussen direkte en mateme effekte (ram)was almal negatief en het tussen -0.32 en -0.63 gewissel. Direkte teelwaardes vir BW en WW het gedaal, terwyl die mateme teelwaardes met toenemende S-bydrae gestyg het. Koeidoeltreffendheid was nie deur 'n toename in S-bydrae beïnvloed nie. Die bevinding was dat tydens die ontleding van die eerste kruisteeltfase die teling van suiwer S aanbeveel word en dat tydens komposiete-ontwikkeling toenemende A- en H-bydraes neig om aanleiding te gee tot afnames in BW en WW (behalwe die mateme bydrae van die A vir BW en WW). Die S-bydrae se voordeel is meer in die mateme bydrae as in die direkte bydrae geleë en dui dus aan dat die S as 'n mateme grootraam lyn i.p.v. as 'n terminale bullyn gebruik moet word.
Matjuda, Lehotlo Ephraim. "Development breeding objectives for the nguni cattle breed in South Africa." Thesis, University of Limpopo (Turfloop Campus), 2012. http://hdl.handle.net/10386/862.
Full textAfolayan, Raphael Abiodun. "Genetics of growth and development in cattle." Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09pha2579.pdf.
Full textMazhar, Kehkashan. "Molecular genetic markers for selection and genome mapping in cattle." Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260797.
Full textMeacham, Nancy S. "Heritability estimates for calving date in Simmental cattle." Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45782.
Full textMaster of Science
Brown, Timothy P. (Timothy Phillip). "Selection indices in retrospect for dairy cattle." Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59266.
Full textGreen, Ronald T. "Evaluation of optimum and near optimum pair selection methods for increasing predicted relative net income in Jersey cattle." Thesis, Virginia Tech, 1987. http://hdl.handle.net/10919/45650.
Full textTo evaluate the importance of non-linear relationships between Relative net income per day of productive life (RNI/DPL) and individual traits, 921,915 potential offspring were simulated from all possible matings of 20,487 Jersey cows and 45 active AI sires. Predicted milk yield, fat yield, and 13 linear type traits of potential progeny were used to predict RNI/DPL of all potential progeny.
Five methods of mate selection and pairing were evaluated for their effectiveness in choosing mates and the amount of computer time required to choose those pairings. Results of a linear programming (LP) method were used as a comparison for the other four more easily applied methods. Two of the other four methods were not significantly (P > .01) different from the LP method. Although the random pairing method was significantly different, similarity of results, for this method indicated non-linear relationships between RNI/DPL and individual trait scores are of minor importance. A11 four methods used considerable less computer time than the LP method.
Analysis of variance for predicted RNI/DPL (all possible offspring) indicated herd, dam within herd, sire, and inbreeding class to be significant (P < .01) variables in determining RNI/DPL. However the sire by dam within herd interaction did not significantly affect RNI/DPL, again indicating non-linear relationships between traits and RNI/DPL were not very important.
Regressing PDâ s, Clâ s, and their crossproducts for milk yield, fat yield, and 13 linear type traits showed the relative importance of crossproducts to be minimal in comparison to the linear ellects of parental genetic evaluations.
Master of Science
Mitchell, Jay Douglas. "An Economic Assessment of Genetic Information: Leptin Genotyping of Breeding Cattle." Thesis, North Dakota State University, 2006. https://hdl.handle.net/10365/29904.
Full textBotha, Theunis Christoffel. "Effect of selected physical and production traits on the tick burdens of beef cattle." Thesis, Port Elizabeth Technikon, 2002. http://hdl.handle.net/10948/91.
Full textGotschi, Manuela. "The use of blood metabolic concentrations as indicators of the metabolic and productive status in dairy cows." Diss., Pretoria : [s.n.], 2000. http://upetd.up.ac.za/thesis/available/etd-01312008-145827.
Full textBooks on the topic "Cattle Breeding"
R, Fries, Ruvinsky Anatoly, and C. A. B. International, eds. The genetics of cattle. Wallingford, Oxon, UK: CABI Pub., 1999.
Find full textKlopčič, Marija, Reinhard Reents, Jan Philipsson, and Abele Kuipers, eds. Breeding for robustness in cattle. The Netherlands: Wageningen Academic Publishers, 2009. http://dx.doi.org/10.3920/978-90-8686-657-1.
Full textNaqvi, Arif-un-Nisa. Dairy cattle breeding in Pakistan. Islamabad: Pakistan Agricultural Research Council, 1989.
Find full textG, Hickman C., ed. Cattle genetic resources. Amsterdam: Elsevier Science Publishers, 1991.
Find full text(Ireland), Agricultural Institute, ed. Breeding dairy cattle under quota restrictions. Dublin: An Foras Talúntais, 1987.
Find full textIreland. Department of Agriculture and Food., ed. National breeding programme for beef cattle. [Dublin]: (Dept. of Agriculture and Food), 1988.
Find full textMpiri, D. B. Advances in cattle breeding in Tanzania. Dar es Salaam, Tanzania: Ministry of Agriculture & Livestock Development, Dept. of Research and Training, 1990.
Find full textBarth, A. D. Bull breeding soundness evaluation. Saskatoon: Western Canadian Association of Bovine Practitioners, 1994.
Find full textBall, P. J. H. Reproduction in cattle. 3rd ed. Oxford, UK: Blackwell Pub., 2004.
Find full textRosen, Sherwin. Cattle cycles. Cambridge, MA: National Bureau of Economic Research, 1993.
Find full textBook chapters on the topic "Cattle Breeding"
Simm, Geoff, Geoff Pollott, Raphael Mrode, Ross Houston, and Karen Marshall. "Dairy cattle breeding." In Genetic improvement of farmed animals, 234–91. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789241723.0234.
Full textMiglior, Filippo, Sarah Loker, and Roger D. Shanks. "Dairy Cattle Breeding." In Encyclopedia of Sustainability Science and Technology, 2781–88. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_338.
Full textBerry, Donagh. "Beef Cattle Breeding." In Encyclopedia of Sustainability Science and Technology Series, 191–221. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2460-9_1116.
Full textPryce, Jennie E. "Dairy Cattle Breeding." In Encyclopedia of Sustainability Science and Technology Series, 243–60. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2460-9_1117.
Full textSimm, Geoff, Geoff Pollott, Raphael Mrode, Ross Houston, and Karen Marshall. "Beef cattle breeding." In Genetic improvement of farmed animals, 292–318. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789241723.0292.
Full textBerry, Donagh. "Beef Cattle Breeding." In Encyclopedia of Sustainability Science and Technology, 1–32. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-4939-2493-6_1116-1.
Full textPryce, Jennie E. "Dairy Cattle Breeding." In Encyclopedia of Sustainability Science and Technology, 1–18. New York, NY: Springer New York, 2022. http://dx.doi.org/10.1007/978-1-4939-2493-6_1117-1.
Full textMiglior, Filippo, Sarah Loker, and Roger D. Shanks. "Dairy Cattle Breeding." In Sustainable Food Production, 740–46. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5797-8_338.
Full textSpangler, Matthew L. "Breeding breeding/breed, see also animal breeding in Beef Cattle breeding/breed, see also animal breeding beef cattle." In Encyclopedia of Sustainability Science and Technology, 1723–40. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_339.
Full textSpangler, Matthew L. "Breeding breeding/breed, see also animal breeding in Beef Cattle breeding/breed, see also animal breeding beef cattle." In Sustainable Food Production, 328–45. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-5797-8_339.
Full textConference papers on the topic "Cattle Breeding"
Skujina, Evija, and Irina Pilvere. "Development trends and challenges in beef cattle breeding in Latvia." In 24th International Scientific Conference. “Economic Science for Rural Development 2023”. Latvia University of Life Sciences and Technologies. Faculty of Economics and Social Development, 2023. http://dx.doi.org/10.22616/esrd.2023.57.056.
Full textKateris, Dimitrios, Anastasios Mitsopoulos, Charalampos Petkoglou, and Dionysis Bochtis. "Lameness Identification System in Cattle Breeding Units." In International Conference of the Hellenic Association of Agricultural Economists. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024094013.
Full textHoncharenko, I. V. "The cattle breeding in Ukraine: development conditions." In Current problems of modern animal husbandry. �������� ������������ �������� ������ "������-����" - ������������ ����������-���������� ����� � ���������, 2021. http://dx.doi.org/10.33694/978-966-1550-33-8-2021-0-0-33-35.
Full textKruhliak, O. V. "Effective management factor of pedigree dairy cattle breeding." In Current problems of modern animal husbandry. �������� ������������ �������� ������ "������-����" - ������������ ����������-���������� ����� � ���������, 2021. http://dx.doi.org/10.33694/978-966-1550-33-8-2021-0-0-51-52.
Full textDamyanov, Iliyan, Durhan Saliev, Kalin Dimitrov, and Vladimir Hristov. "Advanced management technologies for intelligent cattle breeding systems." In 2024 9th International Conference on Energy Efficiency and Agricultural Engineering (EE&AE). IEEE, 2024. http://dx.doi.org/10.1109/eeae60309.2024.10600554.
Full textGenov, Stefan. "METHODOLOGY FOR ECONOMIC EFFICIENCY EVALUATION AT BEEF CATTLE BREEDING." In AGRIBUSINESS AND RURAL AREAS - ECONOMY, INNOVATION AND GROWTH 2021. University publishing house "Science and Economics", University of Economics - Varna, 2021. http://dx.doi.org/10.36997/ara2021.334.
Full textVasiukov, Kostiantyn, Vadym Perenesiienko, Wioletta Sawicka-Zuga, Vasyl Terpai, and Witold Chabuz. "Milk production and cattle breeding in Ukraine – wartime challenges." In 2nd International PhD Student’s Conference at the University of Life Sciences in Lublin, Poland: ENVIRONMENT – PLANT – ANIMAL – PRODUCT. Publishing House of The University of Life Sciences in Lublin, 2023. http://dx.doi.org/10.24326/icdsupl2.a037.
Full textTarjan, Laslo, Ivana Senk, Doni Pracner, Dusan Rajkovic, and Ljuba Strbac. "Possibilities for applying machine learning in dairy cattle breeding." In 2021 20th International Symposium INFOTEH-JAHORINA (INFOTEH). IEEE, 2021. http://dx.doi.org/10.1109/infoteh51037.2021.9400672.
Full textIshchuk, Oksana V. "Problems of dairy cattle breeding development in the region." In Агропромышленный комплекс: проблемы и перспективы развития. Благовещенск: Дальневосточный государственный аграрный университет, 2022. http://dx.doi.org/10.22450/9785964205517_4_30.
Full textSuratma, Nyoman Adi, I. M. Dwinta, F. Mubarok, and A. N. Alamsyah. "Prevalence of Gastrointestinal Tract Worms in Bali Cattle at Bali Cattle Breeding Center, Sobangan, Badung." In Proceedings of International Seminar on Livestock Production and Veterinary Technology. Indonesian Center for Animal Research and Development (ICARD), 2016. http://dx.doi.org/10.14334/proc.intsem.lpvt-2016-p.153-155.
Full textReports on the topic "Cattle Breeding"
Freeman, A. E. Gene, and P. Jeffrey Berger. Overview of Dairy Cattle Breeding. Ames (Iowa): Iowa State University, January 2004. http://dx.doi.org/10.31274/ans_air-180814-103.
Full textSeroussi, E., L. Ma, and G. Liu. Genetic analyses of recombination and PRDM9 alleles and their implications in dairy cattle breeding. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134158.bard.
Full textWilson, Doyle E., Abebe T. Hassen, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Body Composition EPDs Determined from Ultrasound Measures. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-1066.
Full textWilson, D. E., Abebe T. Hassen, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Body Composition EPD Determined from Ultrasound Measures. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-125.
Full textWilson, Doyle E., Abebe T. Hassen, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Body Composition EPD Determined from Ultrasound Measures. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-1334.
Full textWilson, Doyle E., Abebe T. Hassen, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Body Composition EPDs Determined from Ultrasound Measures. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-453.
Full textFoote, Robert H., Samuel Amir, T. J. Reimers, Haim Schindler, and S. Eger. Hormonal Relationships to Milk Yield, Energy Balance and Breeding Efficiency in Dairy Cattle. United States Department of Agriculture, October 1986. http://dx.doi.org/10.32747/1986.7566708.bard.
Full textHassen, Abebe T., Doyle E. Wilson, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Growth-Trait EPDs for 1998- and 1999-Born Calves. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-68.
Full textHassen, Abebe T., Doyle E. Wilson, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Growth-Trait EPDs for 1998- and 1999-Born Calves. Ames: Iowa State University, Digital Repository, 2001. http://dx.doi.org/10.31274/farmprogressreports-180814-706.
Full textHassen, Abebe T., D. E. Wilson, Gene H. Rouse, and Richard G. Tait. Beef Cattle Breeding Project Progress Report: Growth Trait EPDs for 1998-, 1999-, and 2000-born Calves. Ames: Iowa State University, Digital Repository, 2002. http://dx.doi.org/10.31274/farmprogressreports-180814-705.
Full text