Academic literature on the topic 'Cation diffusion facilitators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Cation diffusion facilitators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Cation diffusion facilitators"

1

Hudek, L., L. Pearson, A. A. Michalczyk, L. Bräu, B. A. Neilan, and M. L. Ackland. "Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme." Journal of Applied Microbiology 119, no. 5 (September 24, 2015): 1357–70. http://dx.doi.org/10.1111/jam.12942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zeytuni, Natalie, René Uebe, Michal Maes, Geula Davidov, Michal Baram, Oliver Raschdorf, Merav Nadav-Tsubery, et al. "Cation Diffusion Facilitators Transport Initiation and Regulation Is Mediated by Cation Induced Conformational Changes of the Cytoplasmic Domain." PLoS ONE 9, no. 3 (March 21, 2014): e92141. http://dx.doi.org/10.1371/journal.pone.0092141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anton, Andreas, Annett Weltrowski, Christopher J. Haney, Sylvia Franke, Gregor Grass, Christopher Rensing, and Dietrich H. Nies. "Characteristics of Zinc Transport by Two Bacterial Cation Diffusion Facilitators from Ralstonia metallidurans CH34 and Escherichia coli." Journal of Bacteriology 186, no. 22 (November 15, 2004): 7499–507. http://dx.doi.org/10.1128/jb.186.22.7499-7507.2004.

Full text
Abstract:
ABSTRACT CzcD from Ralstonia metallidurans and ZitB from Escherichia coli are prototypes of bacterial members of the cation diffusion facilitator (CDF) protein family. Expression of the czcD gene in an E. coli mutant strain devoid of zitB and the gene for the zinc-transporting P-type ATPase zntA rendered this strain more zinc resistant and caused decreased accumulation of zinc. CzcD, purified as an amino-terminal streptavidin-tagged protein, bound Zn2+, Co2+, Cu2+, and Ni2+ but not Mg2+, Mn2+, or Cd2+, as shown by metal affinity chromatography. Histidine residues were involved in the binding of 2 to 3 mol of Zn2+ per mol of CzcD. ZitB transported 65Zn2+ in the presence of NADH into everted membrane vesicles with an apparent Km of 1.4 μM and a V max of 0.57 nmol of Zn2+ min−1 mg of protein−1. Conserved amino acyl residues that might be involved in binding and transport of zinc were mutated in CzcD and/or ZitB, and the influence on Zn2+ resistance was studied. Charged or polar amino acyl residues that were located within or adjacent to membrane-spanning regions of the proteins were essential for the full function of the proteins. Probably, these amino acyl residues constituted a pathway required for export of the heavy metal cations or for import of counter-flowing protons.
APA, Harvard, Vancouver, ISO, and other styles
4

Cotrim, Camila A., Russell J. Jarrott, Jennifer L. Martin, and David Drew. "A structural overview of the zinc transporters in the cation diffusion facilitator family." Acta Crystallographica Section D Structural Biology 75, no. 4 (April 1, 2019): 357–67. http://dx.doi.org/10.1107/s2059798319003814.

Full text
Abstract:
The cation diffusion facilitators (CDFs) are a family of membrane-bound proteins that maintain cellular homeostasis of essential metal ions. In humans, the zinc-transporter CDF family members (ZnTs) play important roles in zinc homeostasis. They do this by facilitating zinc efflux from the cytoplasm to the extracellular space across the plasma membrane or into intracellular organelles. Several ZnTs have been implicated in human health owing to their association with type 2 diabetes and neurodegenerative diseases. Although the structure determination of CDF family members is not trivial, recent advances in membrane-protein structural biology have resulted in two structures of bacterial YiiPs and several structures of their soluble C-terminal domains. These data reveal new insights into the molecular mechanism of ZnT proteins, suggesting a unique rocking-bundle mechanism that provides alternating access to the metal-binding site.
APA, Harvard, Vancouver, ISO, and other styles
5

Keren-Khadmy, Noa, Natalie Zeytuni, Nitzan Kutnowski, Guy Perriere, Caroline Monteil, and Raz Zarivach. "From conservation to structure, studies of magnetosome associated cation diffusion facilitators (CDF) proteins in Proteobacteria." PLOS ONE 15, no. 4 (April 20, 2020): e0231839. http://dx.doi.org/10.1371/journal.pone.0231839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Liangtao, Ren Miao, Xuan Jia, Diane M. Ward, and Jerry Kaplan. "Expression of the Yeast Cation Diffusion Facilitators Mmt1 and Mmt2 Affects Mitochondrial and Cellular Iron Homeostasis." Journal of Biological Chemistry 289, no. 24 (May 5, 2014): 17132–41. http://dx.doi.org/10.1074/jbc.m114.574723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sácký, Jan, Tereza Leonhardt, and Pavel Kotrba. "Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea." BioMetals 29, no. 2 (February 23, 2016): 349–63. http://dx.doi.org/10.1007/s10534-016-9920-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martin, Julia E., and David P. Giedroc. "Functional Determinants of Metal Ion Transport and Selectivity in Paralogous Cation Diffusion Facilitator Transporters CzcD and MntE in Streptococcus pneumoniae." Journal of Bacteriology 198, no. 7 (January 19, 2016): 1066–76. http://dx.doi.org/10.1128/jb.00975-15.

Full text
Abstract:
ABSTRACTCation diffusion facilitators (CDFs) are a large family of divalent metal transporters that collectively possess broad metal specificity and contribute to intracellular metal homeostasis and virulence in bacterial pathogens.Streptococcus pneumoniaeexpresses two homologous CDF efflux transporters, MntE and CzcD. Cells lackingmntEorczcDare sensitive to manganese (Mn) or zinc (Zn) toxicity, respectively, and specifically accumulate Mn or Zn, respectively, thus suggesting that MntE selectively transports Mn, while CzcD transports Zn. Here, we probe the origin of this metal specificity using a phenotypic growth analysis of pneumococcal variants. Structural homology toEscherichia coliYiiP predicts that both MntE and CzcD are dimeric and each protomer harbors four pairs of conserved metal-binding sites, termed the A site, the B site, and the C1/C2 binuclear site. We find that single amino acid mutations within both the transmembrane domain A site and the B site in both CDFs result in a cellular metal sensitivity similar to that of the corresponding null mutants. However, multiple mutations in the predicted cytoplasmic C1/C2 cluster of MntE have no impact on cellular Mn resistance, in contrast to the analogous substitutions in CzcD, which do have on impact on cellular Zn resistance. Deletion of the MntE-specific C-terminal tail, present only in Mn-specific bacterial CDFs, resulted in only a modest growth phenotype. Further analysis of MntE-CzcD functional chimeric transporters showed that Asn and Asp in theND-DD A-site motif of MntE and the most N-terminal His in theHD-HD site A of CzcD (the specified amino acids are underlined) play key roles in transporter metal selectivity.IMPORTANCECation diffusion facilitator (CDF) proteins are divalent metal ion transporters that are conserved in organisms ranging from bacteria to humans and that play important roles in cellular physiology, from metal homeostasis and resistance to type I diabetes in vertebrates. The respiratory pathogenStreptococcus pneumoniaeexpresses two metal CDF transporters, CzcD and MntE. How CDFs achieve metal selectivity is unclear. We show here that CzcD and MntE are true paralogs, as CzcD transports zinc, while MntE selectively transports manganese. Through the use of an extensive collection of pneumococcal variants, we show that a primary determinant for metal selectivity is the A site within the transmembrane domain. This extends our understanding of how CDFs discriminate among transition metals.
APA, Harvard, Vancouver, ISO, and other styles
9

Raimunda, Daniel C., Isidro Abreu, Paula Mihelj, and Manuel González-Guerrero. "When Two's Company: New Evidences on Dual Fe/Co Selectivity of Transport in the Co2+-Exporting Cation Diffusion Facilitators (CoF-eCDF) Family." Biophysical Journal 118, no. 3 (February 2020): 131a. http://dx.doi.org/10.1016/j.bpj.2019.11.848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grünberg, Karen, Cathrin Wawer, Bradley M. Tebo, and Dirk Schüler. "A Large Gene Cluster Encoding Several Magnetosome Proteins Is Conserved in Different Species of Magnetotactic Bacteria." Applied and Environmental Microbiology 67, no. 10 (October 1, 2001): 4573–82. http://dx.doi.org/10.1128/aem.67.10.4573-4582.2001.

Full text
Abstract:
ABSTRACT In magnetotactic bacteria, a number of specific proteins are associated with the magnetosome membrane (MM) and may have a crucial role in magnetite biomineralization. We have cloned and sequenced the genes of several of these polypeptides in the magnetotactic bacterium Magnetospirillum gryphiswaldense that could be assigned to two different genomic regions. Except for mamA, none of these genes have been previously reported to be related to magnetosome formation. Homologous genes were found in the genome sequences ofM. magnetotacticum and magnetic coccus strain MC-1. The MM proteins identified display homology to tetratricopeptide repeat proteins (MamA), cation diffusion facilitators (MamB), and HtrA-like serine proteases (MamE) or bear no similarity to known proteins (MamC and MamD). A major gene cluster containing several magnetosome genes (including mamA and mamB) was found to be conserved in all three of the strains investigated. ThemamAB cluster also contains additional genes that have no known homologs in any nonmagnetic organism, suggesting a specific role in magnetosome formation.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Cation diffusion facilitators"

1

Noordally, Zeenat Begum. "Metal binding determinants in Arabidopsis thaliana cation diffusion facilitators." Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matias, Madeleine Gundayao. "Animal calcium release-activated calcium (CRAC) channels are homologous and derived from the ubiquitous Cation Diffusion Facilitators." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p1453033.

Full text
Abstract:
Thesis (M.S.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed June 25, 2008). Available via ProQuest Digital Dissertations. Includes bibliographical references (p. 48-51).
APA, Harvard, Vancouver, ISO, and other styles
3

Haney, Christopher J. "Functional Analysis of the Cation Diffusion Facilitator ZitB from Escherichia coli." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195975.

Full text
Abstract:
This research sought to elucidate the molecular mechanism by which a recently described family of ion transport proteins, the cation diffusion facilitators (CDFs), transfer ions across biomembranes. Using the Escherichia coli homologs ZitB, and FieF, as well as CzcD from Cupriavidus metallidurans CH34 as models, the amino acids essential to CDF function were identified, and the transport behavior of ZitB and its homolog FieF, were described.Site-directed ZitB mutants were used to determine the necessity of individual amino acids. The mutation of several well-conserved acidic residues resulted in the loss of a ZitB-mediated zinc-resistant phenotype in the zinc-sensitive E. coli strain GG48. ZitB also complemented the potassium uptake deficient strain TK2420, suggesting that ZitB works as an antiporter, possibly allowing potassium into the cell while effluxing zinc.This result was further investigated in experiments using everted membrane vesicles(EMVs). Vesicles bearing ZitB accumulated 65Zn(II) in a NADH-dependent manner, with an apparent KM of 1 micromolar. This accumulation was inhibitable by the protonophore FCCP, suggesting CDF dependence upon the proton motive force. Similar results were obtained using both EMVs and proteoliposomes containing the CDF homologs CzcD, from C. metallidurans CH34, and FieF from E. coli. Despite facilitating 65Zn(II) uptakeinto EMVs, fieF transcription was zinc and iron-dependent, but independent of the ironuptake regulator Fur. FieF expression in trans complemented the iron-sensitive phenotypeof a strain lacking fur, causing it to accumulate less 55Fe than wild type. Reconstituted proteoliposomes containing FieF also accumulated less 55Fe than those without.This research confirms that CDF proteins likely depend on the cell's proton gradient, effluxing substrate in a metal:proton antiport arrangement. Substrate acquisition and throughput is facilitated by a set of acidic amino acids and histidines. The relatively lowapparent KM of ZitB suggests a homeostatic role for the protein; however, the iron-inducibilityof fieF hints at a role in iron detoxification, so the cellular functions of the CDF family may be quite diverse, even within the bacteria.
APA, Harvard, Vancouver, ISO, and other styles
4

Migeon, Aude. "Etude de la variabilité naturelle dans la réponse du peuplier aux métaux : Bases physiologiques et exploitation en phytoremédiation." Thesis, Nancy 1, 2009. http://www.theses.fr/2009NAN10050/document.

Full text
Abstract:
Les différentes études entreprises ont porté sur la détermination du potentiel accumulateur du peuplier à une fin d’utilisation en phytoremédiation. Chez les végétaux, les éléments traces comme le Zn, Fe, Cu, Co, Mn, Mo et Ni sont nécessaires aux processus biologiques mais leur accumulation excessive peut être toxique. D’autres éléments non essentiels comme le Cd et le Pb peuvent également être absorbés par les végétaux, et donc constituer un danger potentiel puisqu’ils entrent ainsi dans la chaîne alimentaire. La phytoremédiation est l’utilisation de plantes et de leurs microbes associés pour la dépollution de l’environnement. Dans le cadre de cette étude, il a été démontré que le peuplier (Populus spp.) pouvait accumuler de relativement fortes concentrations de certains métaux (Cd, Zn et Ni) par rapport à d’autres espèces ligneuses, par exemple 30-50 µg de Cd /g de matière sèche foliaire, soit 20 fois plus que les autres espèces. Après avoir mis en évidence le potentiel accumulateur du peuplier, nous avons testé différents cultivars en culture hydroponique et avons ainsi mis en évidence des potentiels accumulateurs variés entre cultivars. Nous avons montré que les hybrides de P. trichocarpa accumulaient davantage que les autres hybrides. Parallèlement à cette étude, nous avons implanté ces mêmes cultivars sur deux sites pollués dans le cadre du projet ANR PHYTOPOP. Combiné à la production d’une forte biomasse qui peut être utilisée pour produire de l’énergie, ce caractère accumulateur fait du peuplier un bon candidat pour la phytoremédiation. Les membres de la famille des CDF (Cation Diffusion Facilitator) sont impliqués dans le transport des métaux. Après une étude phylogénétique des membres de cette famille (démonstration d’un nombre supérieur de CDF chez le peuplier par rapport aux autres espèces), leur expression dans différents tissus et dans différentes conditions physiologiques (sur sol témoin et sur sol pollué) a été étudiée. De plus, la caractérisation fonctionnelle a permis de mettre en évidence un transporteur de Zn (PtMTP2) et un transporteur de Mn (PtMTP9). Une tentative de localisation de ces transporteurs a également été entreprise. Dans le but de localiser les métaux dans les tissus de la plante, nous avons effectué des analyses en spectrométrie de masse à ionisation secondaire (SIMS) sur des feuilles de peupliers soumis à un stress métallique. Cette dernière technique a permis de montrer que le Zn était essentiellement concentré au niveau du mésophylle
The present study beared on the capacity of poplar to be used in phytoremediation programmes. In plants, trace elements such as Zn, Fe, Cu, Co, Mn, Mo and Ni are necessary to biological processes but they also can be toxic when present at high concentrations. Other non essential elements, such as Cd and Pb also can be taken up by plants and therefore constitute a potential risk for health via accumulation into the food chain. Phytoremediation is the use of plants and associated microorganisms to clean up the environment. First, we have shown that poplar (Populus) species could relatively accumulate high concentrations of metals (Cd, Zn and Ni) compared to other woody plants. For instance, poplar is able to accumulate 30 times more Cd than other woody species. Second we have measured in hydroponic cultures, the potential of metal accumulation by different poplar cultivars. We found that P. trichocarpa hybrids accumulated more metals than the other hybrids. As part of the PHYTOPOP programme, we have also grown the same cultivars on two different polluted sites. Finally, by secondary ion mass spectrometry, we were able to localize Zn in poplar leaf mesophyll. The high biomass, which can also be used for energetic processes, and the heavy metals accumulation properties of poplar lead to the conclusion that poplar can constitute a good candidate for phytoremediation. The CDF (Cation Diffusion Facilitator) members are proteins involved in the transport of heavy metals. Phylogenetic analyses of the CDF family have shown that poplar contains a higher number of CDF members compared with other species. Expression levels of CDF members were studied in different tissues and in different physiological conditions. Moreover, heterologous expression in yeast has shown that PtMTP2 and PtMTP9 transport Zn and Mn respectively. Localization experiments in planta were also realized
APA, Harvard, Vancouver, ISO, and other styles
5

Meier, Bastian [Verfasser], Edgar [Gutachter] Peiter, and Damien [Gutachter] Blaudez. "Functional characterization of the cation diffusion facilitator AtMTP10 in Arabidopsis thaliana / Bastian Meier ; Gutachter: Edgar Peiter, Damien Blaudez." Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2019. http://d-nb.info/1210728494/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Cation diffusion facilitators"

1

Tiwari, Shalini, and Charu Lata. "Cation diffusion facilitator family of transporters in plants." In Cation Transporters in Plants, 375–84. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85790-1.00023-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography